SpringerBriefs in Statistics

Monia Lupparelli · Giovanni Maria Marchetti · Claudia Tarantola

Regression Graph Models for Categorical Data

Parameterization and Inference

SpringerBriefs in Statistics

SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include:

- A timely report of state-of-the art analytical techniques
- A bridge between new research results, as published in journal articles, and a contextual literature review
- A snapshot of a hot or emerging topic
- An in-depth case study or clinical example
- A presentation of core concepts that students must understand in order to make independent contributions

SpringerBriefs in Statistics showcase emerging theory, empirical research, and practical application in Statistics from a global author community.

SpringerBriefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules.

Monia Lupparelli · Giovanni Maria Marchetti · Claudia Tarantola

Regression Graph Models for Categorical Data

Parameterization and Inference

Monia Lupparelli Department of Statistics, Computer Science, Applications
University of Florence
Florence, Italy

Claudia Tarantola Department of Economics, Management and Quantitative Methods
University of Milan
Milan, Italy

Giovanni Maria Marchetti Department of Statistics, Computer Science, Applications
University of Florence
Florence, Italy

ISSN 2191-544X ISSN 2191-5458 (electronic)
SpringerBriefs in Statistics
ISBN 978-3-031-99796-9 ISBN 978-3-031-99797-6 (eBook)
https://doi.org/10.1007/978-3-031-99797-6

Mathematics Subject Classification: 62H17, 62F15

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

In this work we have attempted to summarize our activity in the field of chain graph models, with a particular emphasis on the parameterizations and inference of regression chain graph models, often referred as regression graph models, for the analysis of categorical data. Unlike other families of graphical models, such as the Bayesian networks (that is directed acyclic graphs) or the undirected graph models, which are by now extensively known and used, the regression graphs do not enjoy yet the same popularity. Our motivation for writing this book stems from the conviction that this class of models can be highly beneficial for statistical data analysis. This family of graphs defines a framework of recursive multivariate regressions that find application in important fields such as structural equation models and marginal models for qualitative data. In contrast to undirected graphical models, the regression graph models allow the variables considered on equal standing to be grouped into chain components that can serve different roles in the data-generating mechanism. Regression graphs also bridge some limitations of Bayesian networks used to define univariate recursive regression models that do not account for additional forms of dependencies for instance induced by unobserved variables.

This work has a twofold intention. The first is to consolidate knowledge on regression graphs, their interpretation in terms of sequences of multivariate regressions, interpretable parameterizations for categorical data, and inference and model selection within the frequentist and Bayesian approaches. The second objective of this work is encouraging both the applications and the research concerning this class of graphical models.

The book is intended primarily for graduate and Ph.D. students in Statistics and Data Science who are familiar with the basics of graphical Markov models and of categorical data analysis, and for motivated researchers in specific applied fields. Data and R code used in the book are made available at the website https://github.com/StaThin/RGM.

The writing of this book has been stimulated and enriched by collaborations and discussions over the time with colleagues and friends from the community of graphical models and categorical data analysis. We are especially grateful to Nanny Wermuth, David Cox, Wicher Bergsma, Tamás Rudas, Ioannis Ntzoufras,

viii Preface

Anna Gottard, Kayvan Sadeghi, Alberto Roverato, Luca La Rocca, Mathias Drton, Robin Evans, Francesco Bartolucci, Antonio Forcina, Guido Consonni, Søren Højsgaard. We would also thank the Editors of Springer Publications and the Anonymous Reviewers for their careful reading, constructive comments and suggestions that have thoroughly improved this manuscript.

Florence, Italy June 2025 Monia Lupparelli Giovanni Maria Marchetti Claudia Tarantola **Competing Interests** The authors have no competing interests to declare that are relevant to the content of this manuscript.

Contents

1	Regr	ression Graph Models	1
	1.1	Graphical Markov Models	1
			1
			2
			3
		1.1.4 Role of the Variables	3
	1.2	Marginal Independence Models	4
		1.2.1 The Connected Set Markov Property	6
			8
	1.3	Multivariate Regression Graphs	9
	1.4		3
	1.5	The Regression Chain Graph Markov Property 1	6
	1.6	Some Applications to Categorical Data	8
	1.7	Interpretation via Latent Variables	2
	1.8	Appendix: Recursive Multivariate Regressions	
		for a Gaussian Distribution	24
	1.9	Bibliographic Notes	25
2	Mult	ivariate Logistic Regression Models	9
	2.1		9
	2.2		1
		2.2.1 The Parameterization	1
		2.2.2 Graphical Models of Marginal Independence 3	4
	2.3	Multivariate Regression Models for Categorical Responses 3	6
	2.4	Conditional Independence Constraints	9
	2.5		3
	2.6		6
	2.7	Marginal Log-Linear Parameterization for Bi-directed	
			7

xii Contents

	2.8	Marginal Log-Linear Parameterizations for Regression Graphs	48
	2.9	Appendix: Link Functions for Marginal Log-Linear	
	2.10	Parameterizations	49
	2.10	Bibliographic Notes	50
3	Maxi	mum Likelihood Inference	53
	3.1	Likelihood Function for Discrete Regression Graph Models	53
	3.2	MLEs for a Generalized Class of Non-linear Regression	
		Models	54
		3.2.1 The Algorithm	55
		3.2.2 Asymptotic Properties and Model Comparison	57
	3.3	Fitting a Regression Graph Model	58
	3.4	Strategies for Structure Learning of Regression Chain Graphs	63
	3.5	Appendix: Hessian Matrix Approximations	69
	3.6	Bibliographic Notes	70
4	Bave	sian Inference	73
	4.1	Basic Background	73
		4.1.1 Parametric Inference	73
		4.1.2 Model Comparison	74
	4.2	Bayesian Analysis of Regression Graphs	76
	4.3	Markov Equivalence	77
	4.4	Cell Probability Parameterization	80
		4.4.1 Prior Distribution	81
		4.4.2 Model Selection	84
		4.4.3 Bayesian Inference for Coppen's Data	85
	4.5	Marginal Log-Linear Parameterization	90
		4.5.1 Prior Distribution	91
		4.5.2 MCMC Algorithm	92
	4.6	Concluding Remark	96
	4.7	Appendix: Jacobian and Link Function	97
		4.7.1 Jacobian Matrix	97
		4.7.2 Contrast Matrix $C_{\mathcal{M}}$ with Sum to Zero Constraints	98
	4.8	Bibliographic Notes	99
Re	eferenc	ees	103
ın	aex		107