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Preface

Modern polymeric materials have revolutionized various aspects of our lives, driving
advancements in sustainability, biomaterials, biosensors, energy solutions, and aerospace
technologies. The ever-evolving engineering and environmental challenges of our time
demand materials with unconventional properties, such as high temperature stability,
exceptional thermal conductivity, and biodegradability.

Polymers are composed of molecules represented as graph structures, where atoms act
as nodes and bonds as edges. This inherent structure makes deep learning techniques—
such as Transformers and Graph Neural Networks (GNNs)—indispensable for discovering
new polymers that fulfill modern requirements.

Deep learning paradigms, namely prediction and generation, are integral to material
virtual screening and inverse design, respectively. This book offers a systematic explo-
ration of deep learning techniques tailored to polymer discovery, bridging the disciplines
of materials science and artificial intelligence. It equips researchers and practitioners with
foundational concepts and state-of-the-art methods for predicting polymer properties and
designing novel polymers using advanced neural network architectures.

The content spans a broad spectrum of topics, progressing from fundamental con-
cepts to advanced methodologies. It begins with polymer data representations and neural
network architectures (Chap. 1) before delving into frameworks for property prediction
(Chap. 2) and inverse polymer design (Chap. 3). Key approaches include sequence-based
and graph-based techniques, leveraging neural network models such as LSTMs, GRUs,
GCNs, and GINs. Advanced discussions encompass interpretable graph deep learning
with environment-based augmentation (Chap. 4), semi-supervised methods for addressing
label imbalance (Chap. 5), and data-centric transfer learning using generative methods
like diffusion models (Chap. 6). Each topic is presented with detailed problem definitions,
method descriptions, and experimental validations.

The book tackles pressing issues in polymer discovery, such as accurate property pre-
diction, efficient design of polymers with desired traits, model interpretability, handling
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imbalanced and limited labeled data, and leveraging unlabeled data for enhanced predic-
tions. Practical examples and experiments on real-world datasets demonstrate the efficacy
of the proposed methodologies.

This book is designed for researchers, graduate students, and professionals in materials
science, chemistry, and computer science who are interested in harnessing deep learning
for polymer discovery and design. It serves as a primer, practical guide, and reference for
those seeking to integrate artificial intelligence into materials research and development,
inspiring innovation at the intersection of science and technology.

Notre Dame, USA Gang Liu
December 2024 Eric Inae
Meng Jiang
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Polymer Data and Deep Neural Networks

1.1 Polymer Data Representations

Polymers can be represented in multiple forms such as sequences, graphs, and vectors,
as illustrated in Fig. 1.1. Neural networks have demonstrated their effectiveness in science
by learning intricate relationships from data and leveraging this understanding to inform
decision-making processes. When applying machine learning models (e.g., neural networks)
to polymer tasks, the initial step involves determining the most suitable representation for

the polymer data to be utilized by the models.
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Fig. 1.1 Visualization of a polymer’s representations: a polyethylene terephthalate (PET);

b sequence; ¢ graph; d feature vector
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