
Synthesis Lectures on
Learning, Networks, and Algorithms

Hang Wang · Sen Lin · Junshan Zhang

Continual and
Reinforcement
Learning
for Edge AI
Framework, Foundation, and Algorithm Design

Synthesis Lectures on Learning, Networks,
and Algorithms

Series Editor

Lei Ying, ECE, University of Michigan, Ann Arbor, MI, USA

The series publishes short books on the design, analysis, and management of complex
networked systems using tools from control, communications, learning, optimization, and
stochastic analysis. Each Lecture is a self-contained presentation of one topic by a leading
expert. The topics include learning, networks, and algorithms, and cover a broad spec-
trum of applications to networked systems including communication networks, data-center
networks, social, and transportation networks.

Hang Wang · Sen Lin · Junshan Zhang

Continual
and Reinforcement
Learning for Edge AI
Framework, Foundation, and Algorithm
Design

Hang Wang
University of California
Davis, CA, USA

Junshan Zhang
University of California
Davis, CA, USA

Sen Lin
University of Houston
Katy, TX, USA

ISSN 2690-4306 ISSN 2690-4314 (electronic)
Synthesis Lectures on Learning, Networks, and Algorithms
ISBN 978-3-031-84362-4 ISBN 978-3-031-84363-1 (eBook)
https://doi.org/10.1007/978-3-031-84363-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-84363-1

Preface

With the advances in artificial intelligence (AI) and edge computing, edge-AI has recently
emerged as the marriage of these two groundbreaking technologies and attracted signifi-
cant interest from both industry and academia. Particularly, edge-AI seeks to push the AI
frontiers to the resource-limited network edge that is closer to the data-generating sources,
e.g., mobile devices and other Internet-of-Things (IoT) devices. This new inter-discipline
has great potentials in enabling a wide range of on-device AI applications, spanning from
video surveillance to personal assistant to autonomous driving. Nevertheless, local data is
usually collected online and the underlying data distributions can continuously shift due
to the environment changes, which requires the edge AI models to be adapted accordingly
in a lifelong manner and efficiently considering the limited computing resources at the
network edge. This online and non-stationary nature calls for a new formulation of edge
AI from the perspective of continual learning, however, for which the research is still in
an infancy stage and a dedicated venue for exchanging the recent advances is lacking.

To fill this void, we present in this book a survey of recent research progress, with
‘bias’ towards our own research efforts in edge AI, from supervised learning to reinforce-
ment learning. More specifically, we first introduce the background and the motivation
of continual learning in edge AI, followed by the potential frameworks and design con-
siderations therein. Next, we identify and provide a detailed overview of key machine
learning technologies to enable continual learning and reinforcement learning for edge
AI. To better demonstrate the research directions and problems in edge continual AI, we
also showcase four of our own research projects and summarize the recent progress in
this field. We discuss the promising applications and future research opportunities at the
end. We hope that this book will bring up more attentions, spark fruitful discussions and
motivate further research ideas on continual and reinforcement learning for edge AI.

v

vi Preface

This work is supported in part by NSF Grants CNS-2203239, CNS-2148253, CCSS-
2413529 and ARO Grant W911NF-2410046.

Davis, USA
Katy, USA
Davis, USA
September 2024

Hang Wang
Sen Lin

Junshan Zhang

Contents

1 Introduction to Continual and Reinforcement Learning for Edge AI 1
1.1 Introduction . 1

1.1.1 Edge AI . 3
1.1.2 Continual Learning and Reinforcement Learning for

Edge AI . 4
1.2 Framework . 7
1.3 Performance Measures and Efficiency . 8

Part I Algorithmic and Theoretical Foundations

2 Continual Learning for Edge AI . 13
2.1 Introduction . 13
2.2 Theoretical Studies on Continual Learning . 14

2.2.1 CL in Linear Models . 15
2.2.2 Main Results and Interpretations . 17
2.2.3 Implications on CL with DNN . 24
2.2.4 Experimental Evaluation . 27

2.3 Discussions on Experimental Studies on Continual Learning 43
2.4 Conclusion . 45

3 Reinforcement Learning for Edge AI . 47
3.1 Introduction . 48

3.1.1 Related Work . 49
3.1.2 Comparison with Related Work . 51

3.2 Background . 52
3.2.1 Policy Iteration as Newton’s Method in Abstract Dynamic

Programming . 53
3.2.2 An Illustrative Example of the Error Propagation

in Actor-Critic Updates . 58

vii

viii Contents

3.3 Characterization of Approximation Errors . 59
3.3.1 Approximation Error in the Critic Update . 63
3.3.2 Approximation Error in the Actor Update . 73

3.4 The Impact of Approximation Errors on Warm-Start Actor-Critic 76
3.4.1 Upper Bound on Sub-Optimality Gap . 79
3.4.2 Lower Bound on Sub-Optimality Gap . 82

3.5 Experiments . 85
3.6 Conclusion . 88

4 Meta-Learning . 89
4.1 Introduction . 89
4.2 Recent Algorithm Development . 91
4.3 Online Meta-Learning . 92

4.3.1 Related Work . 94
4.3.2 Background and Problem Formulation . 95
4.3.3 Proposed Algorithm Under Distribution Shifts 96
4.3.4 Theoretical Results . 99
4.3.5 Experiments . 105

4.4 Conclusion . 116

Part II Efficient Algorithm Design for Edge AI

5 Edge-Only Learning via Continual Learning with Enhanced
Knowledge Transfer . 119
5.1 Introduction . 119
5.2 Conditions on Improving the Learnt Model of Old Tasks 121
5.3 Continual Learning with Enhanced Knowledge Transfer 129
5.4 Experiments . 133

5.4.1 Main Results . 134
5.4.2 Ablation Studies . 136
5.4.3 More Experimental Results . 138
5.4.4 More Experimental Details . 139
5.4.5 Memory and Time Cost . 140
5.4.6 Baseline Implementations . 142

5.5 Conclusion . 143

6 Cloud-Edge Collaboration via Pretrained and Federated Continual
Learning . 145
6.1 Introduction . 145

6.1.1 Basic Setting . 146
6.1.2 Use Cases . 148

6.2 Related Work . 149

Contents ix

6.3 Adaptive Coalescence of Wasserstein-1 Generative Models 151
6.3.1 A Wasserstein-1 Barycenter Formulation via Lagrangian

Relaxation . 151
6.3.2 A Two-Stage Adaptive Coalescence Approach

for Wasserstein-1 Barycenter Problem . 151
6.3.3 From Displacement Interpolation to Adaptive Barycenters 152

6.4 Recursive WGAN Configuration for Continual Learning 154
6.4.1 A 2-Discriminator WGAN Implementation per Recursive

Step to Enable Efficient Training . 156
6.4.2 Model Initialization in Each Recursive Step 156
6.4.3 Fast Adaptation for Training Ternary WGAN at Node 0 157
6.4.4 Implementation Challenges in W 2 2 -Based GAN 159

6.5 Experiments . 159
6.5.1 Datasets, Models and Evaluation . 159
6.5.2 Experiment Setup . 160
6.5.3 Continual Learning Against Catastrophic Forgetting 160
6.5.4 Impact of Number of Pre-trained Generative Models 162
6.5.5 Impact of the Number of Data Samples at Node 0 162
6.5.6 Impact of Wasserstein Ball Radii . 163
6.5.7 Ternary WGAN-Based Barycentric Fast Adaptation 163
6.5.8 Performance Evaluation Using Inception Score 163
6.5.9 Continual Learning Performance Across Dissimilar Data

Samples . 166
6.5.10 Computational Cost and Run-Time Comparison 168

6.6 Recent Advances in Pretrained CL and Federated CL 168
6.7 Conclusion . 170

7 Cloud-Edge Collaboration for Continual Reinforcement Learning 171
7.1 Introduction . 172
7.2 Impact of Ensemble Size on Estimation Bias . 174

7.2.1 Ensemble Q-Learning . 174
7.2.2 An Illustrative Example . 175

7.3 Adaptive Ensemble Q-Learning (AdaEQ) . 178
7.3.1 Lower Bound and Upper Bound on Estimation Bias 178
7.3.2 Practical Implementation . 187

7.4 Experimental Results . 189
7.5 Conclusion . 194

8 Edge-Edge Collaboration via Decentralized Online Meta-Learning 197
8.1 Introduction . 197
8.2 Related Work . 199

x Contents

8.3 Multi-agent Online Meta-Learning . 200
8.3.1 Problem Formulation . 200
8.3.2 Two-Level Nested OCO . 201

8.4 Distributed Network-Level Online Convex Optimization 203
8.4.1 Distributed OGD with Gradient Tracking . 204
8.4.2 Performance Analysis . 205

8.5 MAOML . 208
8.5.1 Performance Analysis . 209

8.6 Experiments . 210
8.6.1 Performance of DOGD-GT . 210
8.6.2 Performance of MAOML . 211

8.7 Proofs . 215
8.7.1 Preliminaries . 216
8.7.2 Regret Analysis . 217
8.7.3 Distributed Convex Stochastic Optimization 232
8.7.4 Proof of Theorem 8.2 . 233

8.8 Conclusion . 234

Part III Applications and Future Directions

9 Applications and Future Directions . 237
9.1 Embodied AI . 237

9.1.1 Autonomous Vehicles . 238
9.1.2 Artificial General Robotics . 240

9.2 Foundation Models . 242
9.2.1 Large Language Models . 242
9.2.2 World Models . 243
9.2.3 On-Device Foundation Model . 244

References . 245

About the Authors

Hang Wang is currently a Ph.D. candidate in the Department of Electrical and Com-
puter Engineering at University of California, Davis. Previously, he received the B.E.
from University of Science and Technology of China (USTC) in 2018. His research
aims to establish a fundamental understanding of reinforcement learning, multi-agent
systems, and human-AI interaction, as well as practical applications in the domains like
Autonomous Driving and Edge Computing. His contributions have been published in
NeurIPS, ICML, AAMAS and his recent work on Warm-start Reinforcement Learning
also garnered attention and acclaim via an oral presentation at ICML.

Sen Lin is an Assistant Professor in the Department of Computer Science at University
of Houston. Previously, he was a Postdoc in the NSF AI-EDGE Institute at The Ohio
State University. He received his Ph.D. degree from Arizona State University, M.S. from
HKUST and B.E. from Zhejiang University. His research interests broadly fall in the
intersection of machine learning and wireless networking. Currently, his research focuses
on developing algorithms and theories in continual learning, meta-learning, reinforcement
learning, adversarial machine learning and bilevel optimization, with applications in mul-
tiple domains, e.g., edge computing, security, network control. His research results have
been published in top conferences and journals in machine learning and networking. The
recognition his papers have received includes the WiOpt’18 Best Student Paper Award
and Spotlight presentations in ICLR and ICML.

Junshan Zhang has been a professor in the ECE Department at University of California
Davis since 2021. He received his Ph.D. degree from the School of ECE at Purdue Uni-
versity in August 2000, and was on the faculty of the School of ECEE at Arizona State
University from 2000 to 2021. His research interests fall in the general field of information
networks and data science, including edge AI, reinforcement learning, continual learning,
network optimization and control, game theory. He is a Fellow of the IEEE, and a recipi-
ent of the ONR Young Investigator Award in 2005 and the NSF CAREER award in 2003.

xi

xii About the Authors

His papers have won a few awards, including the Best Student paper atWiOPT 2018, the
Kenneth C. Sevcik Outstanding Student Paper Award of ACM SIGMETRICS/IFIP Per-
formance 2016, the Best Paper Runner up Award of IEEE INFOCOM 2009 and IEEE
INFOCOM 2014, and the Best Paper Award at IEEE ICC 2008 and ICC 2017. He is cur-
rently serving as Editor-in-Chief for IEEE/ACM Transactions on Networking. He served
as Editor-in-Chief for IEEE Transactions onWireless Communication during 2019–2022.
He was TPC co-chair for IEEE INFOCOM 2012 and ACM MOBIHOC 2015.

1Introduction to Continual and Reinforcement
Learning for Edge AI

1.1 Introduction

Since its birth in 1956, artificial intelligence (AI) has gone through multiple summers and
winters. Driven by the significant advancements of neural network architectures, computing
power and big data, the past decade has witnessed an unparalleled growth in machine learning
(ML) and AI, leading to phenomenal breakthroughs in a wide spectrum of applications, e.g.,
speech recognition [191], image classification [141, 276], object detection [219, 323], etc. In
fact, GPU throughput and memory have increased 10.× in the last four years. By leveraging
the parallelism of the GPU hardware and more training data, the transformer architecture
can now train much more expressive models than ever, giving rise to a new era of foundation
models. It is widely recognized that these intelligent applications will significantly enrich
people’s lifestyle and improve human productivity.

In general, the machine learning problems can be mainly divided into three categories:

• Supervised Learning. Supervised learning is the process of learning a function that maps
an input to an output (label) given a training dataset of inputs and their corresponding
labels, such that the labels for unseen inputs can be accurately inferred based on the
function. Regression and classification are examples of supervised learning, which have
led to unparalleled successes in computer vision.

• Unsupervised Learning. In unsupervised learning, there are no labels given for the train-
ing data, and the objective is to learn the underlying structure in the data. The most
common unsupervised learning tasks are clustering, e.g., finding groups in data, and
density estimation, e.g., summarizing the distribution of data.

• Self-Supervised Learning and Reinforcement Learning. Self-supervised learning aims to
build models that automatically find patterns in data and reveal these patterns explicitly
with a representation. In particular, reinforcement learning (RL), a popular approach for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
H. Wang et al., Continual and Reinforcement Learning for Edge AI,
Synthesis Lectures on Learning, Networks, and Algorithms,
https://doi.org/10.1007/978-3-031-84363-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84363-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1
https://doi.org/10.1007/978-3-031-84363-1_1

2 1 Introduction to Continual and Reinforcement Learning for Edge AI

self-supervised learning, is used to train an agent that can not only perceive and understand
their surroundings through vision and other sensing modalities but also can navigate
and interact with their physical environments to achieve goals, engage in planning, and
perform reasoning. In essence, reinforcement learning is a learning paradigm that learns
how to use past data, e.g., offline data or data collected through online interaction, to
enhance the future manipulation of a dynamical system, which can be cast as an optimal
control problem when the system dynamics are unknown [32]. The fruitful applications,
e.g., games, robotics, and substantive interactions with other disciplines, e.g., operation
research, control theory and game theory, make reinforcement learning a very popular
and critical research direction nowadays.

One of the key driving forces behind AI is the development of deep learning and deep neu-
ral networks (DNNs) since 2010s, which have achieved astonishing successes in solving ML
problems and demonstrated great superiority over classical ML approaches, e.g., decision
tree and Baysian networks. Notably, consisting of a series of layers, artificial neural networks
(ANNs) can extract the underlying features from data in a hierarchical manner and provide
a universal function approximator for ML problems. Multiplayer Perceptrons (MLPs) are
the most basic ANNs with fully connected neurons and non-linear activation functions. To
capture the spatial correlation in the input data, especially for images, Convolution Neural
Networks (CNNs) [179] replace the basic linear operations in MLPs with convolution oper-
ations, making them very popular for computer vision tasks. Recurrent Neural Networks
(RNNs) [386] are another type of ANNs which specialize in handling sequential data and
hence are widely used for natural language processing (NLP) tasks, e.g., machine transla-
tion and question answering. Unlike feedforward neural networks such as MLPs and CNNs
which process data in a single pass, RNNs are able to process data across multiple time steps,
with an internal memory to remember the knowledge of previous inputs and use that for
learning at current time steps. Another special kind of ANN architectures is the generative
model, which aims to solve generative tasks, e.g., image generation. Generative adversarial
networks (GANs) [117] are in this category, which consist of two separate networks, namely
generator network and discriminator network. The generator seeks to generate new data to
mimic real data in the training dataset, whereas the discriminator seeks to distinguish the
fake data generated by the generator from the real data. Recently, another powerful type of
generative models named as diffusion models [69] has attracted much attention, which grad-
ually add random noise to the input data and then learn to reconstruct desired data samples
from the noise by reversing the diffusion process. In 2017, a new ANN architecture, namely
Transformer [335], was proposed to address the limitation of RNN-based encoder-decoder
architecture in solving sequence-to-sequence tasks, by leveraging the attention mechanism
to capture the long-range dependencies across data inputs in a highly parallel manner. Due
to its superior performance and computational efficiency, the Transformer now becomes the
mainstream architecture and is widely used in pretrained foundation models such as large
language models. Based on the scaling law, the performance of ANNs often improves with

1.1 Introduction 3

larger network size and more training data samples, which can significantly increase the
need of computational resources and memory size.

1.1.1 Edge AI

Recently, with the rapid proliferation of mobile computing and Internet of Things (IoT), big
data is going through a radical shift of data source from the mega-scale cloud datacenters
to the network edge, e.g., mobile devices and IoT devices, as illustrated in Fig. 1.1. It is
anticipated that the data generated by connected devices would reach 175 zettabytes by 2025
[16], far greater than that the cloud datacenters could handle. As the personal data collected by
IoT devices is sensitive in nature, there is a growing consensus that much of the personal data
should be used for training the models locally and would never go beyond the network edge.
Besides, many intelligent applications, such as autonomous driving and augmented reality,
need to accomplish decision making with low latency, in order to meet the requirements
for safety, accuracy, performance and user experience. Clearly, the conventional wisdom
of transporting the data bulks from the IoT devices to the cloud datacenters for analytics
would not work well, due to the extremely stringent requirements in cost, privacy and
performance. As a result, it is anticipated that a high percentage of IoT data will be stored
and processed locally, giving rise to a new research area, namely ‘edge AI’ as the marriage
of edge computing and AI.

More specifically, edge AI refers to the AI model training or inference at the resource-
limited network edge by leveraging available data and computational resources across edge
devices and cloud datacenters. Recently, a lot of research studies have emerged to explore
various aspects of edge AI:

Cloud

Internet
Backbone
Network

Edge
Servers

Edge
Devices/Nodes

Fig. 1.1 Illustration of Edge AI

4 1 Introduction to Continual and Reinforcement Learning for Edge AI

• Model training in edge AI. Various ML techniques have been used to enable edge AI.
For example, federated learning (FL) trains a global model in a distributed manner based
on the local data across multiple devices, which is widely used for model training at the
network edge, e.g., [3, 169, 226, 284, 288, 358]. Split learning splits a global model into
multiple sections and each edge device trains one section by using its local data, e.g., [61,
106, 255, 285]. A pre-trained model in the cloud can be transferred to an edge device
based on transfer learning for further fine-tuning with local data, e.g., [46, 62, 370, 372].
Various model compression techniques are also frequently used in edge AI to improve
the efficiency of memory, computation, and communication for model training, including
knowledge distillation (e.g., [10, 36, 361, 404]), quantization (e.g., [60, 184, 205, 251]),
and model pruning (e.g., [130, 156, 222]).

• Model inference in edge AI. To make full use of the available data and computation
resources in edge networks, the model inference in edge AI can be implemented in dif-
ferent frameworks. The trained model can be split into two parts, with one in the edge
devices and the other in the cloud. The intermediate results calculated in the device based
on local data will be sent to the remaining part of model in the cloud to complete the
inference (e.g., [161, 172, 180]). To reduce the latency and communication cost, collabo-
rations between edge serves and edge devices have been introduced for model inference.
For example, [204] studied how to accelerate inference for edge-device collaboration by
jointly optimizing the model partitioning and right-sizing. Moreover, the inference can
be done based on the collaborations between edge devices, which can be very useful in
scenarios with high mobility or harsh environments (e.g., [84, 405]). Recent studies have
also investigated efficient on-device model inference. For instance, OnceNAS [397] was
proposed in to jointly optimize the number of parameters and inference latency through
neural architecture search, which has significantly reduced the model size and increased
the inference speed.

• Applications of edge AI. Due to the advantages of privacy protection, low latency, low cost,
and high flexibility in personalization, edge AI can find applications in a lot of different
domains, including smart healthcare [53, 123, 160, 275], smart cities [9, 66, 148, 324],
smart agriculture [90, 269, 308], autonomous vehicles [54, 75, 369], recommendation
systems [101], etc.

1.1.2 Continual Learning and Reinforcement Learning for Edge AI

Despite the great potential to create many novel intelligent applications and fuel the contin-
uous prosperity of AI, pushing the AI frontier to the network edge for achieving edge AI is
highly nontrivial. Specifically, running AI applications directly on edge devices to process
the IoT data locally, if not designed intelligently, would suffer from poor performance and
energy inefficiency, simply because many AI applications typically require high computa-

1.1 Introduction 5

tional power that greatly outweighs the capacity of resource- and energy-constrained IoT
devices. Tackling these unique challenges in edge networks successfully is vital to sustain the
rapid progress of this field. To this end, an appropriate and efficient edge learning framework
should possess the following properties:

• Guarantee performance under small datasets. While tremendous data will be generated
by the ensemble of IoT devices, the amount of personal data at every edge node is
limited. Therefore, to facilitate various edge-AI applications, especially on-device AI
applications, the edge learning algorithms should be able to effectively extract useful
knowledge from small local datasets.

• Work efficiently with simple learning algorithms. In contrast to more capable cloud dat-
acenters, the edge node only has limited computational resources, which significantly
restrict its capability to run complicated learning algorithms on complex models. Conse-
quently, it is more desirable to just deploy simple algorithms, e.g., gradient descent, on
a more compact model.

• Learn quickly with high communication efficiency. The strict requirement on performance
and latency for many AI applications clearly precludes the approaches that need extensive
training time, calling for a fast learning algorithm that can quickly train ML models at each
edge node with performance guarantee. In the meanwhile, the communication efficiency
should be taken into consideration for edge learning frameworks based on collaborations
among the cloud and edge nodes.

• Adapt continuously. Distributions of locally generated data can shift in a lifelong manner
due to the environment change. For instance, autonomous vehicles can experience differ-
ent terrain and weather conditions when collecting data. The online and non-stationary
nature of local data at edge nodes requires model training in edge AI to adapt continu-
ously, such that the knowledge learned previously will not only be maintained but also
be leveraged to facilitate better learning of new data.

While a lot of existing studies on edge AI have proposed various edge learning frameworks
that meet the first three properties, much less attention has been paid to frameworks that
can enable continuous adaptation of AI models at the network edge [350, 406]. Clearly,
the standard ML paradigms that focus on learning with a fixed dataset and stationary data
distributions would not work well. On one hand, directly applying the model learned for
previous data distributions can fail in solving new tasks due to the data distribution shift.
On the other hand, simply adapting the learned model with the new data can result in
the forgetting of the knowledge of old data and sometimes may even hinder the new task
learning. Note that continual learning (CL) [215] is a learning paradigm in ML which
continuously adapts a single model to learn a sequence of tasks without forgetting the
learned knowledge of old tasks. In particular, by leveraging the knowledge transfer across
different tasks, continuoual learning (CL) can potentially solve new tasks more easily and
also improve the model performance on old tasks. Therefore, a new formulation of edge

6 1 Introduction to Continual and Reinforcement Learning for Edge AI

learning from the perspective of CL is needed towards building edge AI that possess the
four properties above.

Many edge AI applications involve in-time decision making to meet the requirements
for safety and performance [80]. The goal is to find optimal control policies to maximize
long-term returns. For example, autonomous vehicles (AV) should learn expert control poli-
cies to drive safely and efficiently; a virtual health assistant seeks to create a personalized
wellness plan based on a patient’s unique genetic profile and health history, in order to
maximize his/her health. RL [32, 321] provides a promising solution to these problems by
learning through interactions with the environment. However, one of the critical challenges
to prevent RL from being directly used for edge AI is that RL algorithms typically require
extensive online interactions with the environment for policy learning, which can be costly
for resource-limited edge nodes and dangerous for safety-critical applications such as AV
[170, 388] and healthcare [67, 383]. Another challenge is that most RL algorithms focus on
the policy learning for stationary environments, whereas the system dynamics for edge AI
applications can continuously change due to various reasons such as the physical environ-
ment changes in self-driving [253]. To address these challenges and put the great promise
of RL on the ground for edge AI, continual RL recently emerged by introducing the idea of
CL into RL, which can be carried out from two perspectives:

• Warm-start RL. To eliminate the need of online interactions, offline RL has recently
attracted extensive attention by learning from offline datasets previously collected via
some behavior policy [7, 200]. It is usually guaranteed that the learned policy is a better
one than the behavior policy. However, the performance of pure offline RL highly depends
on the quality of the offline dataset, and the learned policy from a low-quality dataset
can not be directly used in real applications, even with improved performance over the
behavior policy. To address this, warm-start RL combines offline RL and online RL,
which continuously finetunes the learned offline policy using a few online interactions
with the environment. From a different perspective, warm-start RL also enables fast online
policy learning by leveraging the offline policy learned from a fixed dataset, significantly
improving the usability of RL in edge AI.

• Continual RL. Warm-start RL typically assumes that the underlying MDP stays the same
for both offline and online learning, whereas the online environment can be nonstationary
in edge AI. The control problem in a stationary environment can be treated as an MDP
and the MDP formulation changes when the system dynamics change. To handle the
distribution shift across different MDPs, continual RL [1, 164] leverages the idea of CL
to continuously finetune the online policy, such that new MDPs can be quickly solved
without forgetting the policies learned for previous MDPs.

1.2 Framework 7

As alluded to earlier on, the research in CL and RL for edge AI is still in its infancy stage,
and there is an urgent need to build a dedicated venue for exchanging the recent advances.
In the rest of this chapter, we will discuss the frameworks for building efficient edge AI with
CL and RL and also the important design considerations.

1.2 Framework

To fully leverage the available data and resources across the edge networks, there are various
frameworks to enable CL for edge AI depending on different application scenarios.

• Edge-only. The learning problem locally at a single edge node can be formulated as an
online continual learning problem, because of the online and nonstationary nature of local
data. In this case, due to the limited data samples and constrained computation resources
at the edge node, the on-edge CL algorithms need to be able to extract useful knowledge
from the local data in an effective and efficient manner. Particularly, the CL algorithms
should continuously adapt the local ML model to solve the new task, corresponding to
the newly collected data, quickly with only a few data samples, whereas the knowledge of
the learned tasks should be preserved as well in a computationally efficient way. Towards
this end, a key idea is to enhance the knowledge transfer between old tasks and new tasks
across the time. More specifically, appropriately leveraging the accumulated knowledge
of old tasks can significantly reduce the number of data samples required for learning
similar new tasks, following the same spirit as in transfer learning and meta-learning. On
the other hand, by facilitating the positive knowledge transfer for the new task to similar
old tasks, the model performance on these old tasks can also be potentially improved.
This edge-only framework is particular important for on-device intelligent applications,
such as autonomous vehicles, personalized healthcare, and audio/video surveillance.

• Cloud-edge collaboration. While sending a large amount of local data to the cloud for pro-
cessing is not feasible for edge AI, the abundant history data and computation resources
in the cloud are clearly beneficial for edge learning if leveraged through appropriate
cloud-edge collaborations. In particular, there are two commonly used frameworks for
cloud-edge collaboration: (1) Cloud as a priori. The model generalization capability
closely hinges upon the number of available training data samples. With the huge amount
of history data and computing resources in the cloud, a powerful ML model can be pre-
trained with the capability of grasping general knowledge and features from data, such as
the foundation models. These pretrained models in the cloud provide a very helpful priori
for local edge learning. In particular, finetuning from (or learning an adapter with) the
pretrained model using local data can not only solve edge tasks more easily by building on
the learned general knowledge in the pretrained model, but also solve edge tasks better by
leveraging the excellent knowledge extracting capability of the pretrained model. Based
on this pretrained-finetuning paradigm, the CL at the edge can be substantially improved

8 1 Introduction to Continual and Reinforcement Learning for Edge AI

by starting from the pretrained models in the cloud. As the pretrained models are typically
very large in size to guarantee the generalization capability, how to efficiently finetune
these model at the computation-constrained edge nodes is one key challenge herein. (2)
Cloud as a platform. On the other hand, the cloud can serve as a platform to exchange
and aggregate the information among different edge nodes, such that the CL on one edge
node can potentially leverage the useful knowledge from other edge nodes with similar
learning tasks. More specifically, each participating edge node has a local CL problem,
and seeks to solve the new tasks based on the knowledge extracted from its past tasks
and also the information from other edge nodes shared through the cloud. Following the
same idea as in federated learning, the information from edge nodes should be shared
in such a way that the privacy of edge nodes is protected and the communication cost
is minimized. However, if not designed carefully, aggregating information from other
nodes may not only hinder the new task learning but also exacerbate the forgetting of old
tasks at one edge node, due to the potential interference between different edge nodes.

• Edge-edge collaboration. Communicating with a central cloud platform may not be
always feasible, or trustworthy even if feasible. In this case, the information sharing
between different edge nodes in an edge network can be done in a decentralized manner,
where each edge node can only communicate with its neighbors in a certain range, e.g.,
self-driving cars in a vehicle-to-vehicle network. This leads to a framework of decentral-
ized CL for which each node has a local CL problem. Similar to cloud-edge collaboration
where the cloud serves as a platform, how to appropriately share information across dif-
ferent edge nodes is a central problem to guarantee the performance of this learning
framework for edge-edge collaboration. Moreover, the communication protocol in this
case is particularly important because the edge nodes share limited communication band-
width and the information propagation delay across the edge network can significantly
affect the learning performance.

1.3 Performance Measures and Efficiency

To provide guidance for algorithm design and performance evaluation of the designed algo-
rithms for edge AI with CL and RL, it is essential to define various metrics for evaluating
the learning performance and also the computational costs. In this monograph, we introduce
the following metrics, which can be used to evaluate how the edge AI system performs in
specific aspects:

• Task learning performance. Needless to say, different types of tasks may use different
performance metrics. For example, test accuracy is usually used for prediction tasks such
as image classification, whereas the Frechet-Inception Distance score is widely adopted
for evaluating the performance of GAN models in generative tasks.

1.3 Performance Measures and Efficiency 9

– New task learning performance. The metric measures how well the ML model
performs after adapting with the new coming data at the edge. In general, the learning
performance of a good edge CL algorithm is expected to be better than learning from
scratch with the new data only, because of the forward knowledge transfer from
similar tasks that the edge node has experienced in the past or useful knowledge
shared by the cloud and other edge nodes.

– Task average learning performance. In many real applications, not only the new
task learning performance matters, but also the average learning performance over
all seen tasks. For example, an autonomous vehicle should be able to drive safely
in all environments it has experienced. A good task average learning performance
indicates that the edge AI system demonstrates competitive performance overall,
which is particularly attractive when all tasks are equally important.

– Task average forgetting. The forgetting for a particular task evaluates the perfor-
mance change between the ML model after learning this task and the ML model
after learning the current task. A positive value of forgetting means that the knowl-
edge of old tasks has been forgotten after learning new tasks, whereas a negative
value implies that the knowledge gained from new tasks indeed improves the model
performance on old tasks.

– Task sample complexity. Task sample complexity typically evaluates the number of
data samples required to train a good ML model for solving a particular task. Since
the amount of available data samples at a single edge node is often small, a practical
edge learning algorithm should be capable of effectively extracting knowledge from
limited data, leading to a low sample complexity. This metric is particularly important
to evaluate the learning efficiency of RL algorithms, in terms of the number of
interactions with the environment for policy learning.

• Computational efficiency. Unlike most standard ML algorithms, the computational effi-
ciency is a very critical factor, which could be even more critical than the learning
performance, in performance evaluation for edge learning algorithms, considering the
constrained computational resources at the network edge.

– Model training time. Model training time for a particular task is the most direct
metric to evaluate the computational efficiency of an edge learning algorithm, which
evaluates the time taken from the start of the training to when a good quality ML
model is obtained.

– Number of training steps. Computational capability of different edge nodes can
be heterogeneous, which highly affects the model training time. In contrast, the
number of training steps is a metric that does not depend on the computing power
at the network edge but directly evaluate the convergence speed of an edge learning
algorithm.

10 1 Introduction to Continual and Reinforcement Learning for Edge AI

– Memory usage. The memory usage of a learning algorithm typically depends on
various factors, including the ML model size, intermediate training results required
by the algorithm, additional data points, etc. Considering that edge nodes often have
a small memory size, edge learning algorithms should leverage the limited memory
in a highly efficient manner.

• Communication efficiency. Communication efficiency is also an important factor in char-
acterizing the performance of edge learning algorithms, especially for cloud-edge and
edge-edge collaboration frameworks. Typically, edge nodes communicate with each other
and the cloud through wireless communication channels with limited spectrum. Both
communication cost and communication frequency will affect the communication effi-
ciency of the edge AI system.

– Communication cost. The communication cost is usually captured by the communi-
cation bandwidth and the transmission time needed for each communication round.
It highly depends on what information is shared between the cloud and the edge
nodes, e.g., data, gradient, ML model. To ensure the success rate of the communica-
tion and also the overall efficiency of the edge AI system, it is important to reduce
the communication cost for edge learning algorithms.

– Communication frequency. The communication frequency can also be evaluated
as the number of communication rounds during the entire model training process.
Reducing the communication frequency in the edge learning algorithms will not
only minimize the impact of unreliable communication channels but also mitigate
the potential interference among different communication links in the wireless edge
networks, therefore improving the communication efficiency.

In this monograph, we provide an overview of recent advances in continual learning
and reinforcement learning in edge AI, with ‘bias’ towards our own research efforts in this
area, and offer our subjective perspective on recent trends and potential cross-disciplinary
developments.

Part I

Algorithmic and Theoretical Foundations

In Part I, we provide an overview of key machine learning techniques in edge AI, for
enabling continuous model training, including continual learning, reinforcement learning,
and meta-learning, and present a few recent research results of ours in these areas.

2Continual Learning for Edge AI

2.1 Introduction

Continual learning (CL) [258] is a learning paradigm where an agent needs to continuously
learn a sequence of tasks. To emulate the remarkable lifelong learning ability of humans,
the agent is expected to leverage accumulated knowledge from previous tasks to more easily
learn new ones, and further improve the learning performance of old tasks by leveraging
the knowledge of new tasks. The former is referred to as forward knowledge transfer and
the latter as backward knowledge transfer. One major challenge herein is the so-called
catastrophic forgetting [231], i.e., the agent easily forgets the knowledge of old tasks when
learning new tasks.

General setup In CL, different tasks arrive in a sequential manner, and each task has its own
training dataset and task identity, where each data sample consists of the input feature and
the corresponding label. The objective here is to train a model sequentially for learning each
new task with no or limited access to old task data, such that the model can perform well on
the test datasets for all seen tasks. Depending on the characterization of task datasets and
availability of task identities, there are several typical CL setups:

• Domain incremental learning: Tasks share the same label space but have different input
feature distributions.

• Task incremental learning: Tasks may have different input distributions and label spaces,
and task identities need to be provided during both training and testing.

• Class incremental learning: Tasks may have different input distributions and label spaces,
and task identities are known during training but not testing.

• Online CL: The task training data arrive as an online data stream and can only be used
to update the model once.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
H. Wang et al., Continual and Reinforcement Learning for Edge AI,
Synthesis Lectures on Learning, Networks, and Algorithms,
https://doi.org/10.1007/978-3-031-84363-1_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84363-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2
https://doi.org/10.1007/978-3-031-84363-1_2

14 2 Continual Learning for Edge AI

Evaluation metrics Let.A j,i is the accuracy of the model on.i-th task after learning the. j-th
task sequentially where . j ≥ i . To evaluate the performance of the learned model in CL,
there are three metrics widely used in the literature:

• Overall accuracy .AA j : measures the average test accuracy of the model learned after
task . j on all seen tasks

. AA j = 1

j

j∑

i=1

A j,i .

• Backward knowledge transfer .BWTj : measures the average forgetting (if negative) or
the performance improvement (if positive) of old tasks after learning task . j ≥ 2

. BWTj = 1

j − 1

j−1∑

i=1

A j,i − Ai,i .

• Forward knowledge transfer.FWTj : measures the impact of all old tasks on the learning
performance of the CL model in the current task . i

. FWTj = 1

j − 1

j∑

i=2

Ai,i − Ai,∗.

Here.Ai,∗ is the performance of some reference model, e.g., a randomly-initialized model
trained using the data from task . i , in task . i .

2.2 Theoretical Studies on Continual Learning

The theoretical understanding of CL is still in the early stage, where only a few attempts
have emerged recently. Specifically, Bennani et al. [31] and Doan et al. [87] analyzed gen-
eralization error and forgetting for the orthogonal gradient descent (OGD) approach [100]
based on NTK models, and further proposed variants of OGD to address forgetting. Yin et al.
[377] proposed a unified framework for the performance analysis of regularization-based CL
methods, by formulating them as a second-order Taylor approximation of the loss function
for each task. Asanuma et al. [22] and Lee et al. [195] studied CL in the teacher-student setup
to characterize the impact of task similarity on forgetting performance. Cao et al. [47] and
Li et al. [210] investigated continual representation learning with dynamically expanding
feature spaces, and developed provably efficient CL methods with a characterization of the
sample complexity. Chen et al. [59] characterized the lower bound of memory in CL using
the PAC framework. By investigating the information flow between neural network layers,

2.2 Theoretical Studies on Continual Learning 15

Andle and Yasaei Sekeh [15] analyzed the selection of frozen filters based on layer sensitiv-
ity to maximize the performance of CL. Goldfarb and Hand [115] investigated the impact
of overparameterization for linear models in a two-task setup. Evron et al. [94] studied CL
in overparameterized linear models by analyzing the forgetting based on the training data.
Li et al. [206] explored the theory in the case of applying the mixture-of-experts in CL.
Nevertheless, none of these existing works show an explicit form of forgetting and general-
ization error, that only depends on fundamental system parameters/setups (e.g., number of
tasks/samples/parameters, noise level, task similarity/order). In this chapter, we provide the
first-known explicit theoretical result in a more general CL setup with an arbitrary number
of tasks, which enables us to comprehensively understand which factors are relevant and
how they (precisely) affect forgetting and generalization error of CL.

2.2.1 CL in Linear Models

Consider the standard CL setup where a sequence of tasks .T = {1, . . . , T } arrives sequen-
tially in time.

Ground truth. We consider a linear ground truth [26, 94] for each task. Specifically, for
task . t , the output .y ∈ R is given by

.yt = x̂�
t ŵ

∗
t + zt , (2.1)

where.x̂t ∈ R
st denotes the feature vector,.ŵ∗

t ∈ R
st denotes the model parameters, and. zt is

the random noise. Here. st denotes the number of features of ground truth (i.e., the number of
true features). In practice, true features are unknown in advance. Therefore, when choosing
a model to learn a certain task, people usually choose more features than enough such that
all possible features are included. We write this formally into the following assumption. 1

Assumption 2.1 We index all possible features by.1, 2, · · · . Let.W denote the set of indices
of all the chosen features in the model to be trained, with cardinality.|W | = p. Let. St denote
the set of indices of .t-th task’s true features, with cardinality .|St | = st . We assume that
.
⋃

t∈T St ⊆ W .

We next define an expanded ground-truth vector .w∗
t ∈ R

p that expands the original
ground-truth vector .ŵ∗

t from dimension . st to dimension . p by filling zeros in the positions
.W \ St . Let .xt be the corresponding features for .w∗

t . Therefore, the ground truth Eq. (2.1)
can be rewritten as

.yt = x�
t w

∗
t + zt . (2.2)

1 When Assumption 2.1 does not hold, the derivation techniques for Theorem 2.1 in the next section
still hold with a minor modification that treats the missing features as noise.

