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Preface 

With the advances in artificial intelligence (AI) and edge computing, edge-AI has recently 
emerged as the marriage of these two groundbreaking technologies and attracted signifi-
cant interest from both industry and academia. Particularly, edge-AI seeks to push the AI 
frontiers to the resource-limited network edge that is closer to the data-generating sources, 
e.g., mobile devices and other Internet-of-Things (IoT) devices. This new inter-discipline 
has great potentials in enabling a wide range of on-device AI applications, spanning from 
video surveillance to personal assistant to autonomous driving. Nevertheless, local data is 
usually collected online and the underlying data distributions can continuously shift due 
to the environment changes, which requires the edge AI models to be adapted accordingly 
in a lifelong manner and efficiently considering the limited computing resources at the 
network edge. This online and non-stationary nature calls for a new formulation of edge 
AI from the perspective of continual learning, however, for which the research is still in 
an infancy stage and a dedicated venue for exchanging the recent advances is lacking. 

To fill this void, we present in this book a survey of recent research progress, with 
‘bias’ towards our own research efforts in edge AI, from supervised learning to reinforce-
ment learning. More specifically, we first introduce the background and the motivation 
of continual learning in edge AI, followed by the potential frameworks and design con-
siderations therein. Next, we identify and provide a detailed overview of key machine 
learning technologies to enable continual learning and reinforcement learning for edge 
AI. To better demonstrate the research directions and problems in edge continual AI, we 
also showcase four of our own research projects and summarize the recent progress in 
this field. We discuss the promising applications and future research opportunities at the 
end. We hope that this book will bring up more attentions, spark fruitful discussions and 
motivate further research ideas on continual and reinforcement learning for edge AI.
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1Introduction to Continual and Reinforcement 
Learning for Edge AI 

1.1 Introduction 

Since its birth in 1956, artificial intelligence (AI) has gone through multiple summers and 
winters. Driven by the significant advancements of neural network architectures, computing 
power and big data, the past decade has witnessed an unparalleled growth in machine learning 
(ML) and AI, leading to phenomenal breakthroughs in a wide spectrum of applications, e.g., 
speech recognition [191], image classification [141, 276], object detection [219, 323], etc. In 
fact, GPU throughput and memory have increased 10.× in the last four years. By leveraging 
the parallelism of the GPU hardware and more training data, the transformer architecture 
can now train much more expressive models than ever, giving rise to a new era of foundation 
models. It is widely recognized that these intelligent applications will significantly enrich 
people’s lifestyle and improve human productivity. 

In general, the machine learning problems can be mainly divided into three categories:

• Supervised Learning. Supervised learning is the process of learning a function that maps 
an input to an output (label) given a training dataset of inputs and their corresponding 
labels, such that the labels for unseen inputs can be accurately inferred based on the 
function. Regression and classification are examples of supervised learning, which have 
led to unparalleled successes in computer vision.

• Unsupervised Learning. In unsupervised learning, there are no labels given for the train-
ing data, and the objective is to learn the underlying structure in the data. The most 
common unsupervised learning tasks are clustering, e.g., finding groups in data, and 
density estimation, e.g., summarizing the distribution of data.

• Self-Supervised Learning and Reinforcement Learning. Self-supervised learning aims to 
build models that automatically find patterns in data and reveal these patterns explicitly 
with a representation. In particular, reinforcement learning (RL), a popular approach for 
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self-supervised learning, is used to train an agent that can not only perceive and understand 
their surroundings through vision and other sensing modalities but also can navigate 
and interact with their physical environments to achieve goals, engage in planning, and 
perform reasoning. In essence, reinforcement learning is a learning paradigm that learns 
how to use past data, e.g., offline data or data collected through online interaction, to 
enhance the future manipulation of a dynamical system, which can be cast as an optimal 
control problem when the system dynamics are unknown [ 32]. The fruitful applications, 
e.g., games, robotics, and substantive interactions with other disciplines, e.g., operation 
research, control theory and game theory, make reinforcement learning a very popular 
and critical research direction nowadays. 

One of the key driving forces behind AI is the development of deep learning and deep neu-
ral networks (DNNs) since 2010s, which have achieved astonishing successes in solving ML 
problems and demonstrated great superiority over classical ML approaches, e.g., decision 
tree and Baysian networks. Notably, consisting of a series of layers, artificial neural networks 
(ANNs) can extract the underlying features from data in a hierarchical manner and provide 
a universal function approximator for ML problems. Multiplayer Perceptrons (MLPs) are 
the most basic ANNs with fully connected neurons and non-linear activation functions. To 
capture the spatial correlation in the input data, especially for images, Convolution Neural 
Networks (CNNs) [179] replace the basic linear operations in MLPs with convolution oper-
ations, making them very popular for computer vision tasks. Recurrent Neural Networks 
(RNNs) [386] are another type of ANNs which specialize in handling sequential data and 
hence are widely used for natural language processing (NLP) tasks, e.g., machine transla-
tion and question answering. Unlike feedforward neural networks such as MLPs and CNNs 
which process data in a single pass, RNNs are able to process data across multiple time steps, 
with an internal memory to remember the knowledge of previous inputs and use that for 
learning at current time steps. Another special kind of ANN architectures is the generative 
model, which aims to solve generative tasks, e.g., image generation. Generative adversarial 
networks (GANs) [117] are in this category, which consist of two separate networks, namely 
generator network and discriminator network. The generator seeks to generate new data to 
mimic real data in the training dataset, whereas the discriminator seeks to distinguish the 
fake data generated by the generator from the real data. Recently, another powerful type of 
generative models named as diffusion models [ 69] has attracted much attention, which grad-
ually add random noise to the input data and then learn to reconstruct desired data samples 
from the noise by reversing the diffusion process. In 2017, a new ANN architecture, namely 
Transformer [335], was proposed to address the limitation of RNN-based encoder-decoder 
architecture in solving sequence-to-sequence tasks, by leveraging the attention mechanism 
to capture the long-range dependencies across data inputs in a highly parallel manner. Due 
to its superior performance and computational efficiency, the Transformer now becomes the 
mainstream architecture and is widely used in pretrained foundation models such as large 
language models. Based on the scaling law, the performance of ANNs often improves with
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larger network size and more training data samples, which can significantly increase the 
need of computational resources and memory size. 

1.1.1 Edge AI 

Recently, with the rapid proliferation of mobile computing and Internet of Things (IoT), big 
data is going through a radical shift of data source from the mega-scale cloud datacenters 
to the network edge, e.g., mobile devices and IoT devices, as illustrated in Fig. 1.1. It is  
anticipated that the data generated by connected devices would reach 175 zettabytes by 2025 
[ 16], far greater than that the cloud datacenters could handle. As the personal data collected by 
IoT devices is sensitive in nature, there is a growing consensus that much of the personal data 
should be used for training the models locally and would never go beyond the network edge. 
Besides, many intelligent applications, such as autonomous driving and augmented reality, 
need to accomplish decision making with low latency, in order to meet the requirements 
for safety, accuracy, performance and user experience. Clearly, the conventional wisdom 
of transporting the data bulks from the IoT devices to the cloud datacenters for analytics 
would not work well, due to the extremely stringent requirements in cost, privacy and 
performance. As a result, it is anticipated that a high percentage of IoT data will be stored 
and processed locally, giving rise to a new research area, namely ‘edge AI’ as the marriage 
of edge computing and AI. 

More specifically, edge AI refers to the AI model training or inference at the resource-
limited network edge by leveraging available data and computational resources across edge 
devices and cloud datacenters. Recently, a lot of research studies have emerged to explore 
various aspects of edge AI: 

Cloud 

Internet 
Backbone 
Network 

Edge 
Servers 

Edge 
Devices/Nodes 

Fig. 1.1 Illustration of Edge AI



4 1 Introduction to Continual and Reinforcement Learning for Edge AI

• Model training in edge AI. Various ML techniques have been used to enable edge AI. 
For example, federated learning (FL) trains a global model in a distributed manner based 
on the local data across multiple devices, which is widely used for model training at the 
network edge, e.g., [ 3, 169, 226, 284, 288, 358]. Split learning splits a global model into 
multiple sections and each edge device trains one section by using its local data, e.g., [ 61, 
106, 255, 285]. A pre-trained model in the cloud can be transferred to an edge device 
based on transfer learning for further fine-tuning with local data, e.g., [ 46, 62, 370, 372]. 
Various model compression techniques are also frequently used in edge AI to improve 
the efficiency of memory, computation, and communication for model training, including 
knowledge distillation (e.g., [ 10, 36, 361, 404]), quantization (e.g., [ 60, 184, 205, 251]), 
and model pruning (e.g., [130, 156, 222]).

• Model inference in edge AI. To make full use of the available data and computation 
resources in edge networks, the model inference in edge AI can be implemented in dif-
ferent frameworks. The trained model can be split into two parts, with one in the edge 
devices and the other in the cloud. The intermediate results calculated in the device based 
on local data will be sent to the remaining part of model in the cloud to complete the 
inference (e.g., [161, 172, 180]). To reduce the latency and communication cost, collabo-
rations between edge serves and edge devices have been introduced for model inference. 
For example, [204] studied how to accelerate inference for edge-device collaboration by 
jointly optimizing the model partitioning and right-sizing. Moreover, the inference can 
be done based on the collaborations between edge devices, which can be very useful in 
scenarios with high mobility or harsh environments (e.g., [ 84, 405]). Recent studies have 
also investigated efficient on-device model inference. For instance, OnceNAS [397] was  
proposed in to jointly optimize the number of parameters and inference latency through 
neural architecture search, which has significantly reduced the model size and increased 
the inference speed.

• Applications of edge AI. Due to the advantages of privacy protection, low latency, low cost, 
and high flexibility in personalization, edge AI can find applications in a lot of different 
domains, including smart healthcare [ 53, 123, 160, 275], smart cities [ 9, 66, 148, 324], 
smart agriculture [ 90, 269, 308], autonomous vehicles [ 54, 75, 369], recommendation 
systems [101], etc. 

1.1.2 Continual Learning and Reinforcement Learning for Edge AI 

Despite the great potential to create many novel intelligent applications and fuel the contin-
uous prosperity of AI, pushing the AI frontier to the network edge for achieving edge AI is 
highly nontrivial. Specifically, running AI applications directly on edge devices to process 
the IoT data locally, if not designed intelligently, would suffer from poor performance and 
energy inefficiency, simply because many AI applications typically require high computa-
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tional power that greatly outweighs the capacity of resource- and energy-constrained IoT 
devices. Tackling these unique challenges in edge networks successfully is vital to sustain the 
rapid progress of this field. To this end, an appropriate and efficient edge learning framework 
should possess the following properties:

• Guarantee performance under small datasets. While tremendous data will be generated 
by the ensemble of IoT devices, the amount of personal data at every edge node is 
limited. Therefore, to facilitate various edge-AI applications, especially on-device AI 
applications, the edge learning algorithms should be able to effectively extract useful 
knowledge from small local datasets.

• Work efficiently with simple learning algorithms. In contrast to more capable cloud dat-
acenters, the edge node only has limited computational resources, which significantly 
restrict its capability to run complicated learning algorithms on complex models. Conse-
quently, it is more desirable to just deploy simple algorithms, e.g., gradient descent, on 
a more compact model.

• Learn quickly with high communication efficiency. The strict requirement on performance 
and latency for many AI applications clearly precludes the approaches that need extensive 
training time, calling for a fast learning algorithm that can quickly train ML models at each 
edge node with performance guarantee. In the meanwhile, the communication efficiency 
should be taken into consideration for edge learning frameworks based on collaborations 
among the cloud and edge nodes.

• Adapt continuously. Distributions of locally generated data can shift in a lifelong manner 
due to the environment change. For instance, autonomous vehicles can experience differ-
ent terrain and weather conditions when collecting data. The online and non-stationary 
nature of local data at edge nodes requires model training in edge AI to adapt continu-
ously, such that the knowledge learned previously will not only be maintained but also 
be leveraged to facilitate better learning of new data. 

While a lot of existing studies on edge AI have proposed various edge learning frameworks 
that meet the first three properties, much less attention has been paid to frameworks that 
can enable continuous adaptation of AI models at the network edge [350, 406]. Clearly, 
the standard ML paradigms that focus on learning with a fixed dataset and stationary data 
distributions would not work well. On one hand, directly applying the model learned for 
previous data distributions can fail in solving new tasks due to the data distribution shift. 
On the other hand, simply adapting the learned model with the new data can result in 
the forgetting of the knowledge of old data and sometimes may even hinder the new task 
learning. Note that continual learning (CL) [215] is a learning paradigm in ML which 
continuously adapts a single model to learn a sequence of tasks without forgetting the 
learned knowledge of old tasks. In particular, by leveraging the knowledge transfer across 
different tasks, continuoual learning (CL) can potentially solve new tasks more easily and 
also improve the model performance on old tasks. Therefore, a new formulation of edge
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learning from the perspective of CL is needed towards building edge AI that possess the 
four properties above. 

Many edge AI applications involve in-time decision making to meet the requirements 
for safety and performance [ 80]. The goal is to find optimal control policies to maximize 
long-term returns. For example, autonomous vehicles (AV) should learn expert control poli-
cies to drive safely and efficiently; a virtual health assistant seeks to create a personalized 
wellness plan based on a patient’s unique genetic profile and health history, in order to 
maximize his/her health. RL [ 32, 321] provides a promising solution to these problems by 
learning through interactions with the environment. However, one of the critical challenges 
to prevent RL from being directly used for edge AI is that RL algorithms typically require 
extensive online interactions with the environment for policy learning, which can be costly 
for resource-limited edge nodes and dangerous for safety-critical applications such as AV 
[170, 388] and healthcare [ 67, 383]. Another challenge is that most RL algorithms focus on 
the policy learning for stationary environments, whereas the system dynamics for edge AI 
applications can continuously change due to various reasons such as the physical environ-
ment changes in self-driving [253]. To address these challenges and put the great promise 
of RL on the ground for edge AI, continual RL recently emerged by introducing the idea of 
CL into RL, which can be carried out from two perspectives:

• Warm-start RL. To eliminate the need of online interactions, offline RL has recently 
attracted extensive attention by learning from offline datasets previously collected via 
some behavior policy [ 7, 200]. It is usually guaranteed that the learned policy is a better 
one than the behavior policy. However, the performance of pure offline RL highly depends 
on the quality of the offline dataset, and the learned policy from a low-quality dataset 
can not be directly used in real applications, even with improved performance over the 
behavior policy. To address this, warm-start RL combines offline RL and online RL, 
which continuously finetunes the learned offline policy using a few online interactions 
with the environment. From a different perspective, warm-start RL also enables fast online 
policy learning by leveraging the offline policy learned from a fixed dataset, significantly 
improving the usability of RL in edge AI.

• Continual RL. Warm-start RL typically assumes that the underlying MDP stays the same 
for both offline and online learning, whereas the online environment can be nonstationary 
in edge AI. The control problem in a stationary environment can be treated as an MDP 
and the MDP formulation changes when the system dynamics change. To handle the 
distribution shift across different MDPs, continual RL [ 1, 164] leverages the idea of CL 
to continuously finetune the online policy, such that new MDPs can be quickly solved 
without forgetting the policies learned for previous MDPs.
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As alluded to earlier on, the research in CL and RL for edge AI is still in its infancy stage, 
and there is an urgent need to build a dedicated venue for exchanging the recent advances. 
In the rest of this chapter, we will discuss the frameworks for building efficient edge AI with 
CL and RL and also the important design considerations. 

1.2 Framework 

To fully leverage the available data and resources across the edge networks, there are various 
frameworks to enable CL for edge AI depending on different application scenarios.

• Edge-only. The learning problem locally at a single edge node can be formulated as an 
online continual learning problem, because of the online and nonstationary nature of local 
data. In this case, due to the limited data samples and constrained computation resources 
at the edge node, the on-edge CL algorithms need to be able to extract useful knowledge 
from the local data in an effective and efficient manner. Particularly, the CL algorithms 
should continuously adapt the local ML model to solve the new task, corresponding to 
the newly collected data, quickly with only a few data samples, whereas the knowledge of 
the learned tasks should be preserved as well in a computationally efficient way. Towards 
this end, a key idea is to enhance the knowledge transfer between old tasks and new tasks 
across the time. More specifically, appropriately leveraging the accumulated knowledge 
of old tasks can significantly reduce the number of data samples required for learning 
similar new tasks, following the same spirit as in transfer learning and meta-learning. On 
the other hand, by facilitating the positive knowledge transfer for the new task to similar 
old tasks, the model performance on these old tasks can also be potentially improved. 
This edge-only framework is particular important for on-device intelligent applications, 
such as autonomous vehicles, personalized healthcare, and audio/video surveillance.

• Cloud-edge collaboration. While sending a large amount of local data to the cloud for pro-
cessing is not feasible for edge AI, the abundant history data and computation resources 
in the cloud are clearly beneficial for edge learning if leveraged through appropriate 
cloud-edge collaborations. In particular, there are two commonly used frameworks for 
cloud-edge collaboration: (1) Cloud as a priori. The model generalization capability 
closely hinges upon the number of available training data samples. With the huge amount 
of history data and computing resources in the cloud, a powerful ML model can be pre-
trained with the capability of grasping general knowledge and features from data, such as 
the foundation models. These pretrained models in the cloud provide a very helpful priori 
for local edge learning. In particular, finetuning from (or learning an adapter with) the 
pretrained model using local data can not only solve edge tasks more easily by building on 
the learned general knowledge in the pretrained model, but also solve edge tasks better by 
leveraging the excellent knowledge extracting capability of the pretrained model. Based 
on this pretrained-finetuning paradigm, the CL at the edge can be substantially improved



8 1 Introduction to Continual and Reinforcement Learning for Edge AI

by starting from the pretrained models in the cloud. As the pretrained models are typically 
very large in size to guarantee the generalization capability, how to efficiently finetune 
these model at the computation-constrained edge nodes is one key challenge herein. (2) 
Cloud as a platform. On the other hand, the cloud can serve as a platform to exchange 
and aggregate the information among different edge nodes, such that the CL on one edge 
node can potentially leverage the useful knowledge from other edge nodes with similar 
learning tasks. More specifically, each participating edge node has a local CL problem, 
and seeks to solve the new tasks based on the knowledge extracted from its past tasks 
and also the information from other edge nodes shared through the cloud. Following the 
same idea as in federated learning, the information from edge nodes should be shared 
in such a way that the privacy of edge nodes is protected and the communication cost 
is minimized. However, if not designed carefully, aggregating information from other 
nodes may not only hinder the new task learning but also exacerbate the forgetting of old 
tasks at one edge node, due to the potential interference between different edge nodes.

• Edge-edge collaboration. Communicating with a central cloud platform may not be 
always feasible, or trustworthy even if feasible. In this case, the information sharing 
between different edge nodes in an edge network can be done in a decentralized manner, 
where each edge node can only communicate with its neighbors in a certain range, e.g., 
self-driving cars in a vehicle-to-vehicle network. This leads to a framework of decentral-
ized CL for which each node has a local CL problem. Similar to cloud-edge collaboration 
where the cloud serves as a platform, how to appropriately share information across dif-
ferent edge nodes is a central problem to guarantee the performance of this learning 
framework for edge-edge collaboration. Moreover, the communication protocol in this 
case is particularly important because the edge nodes share limited communication band-
width and the information propagation delay across the edge network can significantly 
affect the learning performance. 

1.3 Performance Measures and Efficiency 

To provide guidance for algorithm design and performance evaluation of the designed algo-
rithms for edge AI with CL and RL, it is essential to define various metrics for evaluating 
the learning performance and also the computational costs. In this monograph, we introduce 
the following metrics, which can be used to evaluate how the edge AI system performs in 
specific aspects:

• Task learning performance. Needless to say, different types of tasks may use different 
performance metrics. For example, test accuracy is usually used for prediction tasks such 
as image classification, whereas the Frechet-Inception Distance score is widely adopted 
for evaluating the performance of GAN models in generative tasks.
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– New task learning performance. The metric measures how well the ML model 
performs after adapting with the new coming data at the edge. In general, the learning 
performance of a good edge CL algorithm is expected to be better than learning from 
scratch with the new data only, because of the forward knowledge transfer from 
similar tasks that the edge node has experienced in the past or useful knowledge 
shared by the cloud and other edge nodes. 

– Task average learning performance. In many real applications, not only the new 
task learning performance matters, but also the average learning performance over 
all seen tasks. For example, an autonomous vehicle should be able to drive safely 
in all environments it has experienced. A good task average learning performance 
indicates that the edge AI system demonstrates competitive performance overall, 
which is particularly attractive when all tasks are equally important. 

– Task average forgetting. The forgetting for a particular task evaluates the perfor-
mance change between the ML model after learning this task and the ML model 
after learning the current task. A positive value of forgetting means that the knowl-
edge of old tasks has been forgotten after learning new tasks, whereas a negative 
value implies that the knowledge gained from new tasks indeed improves the model 
performance on old tasks. 

– Task sample complexity. Task sample complexity typically evaluates the number of 
data samples required to train a good ML model for solving a particular task. Since 
the amount of available data samples at a single edge node is often small, a practical 
edge learning algorithm should be capable of effectively extracting knowledge from 
limited data, leading to a low sample complexity. This metric is particularly important 
to evaluate the learning efficiency of RL algorithms, in terms of the number of 
interactions with the environment for policy learning.

• Computational efficiency. Unlike most standard ML algorithms, the computational effi-
ciency is a very critical factor, which could be even more critical than the learning 
performance, in performance evaluation for edge learning algorithms, considering the 
constrained computational resources at the network edge. 

– Model training time. Model training time for a particular task is the most direct 
metric to evaluate the computational efficiency of an edge learning algorithm, which 
evaluates the time taken from the start of the training to when a good quality ML 
model is obtained. 

– Number of training steps. Computational capability of different edge nodes can 
be heterogeneous, which highly affects the model training time. In contrast, the 
number of training steps is a metric that does not depend on the computing power 
at the network edge but directly evaluate the convergence speed of an edge learning 
algorithm.
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– Memory usage. The memory usage of a learning algorithm typically depends on 
various factors, including the ML model size, intermediate training results required 
by the algorithm, additional data points, etc. Considering that edge nodes often have 
a small memory size, edge learning algorithms should leverage the limited memory 
in a highly efficient manner.

• Communication efficiency. Communication efficiency is also an important factor in char-
acterizing the performance of edge learning algorithms, especially for cloud-edge and 
edge-edge collaboration frameworks. Typically, edge nodes communicate with each other 
and the cloud through wireless communication channels with limited spectrum. Both 
communication cost and communication frequency will affect the communication effi-
ciency of the edge AI system. 

– Communication cost. The communication cost is usually captured by the communi-
cation bandwidth and the transmission time needed for each communication round. 
It highly depends on what information is shared between the cloud and the edge 
nodes, e.g., data, gradient, ML model. To ensure the success rate of the communica-
tion and also the overall efficiency of the edge AI system, it is important to reduce 
the communication cost for edge learning algorithms. 

– Communication frequency. The communication frequency can also be evaluated 
as the number of communication rounds during the entire model training process. 
Reducing the communication frequency in the edge learning algorithms will not 
only minimize the impact of unreliable communication channels but also mitigate 
the potential interference among different communication links in the wireless edge 
networks, therefore improving the communication efficiency. 

In this monograph, we provide an overview of recent advances in continual learning 
and reinforcement learning in edge AI, with ‘bias’ towards our own research efforts in this 
area, and offer our subjective perspective on recent trends and potential cross-disciplinary 
developments.



Part I 

Algorithmic and Theoretical Foundations 

In Part I, we provide an overview of key machine learning techniques in edge AI, for 
enabling continuous model training, including continual learning, reinforcement learning, 
and meta-learning, and present a few recent research results of ours in these areas.



2Continual Learning for Edge AI 

2.1 Introduction 

Continual learning (CL) [258] is a learning paradigm where an agent needs to continuously 
learn a sequence of tasks. To emulate the remarkable lifelong learning ability of humans, 
the agent is expected to leverage accumulated knowledge from previous tasks to more easily 
learn new ones, and further improve the learning performance of old tasks by leveraging 
the knowledge of new tasks. The former is referred to as forward knowledge transfer and 
the latter as backward knowledge transfer. One major challenge herein is the so-called 
catastrophic forgetting [231], i.e., the agent easily forgets the knowledge of old tasks when 
learning new tasks. 

General setup In CL, different tasks arrive in a sequential manner, and each task has its own 
training dataset and task identity, where each data sample consists of the input feature and 
the corresponding label. The objective here is to train a model sequentially for learning each 
new task with no or limited access to old task data, such that the model can perform well on 
the test datasets for all seen tasks. Depending on the characterization of task datasets and 
availability of task identities, there are several typical CL setups: 

• Domain incremental learning: Tasks share the same label space but have different input 
feature distributions. 

• Task incremental learning: Tasks may have different input distributions and label spaces, 
and task identities need to be provided during both training and testing. 

• Class incremental learning: Tasks may have different input distributions and label spaces, 
and task identities are known during training but not testing. 

• Online CL: The task training data arrive as an online data stream and can only be used 
to update the model once. 
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Evaluation metrics Let.A j,i is the accuracy of the model on.i-th task after learning the. j-th 
task sequentially where . j ≥ i . To evaluate the performance of the learned model in CL, 
there are three metrics widely used in the literature: 

• Overall accuracy .AA j : measures the average test accuracy of the model learned after 
task . j on all seen tasks 

. AA j = 1

j

j∑

i=1

A j,i .

• Backward knowledge transfer .BWTj : measures the average forgetting (if negative) or 
the performance improvement (if positive) of old tasks after learning task . j ≥ 2

. BWTj = 1

j − 1

j−1∑

i=1

A j,i − Ai,i .

• Forward knowledge transfer.FWTj : measures the impact of all old tasks on the learning 
performance of the CL model in the current task . i

. FWTj = 1

j − 1

j∑

i=2

Ai,i − Ai,∗.

Here.Ai,∗ is the performance of some reference model, e.g., a randomly-initialized model 
trained using the data from task . i , in task . i . 

2.2 Theoretical Studies on Continual Learning 

The theoretical understanding of CL is still in the early stage, where only a few attempts 
have emerged recently. Specifically, Bennani et al. [ 31] and Doan et al. [ 87] analyzed gen-
eralization error and forgetting for the orthogonal gradient descent (OGD) approach [100] 
based on NTK models, and further proposed variants of OGD to address forgetting. Yin et al. 
[377] proposed a unified framework for the performance analysis of regularization-based CL 
methods, by formulating them as a second-order Taylor approximation of the loss function 
for each task. Asanuma et al. [ 22] and Lee et al. [195] studied CL in the teacher-student setup 
to characterize the impact of task similarity on forgetting performance. Cao et al. [ 47] and  
Li et al. [210] investigated continual representation learning with dynamically expanding 
feature spaces, and developed provably efficient CL methods with a characterization of the 
sample complexity. Chen et al. [ 59] characterized the lower bound of memory in CL using 
the PAC framework. By investigating the information flow between neural network layers,
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Andle and Yasaei Sekeh [ 15] analyzed the selection of frozen filters based on layer sensitiv-
ity to maximize the performance of CL. Goldfarb and Hand [115] investigated the impact 
of overparameterization for linear models in a two-task setup. Evron et al. [ 94] studied CL 
in overparameterized linear models by analyzing the forgetting based on the training data. 
Li et al. [206] explored the theory in the case of applying the mixture-of-experts in CL. 
Nevertheless, none of these existing works show an explicit form of forgetting and general-
ization error, that only depends on fundamental system parameters/setups (e.g., number of 
tasks/samples/parameters, noise level, task similarity/order). In this chapter, we provide the 
first-known explicit theoretical result in a more general CL setup with an arbitrary number 
of tasks, which enables us to comprehensively understand which factors are relevant and 
how they (precisely) affect forgetting and generalization error of CL. 

2.2.1 CL in Linear Models 

Consider the standard CL setup where a sequence of tasks .T = {1, . . . , T } arrives sequen-
tially in time. 

Ground truth. We consider a linear ground truth [ 26, 94] for each task. Specifically, for 
task . t , the output .y ∈ R is given by 

.yt = x̂�
t ŵ

∗
t + zt , (2.1) 

where.x̂t ∈ R
st denotes the feature vector,.ŵ∗

t ∈ R
st denotes the model parameters, and. zt is 

the random noise. Here. st denotes the number of features of ground truth (i.e., the number of 
true features). In practice, true features are unknown in advance. Therefore, when choosing 
a model to learn a certain task, people usually choose more features than enough such that 
all possible features are included. We write this formally into the following assumption. 1

Assumption 2.1 We index all possible features by.1, 2, · · · . Let.W denote the set of indices 
of all the chosen features in the model to be trained, with cardinality.|W | = p. Let. St denote 
the set of indices of .t-th task’s true features, with cardinality .|St | = st . We assume that 
.
⋃

t∈T St ⊆ W . 

We next define an expanded ground-truth vector .w∗
t ∈ R

p that expands the original 
ground-truth vector .ŵ∗

t from dimension . st to dimension . p by filling zeros in the positions 
.W \ St . Let .xt be the corresponding features for .w∗

t . Therefore, the ground truth Eq. (2.1) 
can be rewritten as 

.yt = x�
t w

∗
t + zt . (2.2)

1 When Assumption 2.1 does not hold, the derivation techniques for Theorem 2.1 in the next section 
still hold with a minor modification that treats the missing features as noise. 


