Volume 4 H0W2

Get Started with the NXP FRDM-MCXN947 **Development Board**

Develop projects on connectivity, graphics, machine learning, motor control, and sensors

Contraction of the second second

Dogan Ibrahim

Get Started with the **FRDM-MCXN947** Development Board

Dogan Ibrahim

 This is an Elektor Publication. Elektor is the media brand of Elektor International Media B.V.
 PO Box 11, NL-6114-ZG Susteren, The Netherlands
 Phone: +31 46 4389444

• All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication, without the written permission of the copyright holder except in accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to reproduce any part of the publication should be addressed to the publishers.

Declaration

The authors and publisher have used their best efforts in ensuring the correctness of the information contained in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause.

ISBN 978-3-89576-634-3 Print
 ISBN 978-3-89576-635-0 eBook

 © Copyright 2024 Elektor International Media www.elektor.com
 Prepress Production: D-Vision, Julian van den Berg
 Printers: Ipskamp, Enschede, The Netherlands

Elektor is the world's leading source of essential technical information and electronics products for pro engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in several languages - relating to electronics design and DIY electronics. **www.elektormagazine.com**

Contents

Preface
Chapter 1 • The FRDM-MCXN947 Development Board
1.1 Overview
1.2 The FRDM-MCXN947 Development Board hardware
1.2.1 On-board connectors
1.2.2 The MCU
1.2.3 Jumpers on the board
1.2.4 Push buttons on the board21
1.2.5 LEDs on the board
1.2.6 Ethernet interface
1.2.7 FlexCAN interface22
1.2.8 I ³ C sensor interface
1.2.9 SD card interface23
1.3 Starting Up – demo program24
1.4 MCX N Series microcontrollers
Chapter 2 • MCUXpresso and the Software Development Kit (SDK)
Chapter 2 • MCUXpresso and the Software Development Kit (SDK)
Chapter 2 • MCUXpresso and the Software Development Kit (SDK)
Chapter 2 • MCUXpresso and the Software Development Kit (SDK)
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39 2.6 Importing an exported project .39
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39 2.6 Importing an exported project .39 2.7 MCUXpresso for Visual Studio Code .40
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39 2.6 Importing an exported project .39 2.7 MCUXpresso for Visual Studio Code .40 Chapter 3 • Simple Program Examples and Debugging .43
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK. .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39 2.6 Importing an exported project .39 2.7 MCUXpresso for Visual Studio Code .40 Chapter 3 • Simple Program Examples and Debugging .43
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK. .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39 2.6 Importing an exported project .39 2.7 MCUXpresso for Visual Studio Code .40 Chapter 3 • Simple Program Examples and Debugging .43 3.1 Software-only programs .43
Chapter 2 • MCUXpresso and the Software Development Kit (SDK) .26 2.1 Overview .26 2.2 Installing the MCUXpresso IDE and SDK. .26 2.3 Testing the installation .28 2.3.1 Some information on the program .32 2.3.2 Modified program .33 2.4 Creating a project from scratch .35 2.5 Exporting a project .39 2.6 Importing an exported project .39 2.7 MCUXpresso for Visual Studio Code .40 Chapter 3 • Simple Program Examples and Debugging .43 3.1 Software-only programs .43 3.2 Example 1: Sum of integer numbers .43 3.3 Example 2: Table of squares .46

3.5 Example 4: Times table
3.6 Example 5: Table of trigonometric sine
3.7 Example 6: Table of trigonometric sine, cosine, and tangent
3.8 Example 7: Integer calculator
3.9 Example 8: Solution of a quadratic equation
3.10 Example 9: Squares and cubes of numbers
3.11 Example 10: Factorial of a number
3.12 Example 11: Check for prime number62
3.13 Example 12: Matrix addition
3.14 Example 13: Matrix transpose
3.15 Debugging a project
3.15.1 Example debug session
Chapter 4 • LED Projects
4.1 Overview
4.2 Project 1: Flashing the on-board red and green LEDs
4.3 Project 2: Flashing an external LED
4.4 Project 3: LED flashing as Morse SOS signal
4.5 Project 4: Alternately flashing two LEDs
4.6 Project 5: Chasing LEDs
4.6.1 More efficient program
4.6.2 Using PortClear and PortSet functions
4.7 Project 6: Binary counting LEDs96
4.8 Project 7: Random flashing LEDs
4.9 Project 8: Lucky day of the week
4.10 Project 9: Binary up/down counter with LEDs
4.11 Project 10: Binary event counter with LEDs
Chapter 5 • 7-Segment LED Displays112
5.1 Overview
5.2 7-Segment LED display structure
5.3 Project 1: 7-Segment 1-digit LED counter
5.4 Project 2: 7-Segment 4-digit multiplexed LED display

5.5 Project 3: 7-Segment 4-digit multiplexed LED display counter – timer interrupts 124
5.6 Project 4: 7-Segment 4-digit multiplexed LED display counter – blanking leading zeroes
5.7 Project 5: Conveyor belt goods counter with 7-Segment 4-digit multiplexed LED
display counter
5.7.1 The LDR
Chapter 6 • Using Serial Communication
6.1 Overview
6.2 Project 1: Serial communication between two FRDM-MCXN947 development boards
Chapter 7 • I ² C and I ³ C Bus Interface
7.1 Overview
7.2 The I ² C bus
7.3 The I ³ C bus
7.4 Differences between the I ² C and I ³ C $\dots \dots 147$
7.5 Project 1: Port expander using the I ³ C bus
7.6 Project 2: TMP102 temperature sensor
Chapter 8 • SPI Bus Interface
8.1 Overview
8.2 Project 1: Port expander
Chapter 9 • Using LCDs
9.1 Overview
9.2 The HD44780 LCD module
9.3 Connecting the LCD to the development board
9.3 Project 1: Displaying text on LCD
9.4 Project 2: Using LCDs – simple up counter
9.5 Including the LCD codes in a program
9.6 Project 3: Using LCDs – simple up counter – including LCD header file 199
9.7 Project 4: LCD based conveyor belt goods counter
9.8 Project 5: Using external interrupts
9.9 Project 6: Event counter – Using external interrupts
9.10 Project 7: LCD dice

Chapter 10 • Analog to Digital Converter (ADC)
10.1 Overview
10.2 Project 1: Voltmeter – Output on console
10.3 Project 2: Voltmeter – Output on LCD
10.4 Project 3: Analogue temperature sensor
10.5 Project 4: ON/OFF temperature controller
10.6 Project 5: ON/OFF temperature controller – using LCD
10.7 Project 6: Measuring the ambient light intensity
10.8 Project 7: Ohmmeter
10.9 Project 8: Measuring the temperature using a thermistor
10.10 Project 9: Temperature measurement using the MCU sensor
10.10.1 The P3T1755DP temperature sensor
Chapter 11 • Using Pulse Width Modulation (PWM)263
11.1 Overview
11.2 Basic theory of the pulse width modulation
11.3 Features of the FRDM-MCXN947 PWM modules
11.4 Operation of the PWM265
11.5 Project 1: Mosquito Repeller
11.5.1 The original program (see the original programfile: readme_md) $\ldots \ldots 270$
11.5.2 The modified program
Chapter 12 • Electric Motors
12.1 Overview
12.2 Project 1: Two-speed motor speed control
12.3 Project 2: Changing the motor speed and direction
12.3.1 Using an H-bridge module
Chapter 13 • Digital to Analog Converter (DAC) Projects
13.1 Overview
13.2 Project 1: Generating square wave signal with a peak up to +3.3V $\ldots \ldots 291$
13.3 Project 2: Generating sawtooth wave signal
13.4 Project 3: Generating triangle wave signal
13.5 Project 4: Generating sine wave signal
Chapter 14 • Operational Amplifiers

14.1 Overview	306
14.2 Non-inverting amplifier mode	308
14.3 Inverting amplifier mode	309
14.4 Project 1: Non-inverting amplifier with a gain of 3	310
Chapter 15 • The UTICK Timer	313
15.1 Overview	313
15.2 Project 1: Generating 1 second delays – Onetime mode	313
15.3 Project 2: Generating 1 second delays – Onetime mode with interrupt service routine	
15.4 Project 3: Generating 1 second delays – Repeat mode with interrupt service routine	318
Chapter 16 • Real Time Clock (RTC)	320
16.1 Overview	320
16.2 Project 1: Set and display the absolute current date and time	321
16.3 Project 2: Read date and time from the keyboard and load to the RTC	324
Chapter 17 • The LPTIMER (LPTMR)	328
17.1 Overview	328
17.2 Project 1: Creating interrupts at required intervals	328
Chapter 18 • The FreeRTOS	332
18.1 Overview	332
18.2 Project 1: Simple 2 task application	332
Chapter 19 • Using the CMSIS-DSP Library	336
19.1 Overview	336
19.2 Project 1: Matrix addition, multiplication, and transpose	337
Chapter 20 • Using the FlexIO Module, Touch Screen, Neural Networks, and some others	344
20.1 Overview	344
20.2 The FlexIO module	344
20.2.1 Project 1: Using the FlexIO UART interface - Communication with a I	РС346
20.3 Touch Sensing Input module (TSI)	351
20.4 Cyclic Redundancy Check module (CRC)	353
20.5 Frequency Measurement module (FREQME)	354
20.6 Synchronous Audio Interface module (SAI)	355

20.7 Controller Area Network module (FlexCAN)	355
20.8 Security system	357
20.9 Neural Processing Unit (NPU)	359
20.9.1 Demo Neural Network program: tflm_label_image	361
Chapter 21 • Demo Programs	
21.1 Overview	364
21.2 Accessing the demo programs	364
21.3 List of demo programs	365
Index	

Preface

It is becoming important for microcontroller users to adapt to new technologies quickly and learn the architecture and use of high performance 32-bit microcontrollers. Several manufacturers offer 32-bit microcontrollers as general-purpose processors in embedded applications. For example, Microchip Inc offers the 32-bit PIC family of microcontrollers and development tools in addition to their highly popular 8-bit and 24-bit family. Companies like NXP Semiconductors, STMicroelectronics and several others offer ARM based processors for high-speed professional applications.

ARM offers 32-bit and 64-bit processors for the embedded applications. Nowadays, majority of mobile devices such as mobile phones, tablets, and GPS receivers are based on the ARM processors. The low cost, low power consumption, and high performance of the ARM processors make them ideal candidates to be used in complex communication and mixed signal applications.

This book is about the use of the FRDM-MCXN947 Development Board, developed and manufactured by NXP Semiconductors. This is a complex low-cost through-hole USB-powered PCB. At its heart lies the MCXNx4x family MCU, featuring NXP's advanced implementation of the Arm Dual Cortex-M33 TrustZone microcontroller. This microcontroller operates at speeds of up to 150 MHz to provide high CPU performance and best real-time response. It is supported by Zephyr OS for developing Internet of Things with a free, open-source embedded operating system. Popular development IDE tools such as the MCUXpresso IDE, MCUXpresso for VS Code, IAR Embedded Workbench, or the Keil MDK can be used for program development. Additionally, a powerful SDK is provided which simplifies program development greatly. The board is shipped with 2 MB dual-bank on-chip flash, 512 KB RAM, 10 x LP Flexcomms each supporting SPI, I2C, and UART, 2 x FlexCAN, Ethernet, on-board MCU-Link debugger with CMSIS-DAP, ADC, DAC, RTC, digital MEMS microphone interface, LCD interface, capacitive touch sensor interface, OpAmp, analog comparators, many timers, etc.

One of the important features of the development board is that it supports N1-16 Neural Processing Unit (NPU), thus enabling users to develop AI based projects. The development board also supports Arduino UNO form factor header pins, making it compatible with many Arduino shields, mikroBUS connector for mikroElektronica Click Boards, and Pmod connector.

One of the nice things of the FRDM-MCXN947 development board is that several onboard debug probes are provided with so that programmers can debug their programs by communicating directly with the MCU. With the help of the debugger, programmers can single step through a program, insert breakpoints, view and modify variables and so on. Many working and tested projects have been developed in the book using the popular MCUXpresso IDE and the SDK with various sensors and actuators. The project descriptions, block diagrams, circuit diagrams, complete program listings, and detailed descriptions of all the developed programs are given in the book for all the projects. Use of the popular CMSIS-DSP library is also explained with several commonly used matrix operations.

The projects provided in the book can be used without any modifications in many applications. Alternatively, readers can base their projects to the ones given in the book during the development of their own projects. The author hopes that readers use the FRDM-MCXN947 development board in their future projects.

Hope you enjoy reading the book.

Dr. Dogan Ibrahim

Chapter 1 • The FRDM-MCXN947 Development Board

1.1 Overview

The FRDM-MCXN947 is a compact and scalable development board for rapid prototyping of the MCX N94 (and the N54) MCUs. The board offers industry standard headers for easy access to the MCU's I/Os, integrated open-standard serial interfaces, external flash memory and an on-board MCU-Link debugger.

This book provides detailed information and various projects on using this development board. In this chapter, you will get to know the most commonly used features of the FRDM-MCXN947 Development Board.

1.2 The FRDM-MCXN947 Development Board hardware

Figure 1.1 shows a close-up picture of the top and bottom views of the development board. A description of the major components on the board is shown in Figure 1.2.

Figure 1.1: The development board.

Figure 1.2: Components on the board.

A block diagram of the development board is shown in Figure 1.3. The basic features of the development board are:

- MCX-N947 Dual Arm 32-bit Cortex-M33 cores at 150 MHz each
- Up to 2 MB dual-bank flash memory
- Neural Processing Unit
- On-board MCU-Link debugger
- SPI/I2C/UART support
- CAN-FD transceiver
- Ethernet controller
- PMOD, mikroBUS, Arduino, DNP, FRDM connectors
- Temperature sensor
- Touchpad
- HS USB Type C connectors
- JTAG/SWD connector
- FlexIO/LCD connector
- SmartDMA/camera connector
- RGB LED
- Reset button
- Wakeup and ISP buttons

Figure 1.3: Block diagram of the development board.

A more detailed block diagram of the development board is shown in Figure 1.4.

Figure 1.4: Detailed block diagram.

The MCX-N947 Dual Arm Cortex[™] M33 microcontroller provides operating performance of 150 MHz. The board is equipped with Flash memory up to 2 MB, optional ECC RAM and external flash memory, which provides adequate capacity for storing data and programs. Additionally, it offers a range of advanced features such as a neural processing unit, PowerQuad, Smart DMA, Micro SD card slot, Ethernet PHY, and HS USB Type-C connectors.

The FRDM-MCXN947 board also has SPI/I2C/UART connectors, WIFI connectors, CAN-FD transceiver, a built-in MCU-Link debugger with **CMSIS-DAP** and JTAG/SWD connectors. The user interface includes RGB LEDs and Reset, ISP and Wakeup buttons, making it easy to control and monitor the device's operation. Additional tools, such as expansion cards and an Application Code Hub with software samples, are available in the **MCUXpresso Developer Experience** to support application development and system design using the FRDM-MCXN947 board.

1.2.1 On-board connectors

There are 9 connectors on the board with the names J1 to J9. Figure 1.5 shows the layout of the connectors on the board.

Figure 1.5: On-board connectors.

The pin layout of the connectors is shown in Figure 1.6, Figure 1.7, and Figure 1.8

			SAI	F	3	_21		15	16	P0	_31	ARD	_D7
			SAI	F	×3_	_19		13	14	P1	_2	ARD	_De
			SAI	F	3	_17		11	12	P1	_21	ARD	_D5
JI			SAI	F	23	18	;	9	10	P0	30	ARD	
			SAI	F	י 1	21		7	8	P1	23	ARD	– D3
			SAL	F	33	20		5	6	PO	29	ARD	- 22
			MO			42	-	2	4	- U.	20		_02
			NIC	-	4	_13		3	4	P4	2	ARD	_D1
			SAI	F	^ 3_	_16	;	1	2	P4	-3	ARD	_D0
		NC	> N	C	19	9 20	P4	L1	ARD	_D19			
		TS	I P1	0_1	17	7 18	P4	L_0	ARD	_D18			
		TS	I P1	1_1	15	5 16	VD	DA	A	RD			
J2		TS	I PO	_19	13	3 14	GI	ND	A	RD			
		TS	P1	_12	11	1 12	P0	_25	ARD	_D13			
		MC	C PC)_3	9	10	P0	_26	ARD	_D12			
		MC		-4 · ·	7	8	PO	_24	ARD	_D11			
		MC)_3 : 2	5	6	PO	_27	ARD	0			
		MC		1 80	3	4	PU	20		0_D9			
		INIC		1_00		4	P U	_20	AIL	_00			
	AR	D	ADC0	_A3	2	1	P	2_0		MC			
	AR	D	P3\	/3	4	3	P1	_22		MC			
12	AR	D	RES	ET	6	5	P	2_3		MC			
13	ARI	D	P3V	3	8	7	P	2_2		мс			
	ARI	D	P5V	0	10	9	P	2_5		мс			
	ARI	D	GN	D	12	11	P	2_4		мс			
	ARI	D	GN	D	14	13	P	2_7		мс			
	ARI	D	VIN	1	16	15	P	2_6		MC			

Figure 1.6: Pin layout of connectors J1, J2 and J3.

	ARD_A0	ADC0_A0	2	1	P4_12	OPAMP
	ARD_A1	ADC0_B0	4	3	OP0_INN	OPAMP
J4	ARD_A2	P0_14	6	5	P4_16	OPAMP
	ARD_A3	P0_22	8	7	OP1_INN	OPAMP
	ARD_A4	P0_15	10	9	P4_20	OPAMP
	ARD_A5	P0_23	12	11	OP2_INN	OPAMP

mikroBUS						
J	6	J	5			
ANA_4	1	1	P3_19			
P1_3	2	2	P5_7			
P3_23	3	3	P1_16			
P3_21	4	4	P1_17			
P3_22	5	5	P1_1			
P3_20	6	6	P1_0			
P3V3	7	7	P5V0			
GND	8	8	GND			

CS P0_19 1 2 P0_20 SDO P0_16 3 4 P5_6 SDI P0_18 5 6 P3_3 SCL SCK P0_17 7 8 P3_2 SDA GND 9 10 GND VDD 11 12 VDD

Figure 1.7: Pin layout of connectors J4, J5, J6, and J7.

	LCD D15	LCD	13	LCD 11	I CD D	9 1 CD	D7	LCD D5	LCD D3	LCD D1	LCD TE	ICD WR	LCD DC			LCD
0	P4 23	P4 2	21	P4 19	P4 17	P4	15	P4 13	P2 11	P2 9	P0 13	P0 9	P0 7	P4 5	P4 0	GND
X	28	26		24	22	20		18	16	14	12	10	8	6	4	2
Ě	27	25		23	21	19		17	15	13	11	9	7	5	3	1
۳ ۲	P4 22	P4 2	20	P4 18	P4 16	P4	14	P4 12	P2 10	P2 8	P0 8	P0 12	P4 7	P4 6	P4 1	P3V3
	LCD D14	LCD_I	D12	LCD_D10	LCD_D	8 LCD	D6	LCD_D4	LCD_D2	LCD_0	LCD_RD	LCD_CS	LCD_RST	LCD_INT	I2C_SCL	LCD
			_			<u> </u>	_									
				GPI	0	P5_8	3	1 32	P1_8	G	PIO					
				GPI	0	P5_9	29	9 30	P1_9	G	PIO					
				GPI	IO F	1_13	2	7 28	P1_12	G	PIO					
				GPI	0	P2_0	2	5 26	P4_4	G	PIO					
				GPI	IO F	1_23	2	3 24	P1_22	G	PIO					
		₹		Cam	era	P3V3	2	1 22	GND	Ca	mera					
		S		Cam	era	P3_3	19	9 20	P3_2	Ca	mera					
		Ŧ		Cam	era	P0_4	1	7 18	P0_11	Ca	mera					
		Ĕ		Cam	era	P0_5	1	5 16	P2_2	Ca	mera					
		S		Cam	era <mark>F</mark>	1_11	1:	3 14	P1_10	Ca	mera					
		ŝ		Cam	era	P3_5	1	1 12	P3_4	Ca	mera					
				Cam	era	P1_7	9	10	P1_6	Ca	mera					
				Cam	era	P1_5	7	8	P1_4	Ca	mera					
				Cam	era <mark>F</mark>	P1_19	5	6	P1_18	Ca	mera					
				GPI	OF	1_17	3	4	P1_16	G	PIO					
				GPI	OF	1_15	1	2	P1_14	G	PIO					

Figure 1.8: Pin layout of connectors J8, J9.

Figure 1.9 shows the development board and all the connectors in a single figure.

Figure 1.9: The development board and all the connectors.

1.2.2 The MCU

Some important MCU features are (refer to the MCXNx4x Data Sheet for full details):

- 150 MHz operation
- Up to 512 KB RAM
- 16 KB RAM cache
- 4 x 8 KB ECC RAM
- 256 KB ROM
- 2 x 16-bit ADC
- Up to 75 ADC channels
- One integrated temperature sensor per ADC
- 3 high speed comparators
- 2 x 12-bit DAC
- 1 x 14-bt DAC
- Accurate voltage reference
- 3 x operational amplifiers

- 5 x 32-bit general purpose timers
- USB high-speed communication
- DSP accelerator
- Tamper detect
- Neural Processing Unit
- SCTimer/PWM
- LPTimer
- RTC with calendar
- Watchdog timer
- Frequency measurement timer
- 2 x DMA modules
- 10 x LP Flexcomms each support SPI, I2C, UART
- 2 x FlexCAN with FD
- Programmable Logic Unit
- 2 x FlexPWM
- 2 x Quadature encoder
- 1 x Event generator
- SINC filter module
- Digital PDM microphone (connection of up to 4 MEMS microphones)
- Capacitive touch sensor interface
- Up to 124 GPIOs
- Support 1.71 V 3.6 V I/O supply
- Operating voltage 1.71 V to 3.6 V
- Power-down, deep power-down, and deep sleep modes
- Max I/O current 3 mA
- Output HIGH/LOW current (total for all ports) 100 mA maximum

1.2.3 Jumpers on the board

Figure 1.10 shows the jumpers on the development board. The description of these jumpers is given in Table 1.1.

Figure 1.10: Jumpers on the board.

Part identifier	Jumper type	Description
J18	1x2 pin header	 Open (default setting): MCU-Link VCOM port is enabled. Shorted: Sends a low signal on LPC_HW_VER_6 to disable MCU-Link VCOM port
J19	1x2 pin header	 Open (default setting): Enables the MCU-Link SWD feature Shorted: Sends a low signal on LPC_HW_VER_7 to disable the onboard MCU-Link SWD feature Note: This configuration is required to enable target MCU debug through an external debug probe.
J21	1x2 pin jumper	 MCU-Link (LPC55S69) force ISP mode jumper: Open (default setting): MCU-Link follows the normal boot sequence (MCU-Link boots from internal flash if a boot image is found). With the internal flash erased, the MCU-Link normal boot sequence falls through to ISP boot mode. Shorted: MCU-Link is forced to ISP mode (USB). Use this setting to reprogram the MCU-Link internal flash with a new image or use the MCUXpresso IDE with the CMSIS-DAP protocol. Note: By default, MCU-Link flash is preprogrammed with a version of CMSIS-DAP firmware.
J22	1x2 pin jumper	 MCU-Link SWD clock enable jumper: Open: MCU-Link SWD clock is disabled. Shorted (default setting): MCU-Link SWD clock is enabled.
J24	1x2 pin header	Pin 1-2 shorted (default setting): P3V3_MCU is sourced from the P3V3 power supply
J25 (DNP)	1x2 pin jumper	DNP by default. If shorted, VDD_IO_USB is powered by P3V3_MCU through the jumper. Note: BY default, VDD_IO_USB is powered from the P3 V3_MCU supply through a zero-ohm shunt resistor.
J26 (DNP)	1x2 pin jumper	DNP by default.
J27 (DNP)	1x2 pin jumper	DNP by default. If shorted, VDD_BAT is powered by P3V3_MCU through the jumper. Note: BY default, VDD_BAT is powered from the P3V3_ MCU supply through a zero-ohm shunt resistor.
J28 (DNP)	1x2 pin jumper	DNP by default. If shorted, VDD_CORE_SYS is powered by P3V3_MCU through the jumper. Note: BY default, VDD_CORE_SYS is powered from the P3V3_MCU supply through a zero-ohm shunt resistor.

Table 1.1: Jumpers on the board.

1.2.4 Push buttons on the board

Tactile buttons are populated on the FRDM-MCXN947 development board for human machine interaction (HMI). Each of the buttons has a 0.1 μ F bypass capacitor for debouncing and pads for external pull-up resistors. Table 1.2 gives a description of the buttons on the board.

Part identifier S	witch name	Description					
SW1	Reset button (MCXN947 RST)	Pressing SW1 resets the target MCU that causes board peripherals to reset to their default states and execute the boot code. When SW1 is pressed, the reset LED D1 turns ON.					
SW2	Wakeup button	SW2 is a general-purpose input and a low-power wake up unit (WUU) pin. Pressing SW2 gives a low level on P0_23/WAKEUP_B, otherwise, it is a high level on P0_23/WAKEUP_B.					
SW3	In-system programming (ISP) mode switch	SW3 is an ISP mode switch and can also act as a general-purpose input. Pressing SW3 gives a low level on P0_6/ISPMODE_N-DEBUG, otherwise, it is a high level on P0_6/ISPMODE_N-DEBUG.					

Table 1.2: Buttons on the board.

Reset (SW1):	connected to the Reset input of the MCU
Wakeup (SW2):	connected to port P0_23
ISP (SW3):	connected to P0_6
Touch Pad:	connected to P1_3

1.2.5 LEDs on the board

There are 3 LEDs on the board as described in Table 1.3.

Part identifier	LED color	LED name / function De	scription
D1	Red	Reset LED	Indicates system reset activity. When board reset is initiated, for example, by pressing the SW1 reset button, the D1 LED turns ON.
D2	Red/green/blue	RGB LED	User application LEDs. Each of these LEDs can be controlled through a user application. • Red LED connects to target MCU pin P0_10 • Green LED connects to target MCU pin P0_27 • Blue LED connects to target MCU pin P1_2
D5	Green	P3V3 PWR ON	Indicates P3V3 power on status. When P3V3 is available on board, D5 turns ON.

Table 1.3: LEDs on the board.

RGB LED: Connected in common-cathode mode. i.e. An LED is ON when the corresponding port pin is LOW. Red LED connected to P0_10, Green LED to P0_27, and the Blue LED to $P1_2$

1.2.6 Ethernet interface

On the FRDM-MCXN947 board, the Ethernet controller connects to an RJ45 connector through an Ethernet PHY transceiver. The transmit, receive, and other Ethernet signals are on the P1 port pins. The FRDM-MCXN947 only supports RMII configuration. For this reason, the TXD3 and TXD2 pins of the Ethernet PHY (LAN8741A-EN) have been grounded through resistors R68 and R67, respectively.

1.2.7 FlexCAN interface

The controller area network (FlexCAN) is a full implementation of the CAN protocol specification, the CAN with flexible data rate (CAN FD) protocol, and the CAN 2.0 version B

protocol, which supports both standard and extended message frames and long payloads. The target MCU (MCXN947) supports two CAN (w/wo FD) controllers (CAN0 to CAN1).

On FRDM-MCXN947, only the CAN0 controller is used. The CAN0 controller connects to a 4-pin CAN header through a CAN transceiver (TJA1057GTK/3Z). The CAN0_TXD and CAN0_RXD signals are through ports P1_10 and P1_11, respectively.

Jumper J10 is a 4-pin CAN header. It is connected to the CAN0 bus and allows external connection with the bus. Table 1.4 shows the CAN header pin layout.

Pin	Signal	Description
1	CAN1_H	CAN transceiver high signal
2	CAN1_L	CAN transceiver low signal
3	P5V0	5 V power supply
4	GND	Ground

Table 1.4: CAN header pin layout.

1.2.8 I³C sensor interface

The FRDM-MCXN947 board includes one P3T1755DP digital temperature sensor to demonstrate the I³C capabilities of the target MCU. This sensor device allows for 32 I3C provisional IDs, supports the full operating voltage of the board, programmable overtemperature alerts, 12b resolution, and has an accuracy of ± 0.5 °C (maximum) from -20 °C to +85 °C.

The 7-bit I2C address of the sensor device is 0b1001000 (0x48). The sensor device connects to the I3C1 controller of the device through P1_[16:17] Port, where P1_16 is the SDA and P1_17 is the SCL pins. 4.7 k Ω internal pull-up resistors are provided for the I3C bus.

1.2.9 SD card interface

On the FRDM-MCXN947 board, the uSDHC controller connects to the SD card connector (J12) (not populated by default). The SD card detect pin is an open switch that shorts with GND when the card is inserted. The interface pins are:

DET:	P2_1
DAT1:	P2_2
DAT0:	P2_3
CLK:	P2_4
CMD:	P2_5
CD/DAT3:	P2_6
DAT2:	P2_7

1.3 Starting Up – demo program

A demo program has been pre-loaded into the memory of the development board for testing purposes. Connect a type-C USB cable from connector J17 (see Figure 1.11) to a host computer or power supply to power up the board and run the demo program. You should see the RGB LED blinking at a steady rhythm.

Figure 1.11: Running the demo program.

1.4 MCX N Series microcontrollers

MCX N series of microcontrollers are highly integrated, low-power MCUs designed with intelligent peripherals and on-chip accelerators that provide the ultimate balance of performance and energy consumption. They are based on the dual Arm Cortex-M33 core operating up to 150 MHz. Table 1.12 shows the basic features of the MCX N series of microcontrollers.

Figure 1.12: MCX N series features.

Part Number	Flash (KB)	SRAM	NPU	FlexSPI	PLC Controller	USB HS	DAC	Op Amp	Flexcomm	CAN FD	Packages
MCXN235VDF	512	192 KB (160 KB w/ ECC)	No	No	No	Yes			8	2	VFBGA184
MCXN235VNL	512	192 KB (160 KB w/ ECC)	No	No	No	Yes			8	2	HLQFP100
MCXN236VDF	1024	352 КВ (288 КВ w/ ECC)	No	No	No	Yes			8	2	VFBGA184
MCXN236VNL	1024	352 КВ (288 КВ w/ ECC)	No	No	No	Yes			8	2	HLQFP100
MCXN546VDF	1024	352 KB (288 KB w/ ECC)	Yes	Yes	No	Yes	1 x 12b		10	1	VFBGA184
MCXN546VNL	1024	352 KB (288 KB w/ ECC)	Yes	Yes	No	Yes	1 x 12b		10	1	HLQFP100
MCXN547VDF	2048	512 KB (416 KB w/ ECC)	Yes	Yes	No	Yes	1 x 12b		10	1	VFBGA184
MCXN547VNL	2048	512 KB (416 KB w/ ECC)	Yes	Yes	No	Yes	1 x 12b		10	1	HLQFP100
MCXN946VDF	1024	352 KB (288 KB w/ ECC)	Yes	Yes	Yes	No	2 x 12b + 1 x 14b	3	10	2	VFBGA184
MCXN946VNL	1024	352 KB (288 KB w/ ECC)	Yes	Yes	Yes	No	2 x 12b + 1 x 14b	3	10	2	HLQFP100
MCXN947VDF	2048	512 KB (416 KB w/ ECC)	Yes	Yes	Yes	Yes	2 x 12b + 1 x 14b	3	10	2	VFBGA184
MCXN947VNL	2048	512 KB (416 KB w/ ECC)	Yes	Yes	Yes	Yes	2 x 12b + 1 x 14b	3	10	2	HLQFP100
MCX-N5xx-EVK	MCX N54x full evaluation kit								VFBGA184		
MCX-N9xx-EVK	MCX N94x full evaluation kit								VFBGA184		
FRDM-MCXN236	MCX N236 FRDM development board								VFBGA184		
FRDM-MCXN947	MCX N947 FRDM development board								VFBGA184		

Table 1.5 shows the basic specifications of all the MCUs in the MCX N series of microcontrollers. The one used in this book is highlighted for comparison purposes.

Table 1.5: MCX N series of microcontrollers.

Chapter 2 • MCUXpresso and the Software Development Kit (SDK)

2.1 Overview

In this book we will be using the **MCUXpresso SDK** and the **IDE** for developing projects using the development board. **MCUXpresso IDE** is an Eclipse based development environment for NXP MCUs using Cortex-M cores. It supports many processors, including the MCXN947, the i.MX RT, LPC and Kinetis devices, devices from Cortex-M0+ to most of the Cortex family of processors. The SDK and the IDE must be installed before they can be used.

2.2 Installing the MCUXpresso IDE and SDK

The steps to install the MCUXpresso SDK and IDE are given below:

- Go to following web site: https://www.nxp.com/document/guide/getting-started-with-frdm-mcxn947:GS-FRDM-MCXNXX?section=get-software
- Click on GET MCUXPRESSO IDE (Figure 2.1)

Figure 2.1: Click on the link.

• Click **DOWNLOADS** (Figure 2.2)

Figure 2.2: Click Downloads.

• Click to Download the MCUXPRESSO IDE (Figure 2.3)

Figure 2.3: Click to Download.

- You will have to create an account and login to the NXP site.
- Select your operating system and click to download the file (Figure 2.4). At the time of drafting the book the file was named: **MCUXpressoIDE_11.9.1_2170. exe**

Product Download				
MCUXpresso IDE				
Files License Keys Notes			0	Download Help
Show All Files				4 Files
+ File Description	\$ F	File Size 💲	File Name	\$
+ MCUXPRESSO_V11.9.1 - Linux		1.3 GB		
+ MCUXPRESSO_V11.9.1 - MAC OS - 64 bit		1 GB	MCUXpressoIDE_11.9.1_2170.x86-64.pkg	
+ MCUXPRESSO_V11.9.1 - MAC OS - 64- aarch		1.1 GB	MCUXpressoIDE_11.9.1_2170.aarch64.pkg	
+ MCUXPRESSO_V11.9.1 - Windows		1.1 GB	MCUXpressoIDE_11.9.1_2170.exe	

Figure 2.4: Select your operating system and download.

- Click on the file to install the IDE.
- Click to start the IDE and give a workspace name.
- Click Launch.
- Click Download and Install SDKs (Figure 2.5).

Figure 2.5: Install SDKs.

• Select board frdmmcxn947 (Figure 2.6)

Boards Processors									
Board	SDK	Version	Package	Flash	RAM	Status			
frdmmcxn236_om13790host	SDK_2.x_FRDM-M	2.14.0	MCXN236VDF	1024	320				
frdmmcxn947	SDK_2.x_FRDM-M	2.14.0	MCXN947VDF	2048	512				
frdmmcxn947_a8974	SDK_2.x_FRDM-M	2.14.0	MCXN947VDF	2048	512				

Figure 2.6: Select frdmmcxn947.

• Click Install and Import Examples

This completes the installation of the **MCUXpresso IDE**.

2.3 Testing the installation

Now that the installation is complete, you should check the installation by compiling and running one of the demo programs supplied. Here, you will compile and run the demo example called **led_blinky** which flashes the on-board LED. The steps are as follows:

- Start the MCUXpresso IDE.
- Create Workspace ledtest (Figure 2.7) and click Launch.

Figure 2.7: Create the ledtest workspace.

• Click **IDE** to be in IDE mode (Figure 2.8).

Figure 2.8: Click IDE.

• Click Import SDK Example(s)... under the MCUXpresso IDE – Quickstart Panel.

• Click to select board frdmmcxn947 (Figure 2.9). Click Next.

Figure 2.9: Select board frdmmcxn947.

• Click to expand **demo_apps** (Figure 2.10).

Figure 2.10: Expand demo_apps.

- Click to select led_blinky and click Finish.
- You should see the **File Explorer** at the left window, the program code in the middle window, the header filenames and functions used at the right-hand window, and the console terminal etc at the bottom of the window (Figure 2.11). Do not worry if you do not understand how the program works at this stage!

```
눱 Project Explo... 🗙 🎬 Registers 🏘 Faults 💑 Peripherals+ 🍟 🗖 🙆 led_blinky.c 🗵
                                                                                                                                                                                                                                                                                                                                                                                                                         Outline × <sup>(0)</sup> Global Variables
                                                                                                                                                 1= /*

2 * Copyright 2019 NXP

3 * All rights reserved.

pin_mux.h
peripherals.h
board.h

      frdmmcxn947_led_blinky <Debug>
         Project Setting

    Project S
    Includes
    CMSIS
    Board

                                                                                                                                                                                                                                                                                                                                                                                                                                          # BOARD_LED_GPIO
# BOARD_LED_GPIO_PIN
                                                                                                                                                                * SPDX-License-Identifier: BSD-3-Clause

    SysTick Handler(void) : voi

                                                                                                                                                / #include "pin_mux.h"
9 #include "peripherals.h"
10 #include "board.h"
       > 🥴 component
                                                                                                                                                                                                                                                                                                                                                                                                                                          main(void) : int
        > @ device

    device
    drivers
    frdmmcxn947

                                                                                                                                                13 * Definitions

14 * Definitions

15 #define BOARD_LED_GFIO BOARD_LED_RED_GFIO

16 #define BOARD_LED_GFIO_FIN BOARD_LED_RED_GFIO______

17
       v 😕 source

    Ø source
    Ied_blinky.c
    Ø semihost_hardfault.c
    Ø startup
    Ø utilities

                                                                                                                                                 ≥ doc
          R led blinky.mex
                                                                                                                                                4
  0 Quickstart Panel × ∞ Variables % Breakpoints C D Installe... × □ Propert... 🗄 Proble... □ Console #Terminal 🗟 Image ... @ Debugg... % Offline ... * □ D Memory × ∞ Heap and Stack Usage 😳 🕫
  MCUXpresso IDE Quickstart
                                                                                                                                              1 Installed SDKs
                   oject: frdmmcxn947_led_blinky [Debug]
                                                                                                                                              To install an SDK, simply drag and drop an SDK (zip file/folder) or an SDK Git repository into the 'Installed SDKs' view
  - Create or import a project
                                                                                                                                               Installed SDKs Available Boards Available Devices
              Create a new C/C++ project...
                                                                                                                                                                                                                                                                     Manifest Version
                                                                                                                                                                                                                               SDK Version Manife
2.14.0 (epluginsite799 3.13.0
                                                                                                                                                Name
                                                                                                                                                                                                                                                                                                                                 Location
               Import SDK example(s).
                                                                                                                                                       SDK_2.x_FRDM-MCXN947
                                                                                                                                                                                                                                                                                                                                ugins>/com.nxp.m
   Market State State

    Import from application code read.
    Import project(s) from file system...
    Import executable from file system...

        Puild your project
```

Figure 2.11: The IDE window.

• The program code listing is shown in Figure 2.12.

```
/*
* Copyright 2019 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "pin_mux.h"
#include "peripherals.h"
#include "board.h"
/*********
     * Definitions
#define BOARD_LED_GPI0 BOARD_LED_RED_GPI0
#define BOARD_LED_GPIO_PIN BOARD_LED_RED_GPIO_PIN
* Prototypes
* Variables
* Code
```