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While I was a student, a paper titled Pleasure Elements in Mathematics in 
Junior Science Digest, India, led to my interest in recreational mathematics. 
While playing with numbers, some beautiful patterns were observed, which 
were tested for bases other than decimal. This investigation inspired me to 
become passionate about number recreations and the subsequent publication 
of my first paper, titled Miracles of Last Digit, in the November 1978 issue of 
Junior Science Digest, India. Since then, my contributions have been pub-
lished in national and international journals and books.

My book, Creative Puzzles to Ignite Your Mind, was published by Springer 
Singapore in March 2023. It covers various puzzles based on applications of 
numbers such as square numbers, triangular numbers, Fibonacci numbers, 
autobiographical numbers, parasite numbers, polydivisible numbers, 
and so on.

This book Exploring the Beauty of Fascinating Numbers contains 23 
chapters covering a large variety of topics, such as digital root wonders, the 
elegance of squares, triangular numbers, Smith numbers, amicable numbers, 
perfect, multiple perfect and sociable numbers, happy numbers, Fibonacci 
numbers, Lucas numbers, and golden ratio, Kaprekar numbers, Karekar 
Constant, self-numbers, amazing number 108, repunit numbers, equal prod-
uct of reversible numbers (EPRNs), unlucky 13, rare numbers, beauty of 
number 153, fascinating factorials, the number of beasts, Ulam numbers, 
mystery of π, cab and vampire numbers, digital invariants and narcissistic 
numbers, special numbers like autobiographical numbers, Harshad numbers, 
parasite numbers, polydivisible numbers, and Ramanujan numbers, number 
curiosities such as lucky mistakes, Pascal’s triangle, and Pythagorean triplets.

Preface
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The book is a collection of several thoughts, articles, results, and patterns 
collected and discovered over a large period of 45  years of my passion for 
number recreations. When writing this book, my motivation was always to 
communicate the excitement and fascination of numbers to the children in 
schools and colleges.

The book demonstrates to the general reader that mathematics can be fun 
rather than dry, dull, and difficult through the journey of Exploring the Beauty 
of Fascinating Numbers.

The book can immensely benefit teachers trying to teach math, especially 
to students who don’t like math, by supplementing their regular curriculum 
with the module containing material from the book, which provides an 
opportunity for fun and joy while encouraging students and researchers to 
test their mathematical, computational, and logical skills.

The late Martin Gardner ran a popular monthly column titled Mathematical 
Games in the magazine Scientific American for about 25 years. This monthly 
column about recreational mathematics was introduced to me in college by 
our beloved late professor, M. M. Dandekar, who has always inspired me.

A recreational mathematical idea thought to be fascinating but of no prac-
tical value can turn out to have huge practical significance. For example, in 
the seventeenth century, the great German mathematician G. W. Leibniz dis-
covered and studied the idea of a binary number system, which remained a 
curiosity until it became a choice for the operation of electronic devices and 
computers in the twentieth century. Therefore, recreational mathematics can 
play a significant role in the advancement of human knowledge.

The theory behind the subject matter has been kept to a minimum to retain 
the recreational nature of the book. A section called Further Investigations is 
added as the last section of many chapters, which gives open problems and 
ideas to further investigate the topics. This will entertain readers and create 
interest in further exploring the subject.

Exploring the beauty of fascinating numbers is a delightful coverage of 
numerical curiosities, coincidences, and wonders, revealing many new eye- 
opening properties of numbers. I am sure that this book will delight readers 
of all levels.

Jaipur, India Shyam Sunder Gupta



ix

The late Martin Gardner ran a popular monthly column titled Mathematical 
Games in the magazine Scientific American for about 25 years. This monthly 
column, filled with recreational mathematics, inspired me during my college 
days to become passionate about number recreation. Later, I came across 
wonderful books, periodicals, and other literature written by great personali-
ties in the field of recreational mathematics, such as W. W. Rouse Ball, Maurice 
Kraitchik, L.  E. Dickson, A.  H. Beiler, Henry Dudeney, Joseph Steven 
Madachy, Yakov Perelman, Martin Gardner, D.  R. Kaprekar, Paul Erdos, 
Samuel Yates, and others. I am grateful and thank them all.

I thank Tarun Kumar for the cover page design and for making all the illus-
trations for the book. I thank Amit Gupta for his comments after going 
through the manuscript.

I thank my wife, Sushil Gupta, for her encouragement and support, with-
out which it would not have been possible to start writing and complete 
this book.

Since the book is a collection of several thoughts, articles, results, and pat-
terns collected and discovered over a long period of 45 years of my passion for 
number recreations, it is practically not possible to make all the references 
available. However, I am thankful to all who were associated, directly or indi-
rectly, including the following:

N. J. A. Sloane, Al Zimmermann, Carlos Rivera, Patrick De Geest, Paul 
Zimmermann, Tony Foster, Tony Sand, G. L. Honaker, Jens Kruse Andersen, 
Max Alekseyev, Brian Trial, John McMahon, Mauro Fiorentini, Julian 
Beauchamp, Okoh Ufuoma Cyrus, Alessandro Casini, Maximilian Hasler, 
Emmanuel Vantieghem, James Furia, Steve Homewood, Fred Schneider, and 
Richard Sewill.

Acknowledgements



x Acknowledgements

Every effort has been made to make the book error-free; however, some 
errors and mistakes may always remain. Therefore, I shall be grateful for any 
suggestions and comments, not only for rectifying the errors and mistakes but 
also for improving the book.

Jaipur, India Shyam Sunder Gupta



xi

Introduction

An equation means nothing to me unless it expresses a thought of God.
—Srinivasa Ramanujan

God created the integers; all else is the work of man.
—Leopold Kronecker

The author feels great pleasure in presenting the book, Exploring the Beauty of 
Fascinating Numbers, which is a great treasure for everybody who enjoys the 
beauty of the fascinating world of recreational mathematics. Apart from ama-
teurs and math lovers, the book is considered of immense value to encourage 
students and researchers to test their mathematical and computational skills.

The book focuses on recreational aspects of numbers to create interest and 
motivate readers to learn to be creative in improving their problem-solving 
techniques. The book aims to show the beauty and power that are so well hid-
den in our numbers, with the hope that the reader will be motivated to under-
take further investigations.

Srinivasa Ramanujan was one of India’s greatest mathematical geniuses, 
and he believed that the gods gave him mathematical ideas out of his dreams. 
Pythagoras attributed mystical qualities to some of the numbers. Even the 
religious properties of numbers were extensively studied. So, four chapters are 
exclusively devoted to such numbers, namely, the amazing number 108, the 
unlucky 13, the beauty of 153, and the number of the beast, with lots of new 
curiosities and miraculous coincidences.

The first chapter is devoted to digital roots, the concept of which is over a 
1000 years old and is simply the ancient process of ‘casting out 9s’. Apart from 
digital root properties and applications, the digital roots of polygonal 
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numbers, Fermat numbers, Mersenne primes, perfect numbers, Fibonacci 
and Lucas numbers, primes and twin primes, amicable numbers, Kaprekar 
numbers, Smith numbers, and fractions are discussed.

In the second chapter, in addition to the number of new curiosities, beauti-
ful patterns, curious numbers, and equations, Bhaskara pairs, exclusionary, 
biperiod, and tridigital squares are covered. Shortcuts in computing and 
methods of fast detection of perfect squares are explained. To further stimu-
late interest in students, two puzzles based on squares are also dealt with. 
Automorphic numbers are also discussed in detail.

The third chapter deals with triangular numbers, first studied by ancient 
Greek mathematicians. In this chapter, several new curiosities and observa-
tions, harmonic triples of triangular numbers, special triangular numbers 
such as palindromic, reversible, Smith, Harshad, happy, Kaprekar, abundant, 
deficient, and exclusionary triangular numbers are covered. The latest results 
about magic squares containing triangular numbers and the existence of infi-
nite families of triangular numbers containing only odd digits are discussed.

Chapter 4 deals with the construction and distribution of Smith numbers, 
highly decomposable Smith numbers, consecutive Smith numbers, and spe-
cial Smith numbers such as Repdigit, Fibonacci, and sphenic. New applica-
tions of digital roots for speeding up Smith number computations have been 
discussed. Hoax numbers and Ruth-Aaron numbers are also covered.

Chapters 5 and 6 are devoted to amicable and perfect numbers, which were 
extensively studied by the Greeks, especially Euclid, who devised a method for 
obtaining even perfect numbers. Divisibility and the digital roots of known 
amicable numbers are discussed in detail in Chap. 5. Based on the updated list 
of the known perfect numbers, curious properties, digital roots, and endings 
of perfect numbers, along with multiple perfect and sociable numbers, are 
discussed in Chap. 6.

Though happy numbers are infinite, observing the proportion of happy 
numbers is interesting. Special happy numbers such as happy Pythagorean 
triplets, repdigit happy numbers, palindromic happy numbers, happy amica-
ble pairs, and happy triangular numbers are discussed in Chap. 7. In addition, 
consecutive happy numbers, happy primes, and happy cubes are also covered.

The Fibonacci numbers covered in Chap. 8 were first described in India; 
however, they are named after the Italian mathematician Leonardo of Pisa, 
also known as Fibonacci, who introduced the sequence in his 1202 book 
Liber Abaci. Fibonacci numbers are related to the golden ratio, which has a 
unique characteristic in that it differs from its reciprocal by 1. This character-
istic leads to several fascinating properties, which are discussed. In addition, 
Fibonacci identities and Fibonacci factorials are covered.
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Chapter 9 includes some of the marvellous numbers like Kaprekar numbers, 
self-numbers, and Kaprekar constant 6174, discovered by Indian recreational 
mathematician D. R. Kaprekar. Readers may enjoy and explore further some 
of the peculiarities of intra-differences and self-gaps discussed in this chapter.

The number 108 discussed in Chap. 10 is considered sacred and auspicious 
in Hinduism, Sikhism, Buddhism, and Jainism. In addition to many other 
amazements of 108, geometrical properties and astronomical coincidences are 
worth noting. Mathematically, 108 is the smallest number whose divisors 
(i.e., 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, and 108) contain every digit at least 
once and is also the smallest number that can be partitioned into six distinct 
primes such that the sum of any five is prime.

Repunits comprising only the digit 1, such as 11 or 111, are closely related 
to repetends and period lengths of primes. Some beautiful number patterns 
and curiosities involving repunits, like cubes of certain n-digit numbers end-
ing in Rn, like 884713 = 692472942511111, are covered in Chap. 11.

The numbers that can be expressed as the product of a number and its 
reversal in two different ways, like 144648 = 861 × 168 = 492 × 294, are 
termed EPRNs (Equal Product of Reversible Numbers). Based on new prop-
erties, methods of computing EPRNs and the distribution of EPRNs are dis-
cussed in Chap. 12.

The abnormal fear of the number 13, often known as triskaidekaphobia, is 
one of the most prominent myths in science and was fuelled by the failed mis-
sion of Apollo 13, which launched at 13.13  h and exploded on April 13, 
1970. Some interesting coincidences, like Microsoft skipping Office version 
13, are discussed in Chap. 13. The number of observations, like 13 major 
joints in our body and 13 essential vitamins for our body, along with many 
interesting mathematical curiosities like ‘the sum of all prime numbers up to 
13 is equal to the 13th prime number’, and ‘13 composite numbers between 
13 and its reversal’ are discussed.

The numbers that give a perfect square on adding as well as subtracting 
their reverse are rare, like 65, 621770, etc., and hence have been termed as 
rare numbers by the author. Chapter 14 is extensively devoted to computing 
and investigating rare numbers up to 1024. Some properties are listed, and 
conjectures are made to enable the readers to further explore the subject.

Chapter 15 deals with the beauty of the number 153, references to which 
can be found in the New Testament, where, in the net, Simon Peter drew 
from the Sea of Tiberias 153 fish. The number 153 has puzzled and intrigued 
Christian thinkers for centuries. Interesting coincidences include the mention 
of 153  in ‘The Ascent of Rum Doodle’, a novel by W.  E. Bowman. 
Mathematically, when the cubes of the digits of any number, i.e., a multiple 
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of 3, are added, and then this process is repeated, the final result is always 153, 
where the process ends because 153 = 13 + 53 + 33.

Factorion, i.e., positive integers that are equal to the sum of the factorials of 
their digits like 1, 2, 145, and 40585, along with amicable factorion and 
magic factorion, are discussed in Chap. 16. Using factorial digits, the possibil-
ity of drawing amazing shapes like triangles, rhombuses, hexagons, octagons, 
etc. is discussed. Various kinds of factorials like half, double, multi, hyper, 
super factorials, and subfactorials are covered, along with some curiosities like 
372973, the only number that is one less than the sum of the factorials of 
their digits.

The biblical number of the beast, 666, is covered in Chap. 17. US Route 
666, known as ‘The Highway of the Beast’, was renamed Route 491 in 2003 
after controversy in connection with the beast number. Intel introduced the 
666 MHz Pentium III CPU in 1999, but it was marketed as the Pentium III 
667 instead of the Pentium III 666. Mathematically, 666 contains delightful 
curiosities like ‘the sum of cubes of ascending and descending numbers is 666, 
i.e., 13 + 23 + 33 + 43 + 53 + 63 + 53 + 43 + 33 + 23 + 13 = 666’.

The distribution of Ulam numbers, unulam numbers, and superulam num-
bers, along with observations on the distribution of gaps between Ulam num-
bers, is dealt with in Chap. 18. Ulam numbers in arithmetic progressions are 
also explored.
π has many real-world uses; however, the digits of π beyond the first few 

decimal places are of value mainly in testing computer systems. Apart from 
digit curiosities, the new concepts of π factorial and piorial primes are dis-
cussed in Chap. 19. Using π digits, the drawing of various shapes like trian-
gles, rhombuses, hexagons, octagons, etc. is also demonstrated.

Chapter 20 covers the cab numbers mentioned by Henry E. Dudeney in his 
book, Amusements in Mathematics, like 8745231 × 96 = 839542176, and the 
vampire numbers, like 12417993 = 1317 × 9429 = 1347 × 9219.

Apart from perfect and recurring digital invariants, narcissistic numbers like 
548834  =  56  +  46  +  86  +  86  +  36  +  46, Münchhausen numbers, i.e., 
3435 = 33 + 44 + 33 + 55, Friedman numbers, which can be written in some 
non-trivial way using their digits, like 736 = 7 + 36, and printer error numbers 
like 34 × 72 × 875 = 3472875 are discussed in detail in Chap. 21.

Chapter 22 discusses some special numbers, like autobiographical num-
bers, Harshad numbers, parasite numbers, polydivisible numbers, and 
Ramanujan numbers.

The last chapter, 23, contains details about some number curiosities like 
lucky mistakes, including anomalous cancellations, Pascal’s triangle, and 
Pythagorean triples.
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Hundreds of books and journals have been trawled through libraries in 
search of curious and interesting numbers. So, it would be impossible to credit 
all the sources referred to. However, references for further exploring the sub-
ject have been given at the end of the chapters.

So let us not waste time and start enjoying the treasure full of wonders of 
numbers, as many unexplored areas are waiting for you to unlock the doors of 
your imagination.
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