Shyam Sunder Gupta

Exploring the **Beauty** of Fascinating Numbers Springer PRA

Springer Praxis Books
Popular Science

The Springer Praxis Popular Science series contains fascinating stories from around the world and across many different disciplines. The titles in this series are written with the educated lay reader in mind, approaching nitty-gritty science in an engaging, yet digestible way. Authored by active scholars, researchers, and industry professionals, the books herein offer far-ranging and unique perspectives, exploring realms as distant as Antarctica or as abstract as consciousness itself, as modern as the Information Age or as old our planet Earth. The books are illustrative in their approach and feature essential mathematics only where necessary. They are a perfect read for those with a curious mind who wish to expand their understanding of the vast world of science. Shyam Sunder Gupta Exploring the Beauty of Fascinating Numbers

Shyam Sunder Gupta Indian Railways Jaipur, Rajasthan, India

 Springer Praxis Books

 ISSN 2626-6113
 ISSN 2626-6121 (electronic)

 Popular Science
 ISBN 978-981-97-2465-9 (eBook)

 https://doi.org/10.1007/978-981-97-2465-9
 (eBook)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

This book is dedicated with great respect to the memory of my father-in-law late Shri Dwarka Prasad Gupta and mother-in-law late Smt. Angoori Devi, for their love and affection.

Preface

While I was a student, a paper titled *Pleasure Elements in Mathematics* in Junior Science Digest, India, led to my interest in recreational mathematics. While playing with numbers, some beautiful patterns were observed, which were tested for bases other than decimal. This investigation inspired me to become passionate about number recreations and the subsequent publication of my first paper, titled *Miracles of Last Digit*, in the November 1978 issue of Junior Science Digest, India. Since then, my contributions have been published in national and international journals and books.

My book, *Creative Puzzles to Ignite Your Mind*, was published by Springer Singapore in March 2023. It covers various puzzles based on applications of numbers such as square numbers, triangular numbers, Fibonacci numbers, autobiographical numbers, parasite numbers, polydivisible numbers, and so on.

This book *Exploring the Beauty of Fascinating Numbers* contains 23 chapters covering a large variety of topics, such as digital root wonders, the elegance of squares, triangular numbers, Smith numbers, amicable numbers, perfect, multiple perfect and sociable numbers, happy numbers, Fibonacci numbers, Lucas numbers, and golden ratio, Kaprekar numbers, Karekar Constant, self-numbers, amazing number 108, repunit numbers, equal product of reversible numbers (EPRNs), unlucky 13, rare numbers, beauty of number 153, fascinating factorials, the number of beasts, Ulam numbers, mystery of π , cab and vampire numbers, digital invariants and narcissistic numbers, special numbers like autobiographical numbers, Harshad numbers, parasite numbers, polydivisible numbers, and Ramanujan numbers, number curiosities such as lucky mistakes, Pascal's triangle, and Pythagorean triplets.

The book is a collection of several thoughts, articles, results, and patterns collected and discovered over a large period of 45 years of my passion for number recreations. When writing this book, my motivation was always to communicate the excitement and fascination of numbers to the children in schools and colleges.

The book demonstrates to the general reader that mathematics can be fun rather than dry, dull, and difficult through the journey of *Exploring the Beauty of Fascinating Numbers*.

The book can immensely benefit teachers trying to teach math, especially to students who don't like math, by supplementing their regular curriculum with the module containing material from the book, which provides an opportunity for fun and joy while encouraging students and researchers to test their mathematical, computational, and logical skills.

The late Martin Gardner ran a popular monthly column titled *Mathematical Games* in the magazine *Scientific American* for about 25 years. This monthly column about recreational mathematics was introduced to me in college by our beloved late professor, M. M. Dandekar, who has always inspired me.

A recreational mathematical idea thought to be fascinating but of no practical value can turn out to have huge practical significance. For example, in the seventeenth century, the great German mathematician G. W. Leibniz discovered and studied the idea of a binary number system, which remained a curiosity until it became a choice for the operation of electronic devices and computers in the twentieth century. Therefore, recreational mathematics can play a significant role in the advancement of human knowledge.

The theory behind the subject matter has been kept to a minimum to retain the recreational nature of the book. A section called *Further Investigations* is added as the last section of many chapters, which gives open problems and ideas to further investigate the topics. This will entertain readers and create interest in further exploring the subject.

Exploring the beauty of fascinating numbers is a delightful coverage of numerical curiosities, coincidences, and wonders, revealing many new eyeopening properties of numbers. I am sure that this book will delight readers of all levels.

Jaipur, India

Shyam Sunder Gupta

Acknowledgements

The late Martin Gardner ran a popular monthly column titled *Mathematical Games* in the magazine Scientific American for about 25 years. This monthly column, filled with recreational mathematics, inspired me during my college days to become passionate about number recreation. Later, I came across wonderful books, periodicals, and other literature written by great personalities in the field of recreational mathematics, such as W. W. Rouse Ball, Maurice Kraitchik, L. E. Dickson, A. H. Beiler, Henry Dudeney, Joseph Steven Madachy, Yakov Perelman, Martin Gardner, D. R. Kaprekar, Paul Erdos, Samuel Yates, and others. I am grateful and thank them all.

I thank Tarun Kumar for the cover page design and for making all the illustrations for the book. I thank Amit Gupta for his comments after going through the manuscript.

I thank my wife, Sushil Gupta, for her encouragement and support, without which it would not have been possible to start writing and complete this book.

Since the book is a collection of several thoughts, articles, results, and patterns collected and discovered over a long period of 45 years of my passion for number recreations, it is practically not possible to make all the references available. However, I am thankful to all who were associated, directly or indirectly, including the following:

N. J. A. Sloane, Al Zimmermann, Carlos Rivera, Patrick De Geest, Paul Zimmermann, Tony Foster, Tony Sand, G. L. Honaker, Jens Kruse Andersen, Max Alekseyev, Brian Trial, John McMahon, Mauro Fiorentini, Julian Beauchamp, Okoh Ufuoma Cyrus, Alessandro Casini, Maximilian Hasler, Emmanuel Vantieghem, James Furia, Steve Homewood, Fred Schneider, and Richard Sewill. Every effort has been made to make the book error-free; however, some errors and mistakes may always remain. Therefore, I shall be grateful for any suggestions and comments, not only for rectifying the errors and mistakes but also for improving the book.

Jaipur, India

Shyam Sunder Gupta

Introduction

An equation means nothing to me unless it expresses a thought of God. —Srinivasa Ramanujan

> God created the integers; all else is the work of man. —Leopold Kronecker

The author feels great pleasure in presenting the book, *Exploring the Beauty of Fascinating Numbers*, which is a great treasure for everybody who enjoys the beauty of the fascinating world of recreational mathematics. Apart from amateurs and math lovers, the book is considered of immense value to encourage students and researchers to test their mathematical and computational skills.

The book focuses on recreational aspects of numbers to create interest and motivate readers to learn to be creative in improving their problem-solving techniques. The book aims to show the beauty and power that are so well hidden in our numbers, with the hope that the reader will be motivated to undertake further investigations.

Srinivasa Ramanujan was one of India's greatest mathematical geniuses, and he believed that the gods gave him mathematical ideas out of his dreams. Pythagoras attributed mystical qualities to some of the numbers. Even the religious properties of numbers were extensively studied. So, four chapters are exclusively devoted to such numbers, namely, the amazing number 108, the unlucky 13, the beauty of 153, and the number of the beast, with lots of new curiosities and miraculous coincidences.

The first chapter is devoted to *digital roots*, the concept of which is over a 1000 years old and is simply the ancient process of 'casting out 9s'. Apart from digital root properties and applications, the digital roots of polygonal

numbers, Fermat numbers, Mersenne primes, perfect numbers, Fibonacci and Lucas numbers, primes and twin primes, amicable numbers, Kaprekar numbers, Smith numbers, and fractions are discussed.

In the second chapter, in addition to the number of new curiosities, beautiful patterns, curious numbers, and equations, Bhaskara pairs, exclusionary, biperiod, and tridigital squares are covered. Shortcuts in computing and methods of fast detection of perfect squares are explained. To further stimulate interest in students, two puzzles based on squares are also dealt with. Automorphic numbers are also discussed in detail.

The third chapter deals with *triangular numbers*, first studied by ancient Greek mathematicians. In this chapter, several new curiosities and observations, harmonic triples of triangular numbers, special triangular numbers such as palindromic, reversible, Smith, Harshad, happy, Kaprekar, abundant, deficient, and exclusionary triangular numbers are covered. The latest results about magic squares containing triangular numbers and the existence of infinite families of triangular numbers containing only odd digits are discussed.

Chapter 4 deals with the construction and distribution of *Smith numbers*, highly decomposable Smith numbers, consecutive Smith numbers, and special Smith numbers such as Repdigit, Fibonacci, and sphenic. New applications of digital roots for speeding up Smith number computations have been discussed. Hoax numbers and Ruth-Aaron numbers are also covered.

Chapters 5 and 6 are devoted to *amicable and perfect numbers*, which were extensively studied by the Greeks, especially Euclid, who devised a method for obtaining even perfect numbers. Divisibility and the digital roots of known amicable numbers are discussed in detail in Chap. 5. Based on the updated list of the known perfect numbers, curious properties, digital roots, and endings of perfect numbers, along with multiple perfect and sociable numbers, are discussed in Chap. 6.

Though happy numbers are infinite, observing the proportion of *happy numbers* is interesting. Special happy numbers such as happy Pythagorean triplets, repdigit happy numbers, palindromic happy numbers, happy amicable pairs, and happy triangular numbers are discussed in Chap. 7. In addition, consecutive happy numbers, happy primes, and happy cubes are also covered.

The Fibonacci numbers covered in Chap. 8 were first described in India; however, they are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence in his 1202 book Liber Abaci. Fibonacci numbers are related to the golden ratio, which has a unique characteristic in that it differs from its reciprocal by 1. This characteristic leads to several fascinating properties, which are discussed. In addition, Fibonacci identities and Fibonacci factorials are covered. Chapter 9 includes some of the marvellous numbers like *Kaprekar numbers*, self-numbers, and Kaprekar constant 6174, discovered by Indian recreational mathematician D. R. Kaprekar. Readers may enjoy and explore further some of the peculiarities of intra-differences and self-gaps discussed in this chapter.

The number 108 discussed in Chap. 10 is considered sacred and auspicious in Hinduism, Sikhism, Buddhism, and Jainism. In addition to many other amazements of 108, geometrical properties and astronomical coincidences are worth noting. Mathematically, 108 is the smallest number whose divisors (i.e., 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, and 108) contain every digit at least once and is also the smallest number that can be partitioned into six distinct primes such that the sum of any five is prime.

Repunits comprising only the digit 1, such as 11 or 111, are closely related to repetends and period lengths of primes. Some beautiful number patterns and curiosities involving repunits, like cubes of certain n-digit numbers ending in R_n , like 88471³ = 692472942511111, are covered in Chap. 11.

The numbers that can be expressed as the product of a number and its reversal in two different ways, like $144648 = 861 \times 168 = 492 \times 294$, are termed EPRNs (Equal Product of Reversible Numbers). Based on new properties, methods of computing EPRNs and the distribution of EPRNs are discussed in Chap. 12.

The abnormal fear of the number 13, often known as triskaidekaphobia, is one of the most prominent myths in science and was fuelled by the failed mission of Apollo 13, which launched at 13.13 h and exploded on April 13, 1970. Some interesting coincidences, like Microsoft skipping Office version 13, are discussed in Chap. 13. The number of observations, like 13 major joints in our body and 13 essential vitamins for our body, along with many interesting mathematical curiosities like 'the sum of all prime numbers up to 13 is equal to the 13th prime number', and '13 composite numbers between 13 and its reversal' are discussed.

The numbers that give a perfect square on adding as well as subtracting their reverse are rare, like 65, 621770, etc., and hence have been termed as *rare numbers* by the author. Chapter 14 is extensively devoted to computing and investigating rare numbers up to 10^{24} . Some properties are listed, and conjectures are made to enable the readers to further explore the subject.

Chapter 15 deals with the beauty of the *number 153*, references to which can be found in the New Testament, where, in the net, Simon Peter drew from the Sea of Tiberias 153 fish. The number 153 has puzzled and intrigued Christian thinkers for centuries. Interesting coincidences include the mention of 153 in 'The Ascent of Rum Doodle', a novel by W. E. Bowman. Mathematically, when the cubes of the digits of any number, i.e., a multiple

of 3, are added, and then this process is repeated, the final result is always 153, where the process ends because $153 = 1^3 + 5^3 + 3^3$.

Factorion, i.e., positive integers that are equal to the sum of the factorials of their digits like 1, 2, 145, and 40585, along with amicable factorion and magic factorion, are discussed in Chap. 16. Using factorial digits, the possibility of drawing amazing shapes like triangles, rhombuses, hexagons, octagons, etc. is discussed. Various kinds of factorials like half, double, multi, hyper, super factorials, and subfactorials are covered, along with some curiosities like 372973, the only number that is one less than the sum of the factorials of their digits.

The biblical *number of the beast*, 666, is covered in Chap. 17. US Route 666, known as 'The Highway of the Beast', was renamed Route 491 in 2003 after controversy in connection with the beast number. Intel introduced the 666 MHz Pentium III CPU in 1999, but it was marketed as the Pentium III 667 instead of the Pentium III 666. Mathematically, 666 contains delightful curiosities like 'the sum of cubes of ascending and descending numbers is 666, i.e., $1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 5^3 + 4^3 + 3^3 + 2^3 + 1^3 = 666'$.

The distribution of *Ulam numbers*, unulam numbers, and superulam numbers, along with observations on the distribution of gaps between Ulam numbers, is dealt with in Chap. 18. Ulam numbers in arithmetic progressions are also explored.

 π has many real-world uses; however, the digits of π beyond the first few decimal places are of value mainly in testing computer systems. Apart from digit curiosities, the new concepts of π factorial and piorial primes are discussed in Chap. 19. Using π digits, the drawing of various shapes like triangles, rhombuses, hexagons, octagons, etc. is also demonstrated.

Chapter 20 covers the *cab numbers* mentioned by Henry E. Dudeney in his book, *Amusements in Mathematics*, like $8745231 \times 96 = 839542176$, and the vampire numbers, like $12417993 = 1317 \times 9429 = 1347 \times 9219$.

Apart from perfect and recurring digital invariants, *narcissistic numbers* like $548834 = 5^6 + 4^6 + 8^6 + 8^6 + 3^6 + 4^6$, Münchhausen numbers, i.e., $3435 = 3^3 + 4^4 + 3^3 + 5^5$, *Friedman numbers*, which can be written in some non-trivial way using their digits, like $736 = 7 + 3^6$, and printer error numbers like $3^4 \times 7^2 \times 875 = 3472875$ are discussed in detail in Chap. 21.

Chapter 22 discusses some special numbers, like autobiographical numbers, Harshad numbers, parasite numbers, polydivisible numbers, and Ramanujan numbers.

The last chapter, 23, contains details about some number curiosities like lucky mistakes, including anomalous cancellations, Pascal's triangle, and Pythagorean triples. Hundreds of books and journals have been trawled through libraries in search of curious and interesting numbers. So, it would be impossible to credit all the sources referred to. However, references for further exploring the subject have been given at the end of the chapters.

So let us not waste time and start enjoying the treasure full of wonders of numbers, as many unexplored areas are waiting for you to unlock the doors of your imagination.

Contents

1	Dig	ital Root Wonders	1
	1.1	Properties of Digital Roots	2
	1.2	Vedic Square	5
	1.3	Digital Roots of Various Classes of Numbers	6
		1.3.1 Digital Roots of the Squares, Cubes,	
		and Higher Powers	6
		1.3.2 Digital Roots of the Sum of the Powers	
		of Numbers	7
		1.3.3 Digital Roots of Polygonal Numbers	9
		1.3.4 Digital Roots of Mersenne Primes	10
		1.3.5 Digital Roots of Even Perfect Numbers	11
		1.3.6 Digital Roots of Fermat Numbers	12
		1.3.7 Digital Roots of Primes and Twin Primes	13
		1.3.8 Digital Roots of Fibonacci Numbers	13
		1.3.9 Digital Roots of Lucas Numbers	14
		1.3.10 Digital Roots of Amicable Numbers	15
		1.3.11 Digital Roots of Smith Numbers	16
		1.3.12 Digital Roots of Kaprekar Numbers	17
	1.4	Digital Roots of Fractions	17
	1.5	Applications of Digital Roots	19
		1.5.1 Application of Digital Roots in Factorization	21
	1.6	Additive and Multiplicative Persistence	22
		1.6.1 Multiplicative Persistence	22
	1.7	Digital Roots in Bases Other than Decimal	26
	1.8	Further Investigations	27
	Refe	erences	28

2	Eleg	ance of	Squares, Cubes, and Higher Powers	29
	2.1	Some I	nteresting Facts About Square Numbers	30
	2.2	Digital	Roots of Perfect Squares	34
	2.3	The La	st Digits of Perfect Squares	35
	2.4	Detect	ing Perfect Squares	37
	2.5	Special	Square Numbers	41
		2.5.1	Palindromic Square Numbers	41
		2.5.2	Pandigital Square Numbers	41
		2.5.3	Exclusionary Squares	43
		2.5.4	Perfect Squares Terminating in Like Digits	44
		2.5.5	Perfect Squares with All Odd or Even Digits	45
		2.5.6	Squares as Concatenation of Two	
			Consecutive Integers	46
		2.5.7	Biperiod Squares	47
	2.6	Bhaska	ra Pairs	48
	2.7	Some I	nfinite Families of Squares	48
	2.8	Interes	ting Sets of Squares of Consecutive Numbers	50
	2.9	Some I	nteresting Curiosities and Observations	52
		2.9.1	Curious Numbers	53
		2.9.2	Curious Equations	54
		2.9.3	Beautiful Patterns	55
		2.9.4	Curious Relations	56
		2.9.5	Power of the Sum of Digits	56
		2.9.6	Set of Positive Integers Whose Sums in	
			Pairs Make Squares	58
		2.9.7	Cubes Containing Their Cube Roots	59
		2.9.8	Numbers Equal to the Sum of the Squares	
			of Their Contiguous Parts	60
		2.9.9	Difference of Two Squares	61
		2.9.10	Friendly Pairs	62
		2.9.11	Interesting Triplets and Quadruplets	63
	2.10	Square	s, Cubes, and Biquadrates Having Like Digits	63
		2.10.1	Cubes and Higher Powers	65
	2.11	Two In	teresting Puzzles	65
		2.11.1	Lockers Finally Remain Opened	66
		2.11.2	Three Men and Their Wives	66
	2.12	Shorter	uts in Computing Squares	67
	2.13	Square	s with Curious Reversal Properties	70
		2.13.1	Squares as a Product of Two Reversible Numbers	71
	2.14	Square	s with Two and Three Different Digits	72

		2.14.1 Squares with Iwo Different Digits	72
	0.15	2.14.2 Iridigital Squares	/2
	2.15	Automorphic Numbers	/4
		2.15.1 Some Interesting Observations about	
		Automorphic Numbers	75
		2.15.2 How to Compute Automorphic Numbers	75
		2.15.3 Automorphic Numbers in Different	
		Number Systems	77
		2.15.4 Irimorphic Numbers	78
	0.16	2.15.5 Iri-Automorphic Numbers	78
	2.16	Further Investigations	79
	Refei	rences	80
3	Tria	ngular Numbers	83
	3.1	Interesting Properties of Triangular Numbers	85
	3.2	Triangular Numbers in AP, GP, and HP	88
		3.2.1 Triangular Numbers in Arithmetic Progression	88
		3.2.2 Triangular Numbers in Geometric Progression	90
		3.2.3 Triangular Numbers and Harmonic Triples	90
	3.3	Triangular Numbers and Factorials	91
	3.4	Triangular Numbers as Product of Consecutive Numbers	91
	3.5	Some Interesting Observations on Triangular Numbers	92
	3.6	Pythagorean Triples and Triangular Numbers	98
	3.7	Golden Ratio, π , and Triangular Numbers	99
	3.8	Patterns of Infinite Families of Triangular Numbers	100
	3.9	The Sum and Difference of Triangular Numbers	102
		3.9.1 The Sum of Two Triangular Numbers	102
		3.9.2 The Difference Between Two Triangular	
		Numbers	103
		3.9.3 Curious Sums of Two Triangular Numbers	103
		3.9.4 Sum of Ten Consecutive Triangular Numbers	104
		3.9.5 Sum of Squares of Consecutive Triangular	
		Numbers	105
		3.9.6 Sum of Reciprocals of Triangular Numbers	105
	3.10	Special Triangular Numbers	106
		3.10.1 Palindromic Triangular Numbers	106
		3.10.2 Reversible Triangular Numbers	107
		3.10.3 Triangular Square Numbers	108
		3.10.4 Triangular Semiprimes	109

		3.10.5	Harshad Triangular Numbers	109
		3.10.6	Happy Triangular Numbers	110
		3.10.7	Kaprekar Triangular Numbers	111
		3.10.8	Highly Composite Triangular Numbers	111
		3.10.9	Abundant and Deficient Triangular Numbers	112
		3.10.10	0 Smith Triangular Numbers	114
		3.10.1	1 Concatenated Triangular Numbers	114
		3.10.12	2 Exclusionary Triangular Numbers	115
		3.10.13	3 Triangular Mersenne Numbers	115
	3.11	Ratio o	f Two Triangular Numbers	116
	3.12	Triangu	ılar Numbers Containing Odd	
		or Even	n Digits Only	118
	3.13	Triangu	ılar Numbers and Magic Squares	120
	3.14	Further	r Investigations	124
	Refe	rences		124
4	Smit	h Numl	bers	127
	4.1	Constr	uction of Smith Numbers	128
	4.2	Digital	Root Analysis of Smith Numbers	129
		4.2.1	Smith Numbers with Two Prime Factors	131
		4.2.2	Smith Numbers with Three Prime Factors	132
		4.2.3	Smith Numbers with Four Prime Factors	134
		4.2.4	Smith Numbers with Five Prime Factors	136
	4.3	Distrib	ution of Smith Numbers vs. Primes	138
	4.4	Highly	Decomposable Smith Numbers	140
	4.5	Consec	cutive Smith Numbers	141
	4.6	k-Smitl	h Numbers	143
	4.7	k ⁻¹ -Sm	ith Numbers	144
	4.8	Special	Smith Numbers	146
		4.8.1	Smith Semiprimes	146
		4.8.2	Palindromic Smith Numbers	146
		4.8.3	Reversible Smith Numbers	147
		4.8.4	Smith Sphenic Numbers	147
		4.8.5	Harshad Smith Numbers	147
		4.8.6	Happy Smith Numbers	148
		4.8.7	Fibonacci Smith Numbers	148
		4.8.8	Abundant and Deficient Smith Numbers	149
		4.8.9	Smith Square Numbers	150

		4.8.10	Smith Cubic Numbers	151
		4.8.11	Smith Triangular Numbers	151
		4.8.12	Repdigit Smith Numbers	152
	4.9	Hoax N	Jumbers	152
	4.10	Ruth-A	aron Numbers	153
		4.10.1	Ruth-Aaron triples	154
	4.11	Some In	nteresting Observations	154
	4.12	Further	Investigations	156
	Refe	rences		157
5	Ami	cable Nu	ımbers	159
	5.1	Ancient	t Rules for Finding Amicable Numbers	160
		5.1.1	Euler's Rule	161
	5.2	Distrib	ution of Amicable Pairs Below 10 ²⁰	161
	5.3	Even an	nd Odd Amicable Numbers	162
	5.4	Divisibi	ility of Amicable Numbers	163
		5.4.1	Divisibility of Amicable Numbers by 3	163
		5.4.2	Divisibility of Amicable Numbers by 4	164
		5.4.3	Divisibility of Amicable Numbers by 5	165
		5.4.4	Divisibility of Amicable Numbers by 6	165
		5.4.5	Divisibility of Amicable Numbers by 10	166
	5.5	Digital	Roots of Amicable Numbers	166
	5.6	Prime F	Factors of Amicable Numbers	168
	5.7	Some S	pecial Amicable Pairs	169
		5.7.1	Harshad Amicable Pairs	169
		5.7.2	Happy Amicable Pairs	169
		5.7.3	Smith Amicable Pairs	170
		5.7.4	Pandigital Amicable Pairs	171
		5.7.5	ESD Amicable Pairs	171
		5.7.6	Pairs of Amicable Numbers Having the	
			Same Pair Sum	173
	5.8	Some II	nteresting Observations	175
	5.9	Amicab	le Triplets and Multiplets	177
	5.10	Quasi-A	Amicable Pairs	178
	5.11	Augmen	nted Amicable Pairs	180
	5.12	Further	Investigations	181
	Refe	ences		182

6	Perf	ect, Mu	ltiply Perfect, and Sociable Numbers	185	
	6.1	A Brief	f Historical Background of Perfect Numbers	186	
	6.2	Merser	nne Primes and Perfect Numbers	187	
	6.3	Ending	zs of Perfect Numbers	190	
	6.4	Curiou	s Properties of Perfect Numbers	193	
	6.5	Multip	ly Perfect Numbers	196	
	6.6	Sociabl	le Numbers	200	
		6.6.1	Some Interesting Observations on Sociable		
			Numbers	204	
	6.7	Furthe	r Investigations	205	
	Refe	erences		206	
7	Har	opy Nun	ıbers	209	
	7.1	Interes	ting Facts	210	
	7.2	How N	Many Happy Numbers?	211	
	7.3	Consec	cutive Happy Numbers	212	
	7.4	Height	s of Happy Numbers	214	
	7.5	Observ	vations on the Distribution of Gaps	215	
	7.6	6 Cubic Happy Numbers			
	7.7	7 Happy Numbers in Other Bases			
	7.8	Special	Happy Numbers	218	
	7.9	9 Further Investigations			
	Refe	rences		222	
8	Fab	ulous Fi	bonacci Numbers, Lucas Numbers,		
	and	Golden	Ratio	223	
	8.1	Fibona	cci Numbers	223	
		8.1.1	The Rabbit Problem	223	
	8.2	Some I	Properties of Fibonacci Numbers	226	
		8.2.1	Patterns in the Fibonacci Sequence	232	
		8.2.2	The Formula for the Fibonacci Numbers	234	
		8.2.3	Fibonacci Numbers and the Pythagorean Triangle	236	
		8.2.4	On Some Curiosities Concerning		
			Fibonacci Numbers	236	
	8.3	Fibona	cci Primes	237	
		8.3.1	Divisibility of Fibonacci Numbers		
			and Prime Factors	238	
		8.3.2	Fibonacci Factorials	239	
		8.3.3	Fibonorial Primes	240	

8.4	Fibonad	cci Numbers and Their Amazing Applications	240
	8.4.1	Climbing the Stairs	241
	8.4.2	Binary Strings and Fibonacci Numbers	242
	8.4.3	Multiple Reflections	243
	8.4.4	Partitioning of Integers	244
	8.4.5	Equivalent Resistance of a Ladder of Resistors	245
8.5	Lucas N	Jumbers	246
8.6	Some P	roperties of Lucas Numbers	247
	8.6.1	Patterns in the Lucas Sequence	248
	8.6.2	The Formula for the Lucas Numbers	250
	8.6.3	Lucas Numbers and the Pythagorean Triangle	251
8.7	Inter-re	lational Properties of Fibonacci	
	and Luo	cas Numbers	252
8.8	Benford	l's Law	253
8.9	Golden	Ratio	256
	8.9.1	Geometrical Interpretation of Golden Ratio	258
8.10	Some P	roperties of the Golden Ratio	259
	8.10.1	Golden Ratio and the Four Fours Puzzle	260
	8.10.2	Golden Ratio as the Sum of an Infinite Series	261
	8.10.3	Golden Sequence	261
8.11	Miscon	ceptions About the Golden Ratio	262
8.12	Geome	trical Connections of the Golden Ratio	263
	8.12.1	Pentagon and Pentagram	264
	8.12.2	On Some Geometrical Curiosities	
		Concerning the Golden Ratio	265
8.13	Amazin	g Fallacy of a Missing Square	267
8.14	Further	Investigations	273
Refe	rences		273
On	Some Ma	arvellous Numbers of Kaprekar	275
9.1	Kapreka	ar Numbers	276
	9.1.1	Kaprekar Triples, Quadruples, and Quintuples	278
	9.1.2	Cyclic Properties of Kaprekar Numbers	280
	9.1.3	Some Interesting Observations	
		on Kaprekar Numbers	281
9.2	Special	Kaprekar Numbers	282
	9.2.1	Kaprekar Prime Numbers	282
	9.2.2	Repunit Kaprekar Numbers	283
	9.2.3	Repdigit Kaprekar Numbers	283

9

		9.2.4	Palindromic Kaprekar Numbers	284
		9.2.5	Harshad Kaprekar Numbers	285
		9.2.6	Biperiod Kaprekar Numbers	286
		9.2.7	Kaprekar Numbers as Concatenation of	
			Consecutive Integers	286
	9.3	Kaprel	kar Constant	287
		9.3.1	Five-Digit Numbers	291
		9.3.2	Higher-Digit Numbers	292
		9.3.3	Intra Differences	295
	9.4	Uniqu	e Numbers and Kaprekar Constants	297
	9.5	Kapre	kar's Constants in Other Bases	299
	9.6	Self-ni	umbers	300
		9.6.1	Junction Numbers	302
		9.6.2	Testing for Self-numbers	303
		9.6.3	Distribution of Self Numbers	304
	9.7	Specia	l Self-numbers	304
		9.7.1	Self-numbers of the Form 10 ⁿ	304
		9.7.2	Palindromic Self-numbers	305
		9.7.3	Square Self-numbers	306
		9.7.4	Repunit Self-numbers	307
		9.7.5	Repdigit Self-numbers	308
	9.8	Twin S	Self-numbers	308
	9.9	Self-Pi	rimes and Twin Self-Primes	309
	9.10	Gap B	etween Self-numbers	311
	9.11	Furthe	er Investigations	312
	Referen	nces		313
10	Amazi	ng Nun	nber 108	317
	10.1	What	Is So Interesting About 108?	318
		10.1.1	Interesting Expressions for 108	320
	10.2	Geom	etric Properties of 108	320
	10.3	Fibona	acci Sequence and 108	321
	10.4	Astron	nomical Coincidences with the Number 108	322
	10.5	Some	Interesting Observations	323
	Referen	nces		326

References

11	Repunit Numbers	327
	11.1 Palindromic Numbers and Repunits	327
	11.2 Repunits as the Difference of Two Squares	328
	11.3 Repunit Square Pairs	330
	11.4 Repunits from Cubes	331
	11.5 Kaprekar Numbers and Repunits	336
	11.6 Repunit Primes	337
	11.6.1 Divisibility and Factorization of Repunits	338
	11.7 Repunits, Repetends, and Cyclic Numbers	341
	11.8 Special Repunits	343
	11.8.1 Square-Free Repunits	343
	11.8.2 Harshad Repunits	344
	11.8.3 Repunit Semiprimes	344
	11.8.4 Abundant and Deficient Repunits	345
	11.8.5 Repunits and Smith Numbers	345
	11.9 Illegal Cancellation of Repunits	346
	11.10 Some Beautiful Number Patterns Involving Repunits	348
	11.11 Interesting Properties of Repunits	350
	11.12 Further Investigations	351
	References	351
12	Equal Droduct of Deversible Numbers (EDDN)	252
12	12.1. Properties of EPRNs	354
	12.2 Some Interesting Observations	355
	12.2 Some interesting Observations	357
	12.4 Distribution of FPRNs	360
	12.4 1 Digital Root-Wise Distribution of FPRNs	361
	12.5. FPRNs of Higher Degrees	362
	12.6 Further Investigations	364
	References	365
		505
13	Unlucky 13	367
	13.1 Why Is Number 13 Famous for Being Unlucky?	368
	13.2 Why Do People Tend to Believe in Such Superstitions?	368
	13.3 What Is the Effect of Such Superstitions?	370
	13.4 What Is So Interesting About 13?	371
	13.5 Some Interesting Facts	375
	13.6 Amazing Coincidences	376
	References	379

14	Rare N	umbers	381
	14.1	Introduction	381
	14.2	Some Properties of Rare Numbers	382
	14.3	Computation of Rare Numbers	384
		14.3.1 Perfect Square Test	385
		14.3.2 Computational Results	387
	14.4	Palindromic Rare Numbers	389
	14.5	Cubic Rare Numbers	391
	14.6	Conjectures About Non-palindromic Rare Numbers	391
	14.7	Interesting Observations	392
	14.8	Further Investigations	394
	Referen	ces	397
15	Beauty	of Number 153	399

15.1	Introduction	399
15.2	Curious Properties of Number 153	400
15.3	The Sum of the Cubes of the Digits	402
15.4	The Measure of the Fish	405
15.5	Some Observations on Number 153	407
Refere	ences	409

16	Fascina	ating Fact	orials	411
	16.1	How Big Is the Factorial?		413
		16.1.1	Number of Digits in a Factorial	414
		16.1.2	Number of Trailing Zeros in Factorials	414
	16.2	Factorion	n, Amicable Factorion, and Magic Factorion	415
		16.2.1	Factorions of Other Kinds	419
	16.3	Factorion	actorions in Other Bases	
	16.4	Amazing Shapes Using Factorial Digits		420
		16.4.1	Equilateral Triangle from Factorial Digits	422
		16.4.2	Rhombus from Factorial Digits	422
		16.4.3	Hexagon from Factorial Digits	424
		16.4.4	Octagon from Factorial Digits	425
		16.4.5	Isosceles Triangle from Factorial Digits	426
		16.4.6	Diamond from Factorial Digits	427
	16.5	Half, Do	uble, Multi, Hyper, and Super Factorials	428
		16.5.1	Half Factorial	428
		16.5.2	Double Factorial	429

		16.5.3 Multifactorial	430
		16.5.4 Hyperfactorial	431
		16.5.5 Superfactorial	431
	16.6	Subfactorials	432
	16.7	Prime Numbers and Factorials	433
		16.7.1 Prime Counting Function and Factorials	434
	16.8	Triangular Numbers and Factorials	435
	16.9	Arabian Night's Factorial	436
	16.10	Some Interesting Observations	437
	16.11	Further Investigations	441
	Referen	ices	441
17	The N	umber of the Beast 666	443
	17.1	Introduction	443
	17.2	Why Do People Tend to Believe in Such	
		Superstitions?	444
	17.3	What Is the Effect of Such Superstition?	444
	17.4	What Is So Fascinating About the Number 666?	445
	17.5	Magic Squares and 666	450
	17.6	Some Interesting Observations	453
	Referen	ices	453
18	Ulam 1	Numbers	455
	18.1	Background and Known Results	456
	18.2	Computation of Ulam Numbers	457
		18.2.1 Density of Ulam Sequence	459
		18.2.2 Non-Ulam Numbers	459
		18.2.3 Odd and Even Ulam Numbers	460
		18.2.4 Ulam Prime Numbers	462
		18.2.5 Concatenated Sequence of Ulam Numbers	462
	18.3	Observations on the Distribution of Gaps	463
	18.4	Consecutive Ulam Numbers in Arithmetic	
		Progression	466
	18.5	Interesting Properties and Observations	466
	18.6	Generalized Ulam Numbers	468
		18.6.1 Further Generalization of Ulam Numbers	470
	18.7	Further Investigations	471
	Referen	ices	471

19	Mystery of π		473	
	19.1 Amazing History of π		474	
		19.1.1	Nature of π	477
		19.1.2	Ramanujan and π	478
	19.2	2 Finding the Value of π		480
		19.2.1	Archimedes Method for Determining the	
			Value of π	480
		19.2.2	π from Probability	480
	19.3	π Facts, C	Coincidences, and Peculiarities	481
	19.4	π Digit Curiosities		483
	19.5	Primes in the Decimal Expansion of π		487
	19.6	π Factorial and Piorial Primes		488
	19.7	Amazing	nazing Shapes Using π Digits	
		19.7.1	Equilateral Triangle Using π Digits	491
		19.7.2	Rhombus Using π Digits	492
		19.7.3	Hexagon Using π Digits	493
		19.7.4	Octagon Using π Digits	494
		19.7.5	Isosceles Triangle Using π Digits	495
	19.8	Further Investigations		495
	References		496	
20	Caba	nd Vamain	o Numbers	/00
20	CaD al	Cab Numbers		499
	20.1	Cap Numbers		400
	20.2	List of Cab Numbers		501
	20.5	Vampire Numbers		505
	20.4	Valipite Numbers		507
	20.)	20.5.1	Preudovampire Numbers	507
		20.9.1 20.5.2	Palindromic Vampire Numbers	507
		20.5.2	Square Vampire Numbers	508
		20.9.5	Prime Vampire Numbers	511
	Refere	eferences		
	Turrerer	lices		912
21	Digital Invariants and Narcissistic Numbers		513	
	21.1	Narcissistic Numbers		513
	21.2	Perfect Digital Invariants		517
	21.3	Recurring Digital Invariants		517
	21.4	Numbers Equals the Sum of the Digits Raised to		
		Consecut	rive Powers	520

cxix
C

	21.5 Munchhausen, Friedman, and Printer Error Number		521	
		21.5.1	Friedman Numbers	521
		21.5.2	Printer Error Numbers	524
	21.6	Further I	nvestigations	525
	Refere	nces	0	526
22	On Some Special Numbers		527	
	22.1	2.1 Autobiographical Numbers		527
		22.1.1	Self-Descriptive Numbers	528
		22.1.2	Interesting Observations	531
		22.1.3	Generalization of Autobiographical	
			Numbers	532
	22.2	Harshad	Numbers	533
		22.2.1	Consecutive Harshad Numbers	534
		22.2.2	Multiple Harshad Numbers	535
		22.2.3	Distribution of Harshad Numbers	536
	22.3	Parasite 1	Numbers	537
		22.3.1	Dyson Numbers	537
		22.3.2	Simple Methods to Obtain True Parasite	
			Numbers	539
		22.3.3	Computation of Parasite Numbers	543
		22.3.4	Reverse Parasite Numbers	546
		22.3.5	Parasite Numbers in Other Bases	548
		22.3.6	Generalization of Parasite Numbers	549
	22.4	22.4 Polydivisible Numbers		551
		22.4.1	Computation of Polydivisible Numbers	551
		22.4.2	Polydivisible Numbers for Bases	
			Other Than 10	555
	22.5	Ramanuj	an Numbers	556
		22.5.1	Ramanujan Triples and Quadruples	557
		22.5.2	Taxicab Numbers	558
		22.5.3	Cabtaxi Numbers	560
		22.5.4	Solutions Involving Higher Powers	561
		22.5.5	Some Interesting Observations	561
	22.6	Further I	nvestigations	563
	Refere	nces	~	564

3 Numl	Number Curiosities		567
23.1	Lucky M	Lucky Mistakes	
	23.1.1	Anomalous Cancellation	567
	23.1.2	Lucky Concatenation	575
	23.1.3	Lucky Fractions Involving Repunits	575
	23.1.4	Lucky Fractions Involving Sum of Powers	576
	23.1.5	Lucky Sum of Fractions	577
	23.1.6	Lucky Product of Fraction Sums	578
	23.1.7	Some Other Cases of Lucky Mistakes	579
23.2	Pascal's T	riangle	582
	23.2.1	Patterns and Properties	583
	23.2.2	Fibonacci Numbers in Pascal's Triangle	588
	23.2.3	Perfect Numbers in Pascal's Triangle	588
	23.2.4	Pi and e from Pascal's Triangle	590
	23.2.5	Application of Pascal's Triangle	591
23.3	Pythagor	ean Triples	593
	23.3.1	Some Pythagorean Triplet Curiosities	594
	23.3.2	Pythagorean Triangles with	
		Consecutive Legs	595
	23.3.3	Pythagorean Triangles with Longer Leg	
		and Hypotenuse Consecutive	596
	23.3.4	Pythagorean Triangles with Smaller	
		Leg A Cube	600
	23.3.5	Fermat's Problem	600
	23.3.6	Pythagorean Triples Using Fibonacci	
		Numbers	600
	23.3.7	Pythagorean Triples and Triangular	
		Numbers	601
23.4	Further I	nvestigations	602
Refere	ences		603

About the Author

Shyam Sunder Gupta is the former Principal Chief Engineer, Indian Railways, Government of India. He is an Indian Railway Service of Engineers (IRSE) officer of batch 1981. He has more than 35 years of experience in various managerial, administrative, and technical positions, such as Principal Chief Engineer, Executive Director, Divisional Railway Manager, and Director/RDSO on Indian Railways. He is an Indian recreational mathematician who is actively involved in popularising mathematics at the national and international levels. His website on number recreations, https://www.shyamsundergupta.com, is very popular with visitors from more than 150 countries. His major discoveries are Equal Product of Reversible Numbers (EPRNs), rare numbers, unique numbers, palindromic pseudoprimes, fifth-order prime polynomial, 17350-digit memorable prime, etc.

His interest in number recreations dates back to 1978, when his first paper, *Miracles of Last Digit* was published. Since then, his contributions have been published in *Science Reporter*, *Science Today*, *Math Education*, *At Right Angles*, *The American Mathematical Monthly*, *The Mathematical Gazette*, *Mathematical*