The BeagleY-Al Handbook

Slektor books

A Practical Guide to AI, Python, and Hardware Projects

Dogan Ibrahim Ahmet Ibrahim

The BeagleY-AI Handbook A Practical Guide to AI, Python, and Hardware Projects

Dr. Dogan Ibrahim Ahmet Ibrahim BSc, MSc

 This is an Elektor Publication. Elektor is the media brand of Elektor International Media B.V.
 PO Box 11, NL-6114-ZG Susteren, The Netherlands
 Phone: +31 46 4389444

• All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication, without the written permission of the copyright holder except in accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to reproduce any part of the publication should be addressed to the publishers.

Declaration

The author and publisher have made every effort to ensure the accuracy of the information contained in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from negligence, accident, or any other cause.

ISBN 978-3-89576-656-5 Print ISBN 978-3-89576-657-2 eBook

 © Copyright 2025 Elektor International Media www.elektor.com
 Editor: Glaucileine Vieira
 Prepress Production: D-Vision, Julian van den Berg
 Printers: Ipskamp, Enschede, The Netherlands

Elektor is the world's leading source of essential technical information and electronics products for pro engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in several languages - relating to electronics design and DIY electronics. **www.elektormagazine.com**

Contents

Chapt	ter 1 • Introduction
1.1	1 The BeagleY-AI Single Board Computer (SBC)
1.2	2 BeagleY-AI Features
1.3	3 BeagleY-AI Board Component Layout
1.4	4 Comparison with the Raspberry Pi 514
1.5	5 Pros and Cons
Chapt	ter 2 • Installing the Operating System17
2.1	1 Overview
2.2	2 The Installation of the Operating System
2.3	3 Connection to a Wi-Fi
2.4	4 Accessing Your BeagleY-AI Console from Your PC – The PuTTY Program
2.4	4.1 Configuring PuTTY
2.5	5 BeagleY-AI CPU Temperature25
Chapt	ter 3 • Using the Console Commands
3.1	1 Overview
3.2	2 The Command Prompt
3.3	3 Useful Console Commands
3.3	3.1 System and user information
3.3	3.2 Some useful commands
3.3	3.3 Resource monitoring on BeagleY-AI
3.3	3.4 Shutting Down
3.3	3.5 Networking
3.3	3.6 System information and other useful commands
Chapt	ter 4 • GUI Desktop Applications
4.1	1 Overview
4.2	2 The GUI Desktop
4.2	2.1 Applications Menu
Chapt	ter 5 • Using a Text Editor in Console Mode57
5.1	1 Overview
5.2	2 The nano Text Editor

	5.3 The vi Text Editor	.62
	5.4 Using Thonny	.65
	5.4.1 The Thonny IDE	.65
	5.5 The gedit Text Editor	.66
	5.5.1 Using gedit	. 66
Ch	apter 6 • Creating and Running a Python Program	. 68
	6.1 Overview	. 68
	6.2 Method 1 – Interactively from Command Prompt in Console Mode	. 68
	6.3 Method 2 – Create a Python File in Console Mode	.68
	6.4 Method 3 – Create a Python File in GUI Desktop Mode	. 69
	6.5 Which Method?	. 70
Ch	apter 7 • Python Programming and Simple Programs	.71
	7.1 Overview	.71
	7.2 Variable Names	.71
	7.3 Reserved Words	.71
	7.4 Comments	. 72
	7.5 Line Continuation	. 72
	7.6 Blank Lines	. 72
	7.7 More Than One statement on a Line	. 72
	7.8 Indentation	. 73
	7.9 Python Data Types	. 73
	7.10 Numbers	. 73
	7.11 Strings	. 77
	7.11.1 String functions	. 78
	7.11.2 Escape sequences	. 79
	7.12 Print Statement	. 80
	7.13 List Variables	. 80
	7.13.1 List functions	.81
	7.14 Tuple Variables	. 82
	7.15 Dictionary Variables	. 83
	7.15.1 Dictionary functions	. 83
	7.16 Keyboard Input	. 83

	7.17 Comparison Operators	84
	7.18 Logical Operators.	84
	7.19 Assignment Operators	84
	7.20 Control of Flow	85
	7.20.1 The if, ifelse, and elif	85
	7.20.2 The for statement	86
	7.20.3 The while statement	87
	7.20.4 The continue statement	88
	7.20.5 The break statement	88
	7.20.6 The pass statement	89
	7.21 Example 1 – 4 Band Resistor Color Code Identifier	89
	7.22 Example 2 – Series or Parallel Resistors	91
	7.23 Example 3 - Resistive Potential Divider	93
	7.24 Trigonometric Functions	96
	7.25 User Defined Functions	96
	7.26 Examples	00
	7.27 Recursive Functions	11
	7.28 Exceptions	11
	7.29 try/final Exceptions1	14
	7.30 Date and Time	15
	7.31 Creating Your Own Modules	16
Ch	apter 8 • BeagleY-AI LED Projects1	20
	8.1 Overview	20
	8.2 BeagleY-AI GPIO pin Definitions1	20
	8.3 Project 1 – Flashing an LED1	21
	8.4 Project 2 – Alternately Flashing LEDs	25
	8.5 Project 3 – Binary Counting with 8 LEDs	27
	8.6 Project 4 – Christmas Lights (Random Flashing 8 LEDs)1	.33
	8.7 Project 5 – Chasing LEDs	35
	8.8 Project 6 – Rotating LEDs with Pushbutton Switch	37
	8.9 Project 7 – Morse Code Exerciser with LED or Buzzer	40
	8.10 Project 8 – Electronic Dice	.45

	8.11 Project 9 – Varying the LED Flashing Rate
Ch	apter 9 • Using an I ² C LCD152
	9.1 Overview
	9.2 The I ² C Bus
	9.3 I ² C Pins of BeagleY-AI
	9.4 Project 1 – Using an I ² C LCD – Seconds Counter
	9.5 Project 2 – Using an I ² C LCD – Display Time
	9.6 Project 3 – Using an I ² C LCD – Display the IP address of BeagleY-AI 160
	9.7 Project 4 – Reaction Timer – Output to Screen
	9.8 Project 5 – Reaction Timer – Output to LCD
	9.9 Project 6 – Automatic Dusk Lights
	9.10 Project 7 – Ultrasonic Distance Measurement
	9.11 Project 8 – Car Parking Sensors
Ch	apter 10 • Plotting Graphs With Python and BeagleY-AI
	10.1 Overview
	10.2 The Matplotlib Graph Plotting Library
	10.3 Project 1 – RC Transient Circuit Analysis - Charging
	10.4 Project 2 – RC Transient Circuit Analysis - Discharging
	10.5 Transient RL Circuits
	10.6 Project 3 – RCL Transient Circuit Analysis
	10.7 Project 4 – Temperature, Pressure, and Humidity Measurement – Display on the Screen
	10.8 Project 5 – Temperature, Pressure, and Humidity Measurement –
	Plotting the Data
Ch	napter 11 • Using a 4 x 4 Keypad
	11.1 Overview
	11.2 Project 1 – Using a 4x4 Keypad
	11.3 Project 2 – Security Lock with Keypad and LCD
Ch	hapter 12 • I ² C, SPI Bus, and PWM Projects $\dots \dots \dots$
	12.1 Overview
	12.2 Project 1 - I ² C Port Expander
	12.3 Project 2 - SPI ADC - Voltmeter
	12.3.1 The SPI bus

	12.4 Project 3 – Voltmeter – Output to LCD
	12.5 Project 4 – Analog Temperature Sensor Thermometer – Output to the Screen230
	12.6 Project 5 – Analog Temperature Sensor Thermometer – Output on LCD 232
	12.7 Using a Digital to Analog Converter (DAC)
	12.7.1 The MCP4921 DAC
	12.7.2 Project 6 - Generating square wave signal with any peak voltage up to $+3.3$ V 236
	12.7.3 Project 7 - Generating sawtooth wave signal
	12.7.4 Project 8 - Generating triangle wave signal
	12.7.5 Project 9 - Generating arbitrary wave signal
	12.7.6 Project 10 - Generating sine wave signal
	12.7.7 Project 11 – SPI Port Expander
	12.8 Pulse Width Modulation (PWM
	12.8.1 PWM channels of BeagleY-AI258
	12.8.2 Project 12 – Generate 1000Hz PWM waveform with 50% duty cycle 258
	12.8.3 Project 13 – Changing the brightness of an LED
	12.8.4 Project 14 – Mosquito repeller
Ch	apter 13 • Communication Over the Wi-Fi
	13.1 Overview
	13.2 UDP and TCP
	13.2.1 UDP communication
	13.2.2 TCP communication
	13.3 Project 1 – Sending a Text Message to a Smartphone Using TCP
	13.4 Project 2 – Two-way Communication with the Smartphone Using TCP
	13.5 Project 3 – Communicating with a PC Using TCP
	13.6 Project 4 – Controlling an LED Connected to BeagleY-AI from a Smartphone Using TCP
	13.7 Project 5 – Sending a Text Message to a Smartphone Using UDP
	13.8 Project 6 – Controlling an LED Connected to BeagleY-AI from a Smartphone Using UDP
	13.9 Communicating with the Raspberry Pi Pico W over Wi-Fi
	13.9.1 Project 7 – BeagleY-AI and Raspberry Pi Pico W communication –
	controlling a relay over Wi-Fi

13.10 Project 8 - Storing Ambient Temperature and Atmospheric Pressure Data on the Cloud
13.11 Using Flask to Create a Web Server to Control BeagleY-AI GPIO Ports from the Internet
13.12 Project 9 – Web Server - Controlling an LED Connected to BeagleY-AI Using the Flask
Chapter 14 • Using Serial Communication
14.1 Overview
14.2 USB – TTL Serial Conversion Modules
14.3 BeagleY-AI and PC Communication Over Serial Port – Testing the Hardware and Software Configurations
14.4 Project 1 – BeagleY-AI – PC Two-Way Communication Over Serial Port – Using Python
14.5 Reading Geographical Coordinates – Using a GPS
14.5.1 Project 2 – Displaying geographical coordinates on the monitor $\ldots \ldots 312$
14.5.2 Project 3 – Displaying geographical coordinates on LCD
14.5.3 Project 4 – BeagleY-AI – Raspberry Pi 4 communication over a serial link \ldots .321
Chapter 15 • Real Time Clock (RTC)325
15.1 Overview
15.2 The Hardware
15.3 Setting the RTC Time
Chapter 16 • Artificial Intelligence (AI) with the BeagleY-AI
16.1 Overview
16.2 BeagleY-AI Detailed Hardware Specifications
16.3 Project 1 - BeagleY-AI TensorFlow Lite Object Detection
16.4 BeagleY-AI ChatGPT
16.5 BeagleY-AI Smart Assistant
16.6 BeagleY-AI Robotics
16.7 BeagleY-AI Machine Learning
Chapter 17 • Useful Websites
Index

Chapter 1 • Introduction

1.1 The BeagleY-AI Single Board Computer (SBC)

BeagleY-AI is a low-cost, open-source, and powerful 64-bit quad-core single-board computer, equipped with a GPU, DSP, and vision/deep learning AI accelerators, designed for developers and makers. Developed by BeagleBoard.org Foundation, it is designed to meet the needs of both professional developers and educational environments. It is affordable, easy to use, and eliminating barriers to innovation. Developers can explore indepth lessons or push practical applications to their limits without restrictions.

For more information about BeagleY-AI, including detailed specifications, documentation, and resources for getting started, visit the official website at

beagleboard.org

The board is controlled by the Debian Linux operating system, which includes a builtin development environment. This enables the seamless running of AI applications on a dedicated 4 TOPS co-processor, while simultaneously handling real-time I/O tasks with an 800 MHz microcontroller.

BeagleY-AI is based on the Texas Instruments AM67A Arm-based vision processor. It features a quad-core 64-bit Arm®Cortex®-A53 CPU subsystem at 1.4 GHz, dual general-purpose C7x DSP with Matrix Multiply Accelerator (MMA) capable of 4 TOPs each, Arm Cortex-R5 subsystem for low-latency I/O and control, a 50 GFLOP GPU, video and vision accelerators, and other specialized processing capabilities.

In this chapter, you will learn the basic features and hardware details of the BeagleY-AI board. A comparison is made with the popular Raspberry Pi 5 computer which has very similar board layout and features. In the remaining chapters of the book, you will learn how to install the operating system, how to access the BeagleY-AI board remotely, how to create Python programs to run on the board, and how to create software-only and hardware-based projects using the peripheral ports such as GPIO, SPI, UART, I²C, and many others.

1.2 BeagleY-AI Features

The board has the following features:

Feature	Description
Processor	Texas Instruments AM67A, Quad 64-bit Arm® Cortex®-A53 @1.4 GHz, multiple cores including Arm/GPU processors, DSP, and vision/deep learning accelerators
RAM	4GB LPDDR4
Wi-Fi	Beagleboard BM3301, 802.11ax
Bluetooth	Bluetooth Low Energy 5.4 (BLE)

USB Ports	4x USB 3.0 ports (5Gbps shared) + USB 2.0 Type-C Port with Device-mode capability
Ethernet	Gigabit Ethernet, with PoE+ support (requires separate PoE HAT)
Camera/Display	2 x 4-lane MIPI camera connector (one connector muxed with DSI capability)
Display Output	1 x HDMI display, 1 x OLDI display, 1 x DSI MIPI Display
Real-time Clock (RTC)	Supports external coin-cell battery for power failure time retention
Debug UART	1 x 3-pin debug UART
Power	5 V/3 A DC power via USB-C
Power Button	On/Off included
PCIe Interface	$\ensuremath{PCI-Express}\xspace^{\ensuremath{\mathbb{S}}\xspace}$ Gen3 x 1 interface for fast peripherals (requires separate M.2 HAT or other adapter)
Expansion Connector	40-pin header
Fan connector	1 x 4-pin fan connector, supports PWM control and fan speed measurement
Storage	microSD card slot with UHS-1 support
Tag Connect	1 x JTAG, 1 x External PMIC programming port

Table 1.1: BeagleY-AI features

The AM67A scalable processor family is based on the evolutionary Jacinto[™] 7 architecture, targeted at Smart Vision Camera and General Compute applications. The AM67A processor family is designed for a broad set of cost-sensitive, high-performance computing applications in factory automation, building automation, human-machine interface, security systems, test and measurement, robotics, industrial PC, and other markets.

For more information about the AM67A processor, visit:

https://www.ti.com/product/AM67A

1.3 BeagleY-AI Board Component Layout

Front view

Figure 1.1 shows the components at the front of the board. Starting from the top-righthand corner of the board and moving to the left we can see the following components:

- 4-pin External fan connector
- AM67A processor
- 40-pin expansion header
- 4 GB LPDDR4 memory
- BM3301 WiFi (802.1ax) + BLE (v5.4)
- BM3301 antenna
- PCIe port (Gen 3)
- Power On/Off button

- Bicolour LED
- Power management IC
- USB-C power and USB-2 port
- microHDMI monitor port
- 3-pin UART debug port
- 4-lane MIPI CSI connector
- 4-lane MIPI DSI/CSI connector
- Power over Ethernet port (PoE)
- Gigabit Ethernet port
- 2 x USB-3 (5 Gbps) ports
- 2 x USB-3 (5 Gbps) ports

Figure 1.1 BeagleY-AI front view.

Back view

Figure 1.2 shows the components at the back of the board, which include the following:

- JTAG SoC debug connector
- JTAG PMIC debug connector
- OLDI display connector
- microSD card adapter

Figure 1.2 BeagleY-AI back view.

1.4 Comparison with the Raspberry Pi 5

Figure 1.3 shows the front views of the BeagleY-AI board and the Raspberry Pi 5 board. The two boards look identical in size and in most component layouts. Table 1.1 shows a comparison of the BeagleY-AI and the Raspberry Pi 5.

BeagleY-AI

Raspberry Pi 5

Figure 1.3	BeagleY-AI	and the	Raspberry	Pi 5.
------------	------------	---------	-----------	-------

Feature	BeagleY-AI	Raspberry Pi 5
СРИ	AM67A, Quad-core 64-bit, Cortex-A53 1.4GHz	BCM2712, Quad-core 64-bit Cortex-A76 2.4GHz
Memory	4GB	2GB, 4GB, 8GB
R5 core	YES	None
microHDMI	1	2
USB-3 ports (5Gbps)	4	2
USB-2 port (480Mbps)	1	2

Display support	3x (1x HDMI, 1x OLDI, 1x DSI)	2x HDMI
Graphics processing unit	IMG-BXS-4-64	Videocore VII
Dual C7x DSP with Matrix multiply accumulator (4 TOPS), NPU	1	
CSI/DSI ports	1	0
Video encode/decode	1	None
CSI port	2	2
Fan connector	1	1
UART connector	1	1
PCIe port	1	1
microSD card slot	1	1
40-pin GPIO header	1	1
Ethernet port (Gigabit)	1	1
Power button	1	1
WiFi + BLE	1	1

Table 1.2 Comparison of the BeagleY-AI and Raspberry Pi 5

1.5 Pros and Cons

Pros:

- **AI Performance**: The dual C7x DSPs and MMAs deliver up to 4 TOPS, making it ideal for deep learning tasks.
- **Connectivity**: With USB 3.0, Gigabit Ethernet, Wi-Fi 6, and Bluetooth 5.4, the board is well-equipped for various applications.
- **Expandability**: The PCIe Gen3 x1 connector and 40-pin GPIO header offer significant customization options.
- **Open-Source Hardware**: Users can access and modify all hardware design files, fostering innovation and adaptation.
- **Industrial-Grade Components**: The use of Texas Instruments hardware ensures reliability and long-term support, making it suitable for both development and deployment.

Cons:

• **CPU Performance**: The 1.4 GHz quad-core Cortex-A53 is underwhelming compared to newer SBCs.

- **RAM Limitations**: 4 GB of LPDDR4 RAM may not be sufficient for all applications.
- **Software Gaps**: Some AI features and tools are not fully supported, limiting the board's out-of-the-box capabilities.
- Heat Management: The board runs warm under load, and while it's fanless, some users may prefer active cooling.

Chapter 2 • Installing the Operating System

2.1 Overview

It is necessary to install a compatible operating system on a microSD card before the BeagleY-AI SBC board can be used. In this chapter, you will learn how to install the BeagleY-AI Debian operating system on a blank microSD card. Details on how to access the board remotely are also given in this chapter.

2.2 The Installation of the Operating System

Before installing the operating system, make sure you have the following:

- 5 V 3 A power supply
- 32 GB microSD card
- Boot image (operating system software image)

Using the bb-imager

You can use the bb-imager to install the operating system on the SD card. The steps are as follows::

• Download and install the bb-imager for your operating system from the following link:

https://beagley-ai.beagleboard.io/bb-imager/

• Click to start the bb-imager. You should see a screen similar to the one shown in Figure 2.1.

Figure 2.1 bb-imager screen.

• Select **BeagleY-AI** as the device (Figure 2.2)

Figure 2.2 Enter the details.

• Choose the operating system as **BeagleY-AI Debian XFCE (Recommended)** as shown in Figure 2.3.

Operating System X BeagleY-AI Debian XFCE (Recommended) Debian graphical user interface (XFCE) image for BeagleY-AI based on TI AM67A (J7228) processor (Recommended) Released: 2024-06-12 Online - 1.4 GB download The Erase Erase	
BeagleY-Al Debian XFCE (Recommended) Debian graphical user interface (XFCE) image for BeagleY-Al based on TI AM67A (J722S) processor (Recommended) Released: 2024-06-12 Online - 1.4 GB download	l
Debian graphical user interface (XFCE) image for BeagleY-AI based on TI AM67A (J722S) processor (Recommended) Released: 2024-06-12 Online - 1.4 GB download	ł.
Released: 2024-06-12 Online - 1.4 GB download	
Online - 1.4 GB download	
古 Erase	
Format card as FAT32	
Use custom Select a custom .img from your computer	
Use custom Select a custom .img from your computer	

Figure 2.3 Choose the operating system.

- Choose your SD card storage and click **NEXT**
- Click **EDIT SETTINGS** and enter your chosen username, password, Wi-Fi SSID, Wi-Fi password, and time zone (Figure 2.4)

W	*		OS Customization	\otimes \wedge \wedge \times
		GENERAL	SERVICES	OPTIONS
		Set hostname: be	aglelocal	
	~	Set username and p Username: beag	password le	
	Password:			
		SSID:	mywifi	
		Password:	ord Hidden SSID	
		Wireless LAN coun	try: IN •	
		Time zone:	Asia/Kolkata 🗸	_
		Keyboard layout:	us •	_
			SAVE	

Figure 2.4 Edit the settings.

- Click **SERVICES** and make sure that the **Enable SSH** and **Use password authentication** are checked.
- Click SAVE, and then click YES on the screen Would you like to apply OS customization settings?
- Click **YES** to confirm that all existing data will be deleted on the SD card and to continue writing the operating system image on the SD card. Wait until the writing and the verification processes are complete.
- Remove the microSD card adapter from the PC and insert the microSD card into the slot on your BeagleY-AI as in Figure 2.5.
- Connect a monitor to the micro HDMI port of your BeagleY-AI board.
- Connect a keyboard and mouse to the USB-3 ports.
- Connect 5 V 3 A power supply to the USB-C power port of the BeagleY-AI.
- Figure 2.11 shows a typical setup with a monitor.

Figure 2.5 A typical setup (BeagleBoard.org).

• After a while you should see the green LED heartbeat and the GUI desktop displayed as shown in Figure 2.6. Please note, it may take several minutes.

2.3 Connection to a Wi-Fi

Follow these steps to connect to a Wi-Fi network:

- Click the wireless icon at the top right-hand side of the screen.
- A list of Wi-Fi networks will be displayed.
- Click **Connect** to connect to your network and enter your password.
- Click **Submit** (Figure 2.6).

((†))		i	wgtk		^ _ O X
phy0					Close
wla	an0				Known networks
10:ca	a:bf:d9:e9	9:b2 Ena	bled:		Scan
		Μ	lode: Stati	on 🔻	Provision
<u>ج</u> ا	DIRECT-1	F-HP Lase	er 150nw	PSK	Connect
<u></u>	BTHub5	(•)) Wirele	ss network	^ _ D	Connect
<u>ج</u> ا	EE WIFI	SSID: assword:	BTHub5-6SP	'N	Connect
? \	World M		Submit	Cance	Connect
<u></u>	BTB-KNC	GPZ		PSK	Connect
$\widehat{}$	The Hota	I		PSK	Connect
() ()	ASUS_XD	5		PSK	Connect
ŝ	missybel	ls		PSK	Connect
() ()	SKY52942	2		PSK	Connect
\bigcirc	Totoro			PSK	Connect

Figure 2.6 Click Submit.

• After a short wait, your BeagleY-AI will connect to your Wi-Fi. Click **Close** to exit the window. You should see the Wi-Fi icon change color to green, indicating a successful connection.

You can display the IP address of your connection as follows:

- Click Applications, then Terminal Emulator.
- In the terminal, enter the following command:

sudo ifconfig

• You should see your IP address displayed under wlan0. In the author's setup, the IP address was 192.168.1.127 (see Figure 2.7).

```
usb0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
       ether 1c:ba:8c:a2:ed:6b txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
usb1: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
       ether 1c:ba:8c:a2:ed:6d txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
vlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.1.127 netmask 255.255.255.0 broadcast 192.168.1.255
       inet6 2a00:23c7:8694:3301:12ca:bfff:fed9:e9b2 prefixlen 64 scopei
qlobal>
       inet6 fe80::12ca:bfff:fed9:e9b2 prefixlen 64 scopeid 0x20<link>
       ether 10:ca:bf:d9:e9:b2 txqueuelen 1000 (Ethernet)
       RX packets 398 bytes 54423 (53.1 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 86 bytes 14944 (14.5 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Figure 2.7 Command ifconfig (part of the display is shown).

2.4 Accessing Your BeagleY-AI Console from Your PC – The PuTTY Program

In many applications, you may want to access your BeagleY-AI from your PC over the Wi-Fi link. This can be done using a terminal emulator program on your PC. The author uses the popular PuTTY for this purpose. You can download PuTTY from the following website:

https://www.putty.org

• PuTTY is a standalone program and there is no need to install it. Simply doubleclick to run it. You should see the Putty startup screen as shown in Figure 2.8.

Logging Specify the destination you want to connect to Herminal Host Name (or IP address) Port Bell 22 Features Connection type: Window Appearance Behaviour SSH Translation Selection Colours Connection Colours Default Settings Proxy KKTC RPI3 RPI3 RPI5 RPI5 RPI5 RPI5 RPI5 RPI5 RPI5-KKTC Only on clean exit	E Session	Basic options for y	our PuTTY sea	sion
Proxy KKTC SSH KKTC2 Serial RP3 Telnet RP4 RP5-KKTC Delete Close window on exit Always Always Never Only on clean exit	Logging Terminal Keyboard Bell Features Window Appearance Behaviour Translation Selection Conection Data	Specify the destination you wa Host Name (or IP address) Connection type: SSH Serial O Load, save or delete a stored s Saved Sessions	nt to connect to Other: Telne session	Port 22 t ~
	 Proxy SSH Serial Telnet Rlogin SUPDUP 	KKTC KKTC2 RPI3 RPI4 RPI5 RPI5-KKTC Close window on exit Always Never	• Only on cle	Save Delete

Figure 2.8 Putty startup screen.

- Make sure that the Connection type is SSH and enter the IP address of your BeagleY-AI. You can obtain the IP address by entering the command **ifconfig** as shown earlier.
- Click **Open** in PuTTY after entering the IP address and selecting **SSH.**
- The first time you run PuTTY, you may get a security message. Click **Yes** to accept this security alert.
- You will then be prompted to enter the BeagleY-AI username and password (these were entered in the **sysconf.txt** file during installation of the operating system). You can now enter all Console-based commands through your PC. Figure 2.9 shows the PuTTY screen with default screen settings.

```
🚰 beagle@BeagleBone: ~
                                                                         X
  login as: beagle
  Pre-authentication banner message from server:
  Debian GNU/Linux 12
  BeagleBoard.org Debian Bookworm Xfce Image 2024-09-04
  Support: https://bbb.io/debian
  default username is [beagle]
  End of banner message from server
  beagle@192.168.1.127's password:
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue Oct 8 22:43:42 2024 from 192.168.1.131
beagle@BeagleBone:~$
```

Figure 2.9 PuTTY screen with default settings.

• To change your password, enter the following command:

passwd

• To restart the BeagleY-AI enter the following command:

sudo reboot

• To shut down the BeagleY-AI enter the following command. Never shut down by pulling the power cable, as this may result in the corruption or loss of files:

sudo shutdown -h now

2.4.1 Configuring PuTTY

By default, the **PuTTY** screen background is black with white foreground characters. The author prefers to have a white background with black foreground characters, and the font size set to 12 points in bold. It is recommended that you save your settings so that they are available the next time you use PuTTY. Follow these steps to configure PuTTY with the desired settings:

- Restart PuTTY.
- Select **SSH** and enter the Raspberry Pi IP address.
- Click **Colours** under **Window**.
- Set the **Default Foreground** and **Default Bold Foreground** colors to black (Red:0, Green:0, Blue:0).

- Set the **Default Background** and **Default Bold Background** to white (Red:255, Green:255, Blue:255).
- Set the **Cursor Text** and **Cursor Colour** to black (Red:0, Green:0, Blue:0).
- Select **Appearance** under **Window** and click **Change** in **Font settings**. Set the font to **Bold 12**.
- Select **Session**, give the session a name (e.g., MyZero), and click **Save**.
- Click **Open** to open the **PuTTY** session with the saved configuration.
- Next time you re-start the **PuTTY**, select the saved session and click **Load**, followed by **Open**, to start a session with the saved configuration.

Figure 2.10 shows the PuTTY screen with black bold characters on a white background. In this example, the PuTTY session was named as beagle.

```
X
🛃 login as: beagle
 Pre-authentication banner message from server:
| Debian GNU/Linux 12
| BeagleBoard.org Debian Bookworm Xfce Image 2024-09-04
| Support: https://bbb.io/debian
| default username is [beagle]
🚰 End of banner message from server
beagle@192.168.1.127's password:
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Oct 9 18:18:16 2024 from 192.168.1.131
beagle@BeagleBone:~$
```

Figure 2.10 Putty screen with white background and black characters.

2.5 BeagleY-AI CPU Temperature

Without a heatsink, the Beagle-Y-AI typically heats up to about 58 - 60°C when idle. With 4 cores running in a complex operation, the CPU temperature can reach nearly 70°C. It is recommended to use a heatsink or an active cooler (such as the Raspberry Pi 5 active cooler) to help lower the device temperature, particularly during CPU-intensive tasks.

The CPU temperature can be displayed by entering the following command. As shown in the example below, the temperature is in milli-Celsius. In this case, the CPU temperature was measured shortly after the board was started, and it was 48.819°C:

beagle@beagle:~ \$ cat /sys/devices/virtual/thermal/thermal_zone [0-2]/temp

47697 48146 48819 beagle@beagle:~ \$

Chapter 3 • Using the Console Commands

3.1 Overview

BeagleY-AI is based on a version of the Linux operating system, one of the most popular operating systems in use today. Linux shares similarities with other operating systems, such as Windows and UNIX, and is an open-source system based on UNIX, developed collaboratively by many companies since 1991. In general, Linux is harder to manage than some other operating systems like Windows but offers more flexibility and configuration options. There are several popular versions of the Linux operating system, such as Debian, Ubuntu, Red Hat, Fedora, and others.

Linux commands are text-based. In this chapter, you will be looking at some of the useful Linux commands and see how you can manage your BeagleY-AI using these commands.

The console commands can either be entered using the Putty terminal emulator, as described in the previous chapter, or they can be entered using the Terminal Emulator application in GUI Desktop.

3.2 The Command Prompt

Assuming your username is **beagle**, after you log in to BeagleY-AI, you will see the following prompt displayed where the system waits for you to enter a command:

beagle@beagle: ~\$

Here, the \sim character indicates that you are currently in your default directory.

3.3 Useful Console Commands

In this section, you will be learning some of the useful Console commands, with examples provided for each command. **In this chapter, commands entered by the user are shown in bold for clarity**. Also, it is important to remind you that all commands must be terminated by the Enter key.

3.3.1 System and user information

These commands are useful as they provide information about the system. The command **cat /proc/cpuinfo** displays information about the processor (the command **cat** displays the contents of a file, and in this example, it shows the contents of the **/proc/cpuinfo** file). Figure 3.1 shows an example display, where only part of the display is shown here.

```
beagle@beagle:~$ cat /proc/cpuinfo
processor : 0
              : 400.00
BogoMIPS
Features
              : fp asimd evtstrm aes pmull shal sha2 crc32 cpuid
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
CPU part
              : 0xd03
CPU revision : 4
processor
              : 1
         : 400.00
: fp asimd evtstrm aes pmull sha1 sha2 crc32 cpuid
BogoMIPS
Features
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
              : 0xd03
CPU part
CPU revision
              : 4
processor
              : 2
              : 400.00
BogoMIPS
              : fp asimd evtstrm aes pmull shal sha2 crc32 cpuid
Features
CPU implementer : 0x41
CPU architecture: 8
CPU variant : 0x0
               : 0xd03
CPU part
CPU revision
               : 4
               : 3
processor
```

Figure 3.1 Command: cat /proc/cpuinfo (part of the display is shown).

The command **uname** –**s** displays the operating system kernel name, which is Linux. The command **uname** –**a** displays complete detailed information about the kernel and the operating system. An example is shown in Figure 3.2.

```
beagle@beagle:~$ uname -a
Linux beagle 6.1.83-ti-arm64-r63 #1bookworm SMP PREEMPT_DYNAMIC Wed Jul 10 23:0
:56 UTC 2024 aarch64 GNU/Linux
beagle@beagle:~$
```

Figure 3.2 Command: uname – a.

The command **cat /proc/meminfo** displays information about the memory on your BeagleY-AI, such as the total memory and free memory at the time the command is issued. Figure 3.3 shows an example, where only part of the display is shown here.

<pre>beagle@beagle:~\$</pre>	cat /pro	oc/meminfo
MemTotal:	3883876	kB
MemFree:	2566148	kB
MemAvailable:	3027204	kB
Buffers:	30508	kB
Cached:	540800	kB
SwapCached:	0	kB
Active:	1034332	kB
Inactive:	96644	kB
Active (anon) :	561736	kB
Inactive (anon) :	0	kB
Active(file):	472596	kB
Inactive(file):	96644	kB
Unevictable:	64	kB
Mlocked:	64	kB
SwapTotal:	4194300	kB
SwapFree:	4194300	kB
Zswap:	0	kB
Zswapped:	0	kB
Dirty:	8	kB
Writeback:	0	kB
AnonPages:	544692	kB
Mapped:	293488	kB
Shmem:	2060	kB
KReclaimable:	47144	kB
Slab:	93992	kB
SReclaimable:	47144	kB
SUnreclaim:	46848	kB

Figure 3.3 Command: cat /proc/meminfo (part of the display is shown).

The command **whoami** displays the name of the current user. In this case, **beagle** is displayed as the current user.

A new user can be added to your BeagleY-AI using the command **useradd**. In the example in Figure 3.5, a user called **Jane** is added. A password for the new user can be added using the **passwd** command followed by the username. In Figure 3.4, the password for user Jane is set to **mypassword** (not displayed for security reasons). Notice that both the **useradd** and **passwd** commands are privileged and the keyword **sudo** must be entered before these commands. Notice that the **-m** option creates a home directory for the new user.

```
beagle@beagle:~$ sudo useradd -m Jane
beagle@beagle:~$ sudo passwd Jane
New password:
Retype new password:
passwd: password updated successfully
beagle@beagle:~$
```

Figure 3.4 Commands: useradd and passwd.

You can log in to the new user account by specifying the username and password. You can type the command **exit** to log out from the new account.

The command **sudo apt-get upgrade** is used to upgrade all the software packages on the system.

3.3.2 Some useful commands

To display the default home directory, enter:

```
beagle@beagle: ~$ pwd
/home/beagle
beagle@beagle: ~$
```

To display the directory structure, enter the command **Is /** (Figure 3.5):

```
beagle@beagle:~$ ls /
bin data etc lib media opt root sbin sys usr
boot dev home lost+found mnt proc run srv tmp var
beagle@beagle:~$
```

Figure 3.5 Files in the directory.

To show the subdirectories and files in your working directory, enter Is (Figure 3.6)

```
beagle@beagle:~$ 1s
Desktop Downloads Pictures Templates led.py
Documents Music Public Videos
beagle@beagle:~$
```

Figure 3.6 Files in the home directory.

Notice that the subdirectories are displayed in blue and the files in black.

The command **Is** can take a number of arguments. Some examples are given below.

To display the subdirectories and files in a single row (Figure 3.7).

```
beagle@beagle:~$ ls -1
Desktop
Documents
Downloads
Music
Pictures
Public
Templates
Videos
led.py
beagle@beagle:~$
```

Figure 3.7 Files in a single row.

To display the file types, enter the command **Is** –**F**. Note that directories have a "/" after their names, and executable files have a "*" character after their names:

To list the filenames separated by commas, enter the command **Is** –**m**.

You can mix the arguments, as shown in Figure 3.8.