Wilfried Franke Bernd Platzer

Rohrleitungen

Grundlagen – Planung – Montage

3., aktualisierte Auflage

HANSER

Franke / Platzer **Rohrleitungen**

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Wilfried Franke Bernd Platzer

Rohrleitungen

Grundlagen – Planung – Montage

3., aktualisierte Auflage

HANSER

Über die Autoren:

Prof. i. R. Dr.-Ing. habil. Wilfried Franke ist Lehrbeauftragter für Apparate und Anlagen an der Hochschule Merseburg (FH).

Prof. em. Dr.-Ing. habil. Bernd Platzer war Professor für Technische Thermodynamik an der Fakultät für Maschinenbau der TU Chemnitz.

Print-ISBN: 978-3-446-48348-4 E-Book-ISBN: 978-3-446-48392-7

Alle in diesem Werk enthaltenen Informationen, Verfahren und Darstellungen wurden zum Zeitpunkt der Veröffentlichung nach bestem Wissen zusammengestellt. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Werk enthaltenen Informationen für Autor:innen, Herausgeber:innen und Verlag mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor:innen, Herausgeber:innen und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor:innen, Herausgeber:innen und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt also auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benützt werden dürften.

Die endgültige Entscheidung über die Eignung der Informationen für die vorgesehene Verwendung in einer bestimmten Anwendung liegt in der alleinigen Verantwortung des Nutzers.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtgestaltung – mit Ausnahme der in den §§ 53, 54 UrhG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Wir behalten uns auch eine Nutzung des Werks für Zwecke des Text- und Data Mining nach § 44b UrhG ausdrücklich vor.

© 2025 Carl Hanser Verlag GmbH & Co. KG, München Kolbergerstraße 22 | 81679 München | info@hanser.de

www.hanser-fachbuch.de

Lektorat: Dipl.-Ing. Natalia Silakova-Herzberg

Herstellung: Frauke Schafft

Coverkonzept: Marc Müller-Bremer, www.rebranding.de, München

Covergestaltung: Thomas West Titelmotiv: © gettyimages.de/seraficus Satz: Eberl & Koesel Studio, Kempten Druck: CPI Books GmbH, Leck

Printed in Germany

Vorwort

Das vorliegende Buch ist als Lehrbuch zum Gebrauch neben den Vorlesungen konzipiert. Es wendet sich vordergründig an Ingenieurstudenten, die einen verfahrenstechnisch orientierten Studiengang belegen. Erfahrungsgemäß sind in diesen Studiengängen – mehr oder weniger ausgeprägt – Lehrveranstaltungen zur Anlagen- und Apparatetechnik bzw. zur Rohrleitungstechnik integriert. Hier ist das Buch geeignet, das Selbststudium zu unterstützen. Von Studierenden mehr maschinenbaulich orientierter Studiengänge kann es ebenfalls mit Gewinn gelesen werden. Auch Praktiker können in ihm Anregungen zur Beantwortung anstehender Fragen finden.

Entsprechend dieser Ausrichtung sind zum Verständnis der behandelten Problematik und zum Nachvollziehen der aufgezeigten Lösungswege Kenntnisse der in den vorgelagerten Lehrveranstaltungen, z. B. Mathematik, Strömungslehre, Wärmelehre (Thermodynamik) und Technische Mechanik vermittelten Grundlagen erforderlich. Davon ausgehend und unter Berücksichtigung des einzuhaltenden Umfanges des Buches, wurde auf eine ausführliche Darstellung prägender Elemente dieser Lehrgebiete verzichtet. Im Buch ist die Anwendung dieser theoretischen Grundlagen auf ausgewählte Fragestellungen aus dem Gebiet der Rohrleitungstechnik vordergründig. Eine vollständige Behandlung aller hier relevanten ingenieurtechnischen Aspekte ist nicht möglich. Dafür sei auf die weiterführende Literatur verwiesen, für deren Nutzung das vorliegende Buch den Einstieg erleichtern soll.

Bei Verweis auf Normen ist stets deren neueste Ausgabe zu nutzen, das gilt auch für andere im Text zitierte Regeln.

Die Autoren sind den Firmen zu Dank verpflichtet, die dieses Projekt durch Bereitstellung von Informationen und die Genehmigung für deren Veröffentlichung sowie durch praktische Hinweise tätig unterstützten. Insbesondere seien hier APRO Ingenieurbüro GmbH Leuna, Sikla GmbH VS-Schwenningen, Witzenmann GmbH Pforzheim sowie IMO Industriemontagen Merseburg GmbH genannt.

VI

Dank gebührt dem Fachbereich Ingenieur- und Naturwissenschaften der Hochschule Merseburg (FH) für die Unterstützung bei der Fertigstellung des Manuskriptes. Besonderen Dank schulden die Autoren Herrn Jochen Horn vom Carl Hanser Verlag für seine Begleitung des Buchprojektes und sein stets gezeigtes Verständnis! Dank gilt auch Frau Silke Wienhold, die die nicht immer einfache Aufgabe übernahm und hervorragend löste, dem Text und den Skizzen die rechte Form zu geben.

Juni 2014

Wilfried Franke, Merseburg

Bernd Platzer, Chemnitz

Vorwort zur 3. Auflage

Das Vorhaben des Verlags, eine neue Auflage zu editieren, bot die Möglichkeit, einige Korrekturen am Text vorzunehmen.

Diese Auflage berücksichtigt die EU-Richtlinie 2019/882, nach welcher die Produkte des Verlags barrierefrei zu gestalten sind. Diese Vorgaben dienen dazu, die digitalen Inhalte (E-Book) für automatisierte Lesesoftware aufzubereiten. Insbesondere waren Bilder und Diagramme mit sogenannten Alternativtexten zu versehen, die partiell auch mit KI-Unterstützung seitens des Verlags generiert wurden.

Für die gute Zusammenarbeit dem Verlagsteam zu danken, ist den Autoren ein Bedürfnis.

Januar 2025

Wilfried Franke, Merseburg

Bernd Platzer, Chemnitz

Inhalt

Vorv	wort		V
1	Rohre	e und Armaturen	1
1.1	Rohre		1
1.2	Armat	uren	17
	1.2.1	Sperr- und Regeleinrichtungen	19
	1.2.2	Sicherheitsarmaturen	21
	1.2.3	Sonderarmaturen	23
2	Strön	nungs- und wärmetechnische Rohrauslegung	25
2.1	Strömi	ungscharakteristika	25
2.2	Inkom	pressible Medien	27
	2.2.1	Berechnung der Rohrreibung	27
	2.2.2	Verlustbeiwerte von Formstücken	38
	2.2.3	Kenngrößen von Armaturen	39
	2.2.4	Rohrleitungsdimensionierung und Pumpenauslegung	41
	2.2.5	Förderhöhe und Rohrleitungskennlinie	46
	2.2.6	Bestimmung des optimalen Rohrdurchmessers	48
	2.2.7	Auswahl von Regelventilen	53
	2.2.8	Auslegung von Sicherheitsventilen	57
	2.2.9	Strömungsabriss und Kavitation	61
	2.2.10	Wirkungsgrad von Rohrleitungen und Diffusoren	63
	2.2.11	Rohrnetze	66

VIII

2.3	Ström	ung kompressibler Medien durch gerade Leitungen	73
	2.3.1	Ideale Gase	73
	2.3.2	Verdünnte Gase	84
	2.3.3	Dampfleitungen	85
2.4	Instati	ionäre Strömungsvorgänge	87
2.5	Beans	pruchungen von Rohrleitungen	88
	2.5.1	Kraftwirkung bei stationären Strömungen	88
	2.5.2	Druckstoß	90
2.6	Lecka	ge	96
2.7	Verwe	ilzeitverteilung	97
2.8	Therm	nische Vorgänge	99
	2.8.1	Wärmeausdehnung	99
	2.8.2	Wärmeleitung	102
	2.8.3	Konvektiver Wärmeübergang	110
	2.8.4	Wärmedurchgang	118
		2.8.4.1 Wärmedurchgangskoeffizient	118
		2.8.4.2 Rohre mit Rippen oder Nadeln	119
		2.8.4.3 Rohrdämmung	120
		2.8.4.4 Temperaturänderungen in Rohrleitungen	122
	2.8.5	Wärmeübertragung durch Strahlung	123
3	Kons	truktive Dimensionierung von Rohrleitungselementen	129
3.1	Berecl	nnung der Rohrwanddicke bei Innendruck	129
	3.1.1	Grundlagen	129
	3.1.2	Werkstoffprüfung und zulässige Spannung	139
	3.1.3	Praktische Berechnung der Wanddicke	144
	3.1.4	Bestell-Wanddicke	160
3.2	Flanso	chverbindungen	163
3.3	Berecl	nnung der Wanddicke von Rohrbögen	180
	3.3.1	Glattrohrbögen	180
	3.3.2	Segmentbögen	185
3.4	Wand	dickenberechnung von T-Stücken und Abzweigen	188
	3.4.1	Arten	188
	3.4.2	Grundlagen	189
	3.4.3	Berechnungsansatz	192

Inhalt

4	Verlegung von Rohrleitungen 20			203
4.1	Halterungen			203
4.2	Stützweite in einer Rohrleitung 20			207
	4.2.1	Einspan	nnung des Rohrs an den Stützen	208
	4.2.2	Gelenki	ge Lagerung des Rohrs an den Auflagern	210
	4.2.3	Betrach	tung der Biegespannungen	211
4.3	Therm	isch bela	astetes gerades Rohr zwischen zwei Festpunkten	215
4.4	Dehnu	ngsausgl	leich	221
	4.4.1	Künstlid	cher Dehnungsausgleich	222
	4.4.2	Einordr	nung der Ausgleicher in die Rohrleitung	232
	4.4.3	Natürlio	cher Dehnungsausgleich (s. auch [61])	237
5	Mont	age		265
5.1	Inhalt	und Umf	fang der Montage	265
5.2	Voraus	ssetzunge	en für die Montage	266
5.3	Monta	gedurchi	führung	267
	5.3.1	Montag	eplanung	267
	5.3.2	Montag	eablauf	286
		5.3.2.1	Anlageninterne Rohrleitungen	287
		5.3.2.2	Lineare Rohrleitungen	288
		5.3.2.3	Schweißverfahren	290
	5.3.3	Qualitä	tssicherung	293
		5.3.3.1	Qualitätssicherung der Fügestellen	296
		5.3.3.2	Zerstörungsfreie Schweißnahtprüfung	298
		5.3.3.3	Innenreinigung von Rohrleitungen	300
		5.3.3.4	Entrosten und Entzundern von Stahlrohren	302
		5.3.3.5	Komplexprüfung	306
5.4	Vorfer	tigung .		308
Anha	ang			311
Liter	aturv	erzeichi	nis	331
Inde	x			335

1

Rohre und Armaturen

1.1 Rohre

Rohrleitungen sind fester Bestandteil von Produktions- sowie von Ver- bzw. Entsorgungsanlagen. Das Rohr selbst ist ein sehr altes Bauelement, das z.B. als Trag- und Stützelement, als Blas- und Trinkrohr sowie für die Weiterleitung von Stoffen eingesetzt wird. Die älteste bekannte Rohrleitung wurde in der Stadt Habuka Kabira im Euphrat-Gebiet gefunden. Die Wasserversorgung war bestimmend für die Bildung von Städten, für die Be- und Entwässerung, die Abfallentsorgung und die Brandbekämpfung. Die Rohre bestanden zunächst aus Holz, Fasern und Steinen. Das bisher mit ca. 4700 Jahren älteste Metallrohr (Kupfer) wurde in einem ägyptischen Tempel gefunden. Da Rohre nur mit endlicher Länge gefertigt werden konnten, bestand das Problem der Verbindung und der Dichtung an den Stößen. Die Römer lösten dies mit Ton und Kalk. Römische Schriftquellen belegen das Gießen von Blechen mit genormter Breite und das Zusammenbiegen der Bleche zu Rohren von 25...300 mm Durchmesser. Aus römischer Zeit sind sogar Flussunterquerungen, sog. Düker, bekannt (bei Lyon 2,5 km lang, 20 parallele Bleirohre). Das im Jahre 97 erschienene Buch "De aquis urbis Romae" von Sextus Julius Frontinus (geb. etwa 35 bis 40 n. Chr., gest. 103) zeigt, dass schon damals grundlegende Zusammenhänge zwischen Rohrquerschnitt, Volumenstrom und Druckabfall bekannt waren.

Eine **Rohrleitung** muss Temperatur, Druck und Korrosion standhalten. Werkstoffe für Rohre sind heutzutage vorwiegend Stahl, Kunststoffe, zementgebundene Werkstoffe und in Laboren und Versuchshallen auch Glas. In Chemieanlagen beträgt der Planungsaufwand für Rohrleitungen zwischen 20 und 40% des Gesamtaufwandes. Überschlägig schätzt man für Chemieanlagen die *Kosten des Rohrleitungsmaterials einer Anlage*, also Rohre einschließlich der Rohrleitungselemente und der Halterungen, auf 20...50% der Kosten der Hauptausrüstungen (Apparate und Maschinen) der

Anlage, die Kosten der Rohrleitungsmontage auf etwa 15...30 % der Kosten der Hauptausrüstungen [80, 94]. Diese Montagekosten werden größer, wenn es sich um Hochdruck-Rohrleitungen oder Rohrleitungen aus hochlegierten Stählen oder um komplizierte Rohrleitungssysteme handelt.

Unter **Rohrleitungsbau** versteht man die Arbeitsverrichtungen von der Planung bis zur Realisierung einer Rohrleitung. Tabelle 1.1 vermittelt einen Überblick über die Abfolge der einzelnen Arbeitsverrichtungen und verweist auf die Kapitel im Buch, in denen dazu nähere Ausführungen enthalten sind.

Tabelle 1.1 Systematisches Vorgehen bei Rohrleitungsbauprojekten mit Verweisen, in welchen Buchabschnitten dazu Aussagen enthalten sind

Sachgebiet	Buchbezug	
Konzeptionsphase		
 Definition des Projekts Standort mit Umweltbedingungen Technologie einschließlich der Festlegung von Hilfsprozessen Ausdehnung und Anordnung verwendete Medien mit Definition der Durchsätze und Betriebsbedingungen Realisierungszeitraum 		
Festschreibung technologischer Randbedingungen Charakterisierung der zu fördernde Medien (Aggressiv gegenüber Rohrmaterial? Aggregatzustand? Aggregatzustandsänderung? Entmischung? Ein-/mehrphasig? Newtonsches Medium? Einzubauende Apparaturen? Mess-, Steuer, Regelungstechnik? Isolierung? Ablagerungen (Fouling)? Reinigungsmöglichkeit? Sterilisierbarkeit?)		
Verlegungsplan • einfache Leitung oder Leitungsnetz? Mehrere Einspeisestellen/ Verbraucher?		
Betriebsweise Dauerbetrieb? Stationär/periodisch/intermittierend?		

Sachgebiet	Buchbezug		
Hydrodynamische Auslegung			
Charakterisierung der stationären Strömung inkompressibler Medien			
Phasenverhältnisse	Abschnitt 2.1		
■ Fließgesetz (<i>Newton</i> sch, <i>Bingham</i> -Fluid,)	Tabelle 2.1		
Strömungsregime (laminar, turbulent)	Tabelle 2.1		
instationäre Strömung	Abschnitt 2.4		
Wandrauigkeit (Alterung/Ablagerungen/Korrosion berücksichtigen)	Tabelle 2.2		
Ermittlung Rohrreibungsbeiwert	Abschnitt 2.2.1		
Zusammentragen relevanter Widerstandsbeiwerte	Abschnitt 2.2.2, A2		
 Berechnung Rohrdurchmesser nach strömungstechnischen Gesichtspunkten und unter Berücksichtigung der Ergebnisse der Wanddickenberechnung (Achtung: ökonomisch sinnvolle Geschwindigkeitsbereich beachten, berechnete Durchmesser an genormte Größen anpassen) 	Abschnitt 2.2.4, 2.2.6, 3.1 Tabelle 2.12		
 Förderenergiebereitstellung (Hoch-, Druckspeicher, Pumpen, Verdichter) 	Abschnitt 2.2.4, 2.2.5		
Ventilauslegung	Abschnitt 2.2.7, 2.2.8		
 Vermeidung Strömungsabriss und Kavitation 	Abschnitt 2.2.9		
Rohrleitungsnetzberechnung	Abschnitt 2.2.11		
Strömung kompressibler Medien	Abschnitt 2.3		
Strömung verdünnter Gase	Abschnitt 2.3.2		
Dampfleitungen	Abschnitt 2.3.3		
Kraftwirkungen von Strömungen	Abschnitt 2.5		

Tabelle 1.1 Systematisches Vorgehen bei Rohrleitungsbauprojekten mit Verweisen, in welchen Buchabschnitten dazu Aussagen enthalten sind (*Fortsetzung*)

Sachgebiet	Buchbezug		
Konstruktiv-gestalterische Auslegung			
Spannungsbeanspruchung von Rohren			
Auswirkung des Innendrucks	Abschnitt 3.1		
Auswirkung thermischer Längenänderung	Abschnitt 4.3		
Berechnung von Wanddicken			
Dicke gerader Rohrstücke unter Beachtung			
der Herstellungsmethode (nahtlos, geschweißt,)	Abschnitt 1.1		
der Art der Belastung (stationär, periodisch, intermittierend,)	Abschnitt 3.1.3		
der Bestellwanddicke	Abschnitt 3.1.4		
Wanddicke von Rohrbögen			
Druckbelastung	Abschnitt 3.3		
Belastung durch thermische Ausdehnung	Bild 4.49 ff.		
Wanddicke von T-Stücken und Abzweigungen	Abschnitt 3.4		
Flansche			
Abdichtungen	Abschnitt 3.2		
■ Flanschdimensionierung	Bild 3.8 ff.		
Schraubendimensionierung	Formel 3.70 ff.		
im System zu kompensierende Kräfte			
Strömungskräfte	Abschnitt 2.5		
Eigengewicht und äußere Kräfte			
Durchbiegung	Abschnitt 4.2		
Stützweite in Abhängigkeit der Lagerungsart	Abschnitt 4.2		
Druckspannung infolge thermischer Beanspruchung	Abschnitt 4.4.3, 4.4.4		
 Dehnungsausgleicher 	Abschnitt 4.4.1, 4.4.2		
Verlegung von Rohrleitungen			
Rohrhalterungen	Abschnitt 4.1		
Rohrbrücken	Abschnitt 5.3.2.2		
■ Erdverlegung			

Sachgebiet	Buchbezug		
Wärmetechnische Auslegung			
Wärmeausdehnung			
 Änderung der Abmessungen durch wechselnde Temperaturen oder Unterschiede zwischen Montage – und Betriebstempera- turen 	Abschnitt 2.8.1		
 Verformung von eingespannten Rohrleitungen infolge Wärme- ausdehnung 	Abschnitt 4.4.3		
Kompensation von Längenänderungen	Abschnitt 4.4.1, 4.4.2		
Beschreibung der Ursachen des Wärmeaustauschs mit der Umgebung			
■ Wärmeleitung	Abschnitt 2.8.2		
konvektiver Wärmeübergang	Abschnitt 2.8.3		
Wärmedurchgang	Abschnitt 2.8.4		
■ Wärmestrahlung	Abschnitt 2.8.5		
Maßnahmen mit Ziel Erhöhung des Wärmeaustauschs			
stärkere Anströmung	Abschnitt 2.8.3		
Erhöhung der Leitfähigkeit des Materials	Tabelle 2.29, 2.30		
Rippenrohre	Abschnitt 2.8.4.2		
Maßnahmen mit Ziel Verringerung des Wärmeaustauschs (Isolierung)			
Auswahl Isoliermaterial	Tabelle 2.31, 2.42		
Bestimmung ökonomischer Isolierdicke	Bild 2.29		
Befestigung der Isolierung			
Weitere Fragestelllungen			
Leckage	Abschnitt 2.6		
Verweilzeitverteilung	Abschnitt 2.7		
Druckstöße	Abschnitt 2.5.2		

Tabelle 1.1 Systematisches Vorgehen bei Rohrleitungsbauprojekten mit Verweisen, in welchen Buchabschnitten dazu Aussagen enthalten sind *(Fortsetzung)*

Sachgebiet	Buchbezug		
Rohrleitungsmontage			
Montageplanung			
 Aufstellungspläne 	Abschnitt 5.3		
Montagefreiheit	Abschnitt 5.2		
Montageablaufplanung	Bild 5.11 ff.		
Montageablauf	Abschnitt 5.3.2		
Vorfertigung	Abschnitt 5.4		
Funktionssicherheit			
Schweißnähte	Abschnitt 5.3.3.2		
 Entlüftung, Entleerung, Kondensatabscheider, Rückflussverhinderung, Druckbegrenzung 	Abschnitt 1.2		
Rohrreinigung	Abschnitt 5.3.3.3		
Entrosten	Abschnitt 5.3.3.4		
Qualitätssichernde Maßnahmen bei der Montage	Abschnitt 5.3.3		
Abnahme			
Drucktest			
Dichtheitstest	Abschnitt 5.3.3.5		
Bescheinigungen			

Der Rohrleitungsbau erfordert Kenntnisse aus den Gebieten Strömungsmechanik, Wärmelehre, Festigkeitslehre, Fertigungstechnik (Trennen, Fügen), Ökonomie, Qualitätsmanagement u. a. sowie die Bereitstellung unterschiedlicher Daten. Diese Verflechtung zeigt Bild 1.1.

Rohrleitungsteile sind neben den Rohren im Wesentlichen die Formstücke, Verbindungselemente, Armaturen und Halterungen. Im Bedarfsfall kommen Isolierung und Rohrbrücken dazu. Basierend auf der **technologischen Auslegung** (Ermittlung des Durchmessers, Auswahl der Pumpen, Festlegung der Armaturen und der Regelungstechnik, Isolierdickenermittlung) folgt die **konstruktive Auslegung** (Werkstoffauswahl, Wandstärkenermittlung, Durchbiegung, Trassenführung, Dehnungsausgleich). Der Abschluss dieser Arbeiten ermöglicht das Aufstellen von Stücklisten als Grundlage für die Bestellung, die Montage und letztlich die Inbetriebnahme.

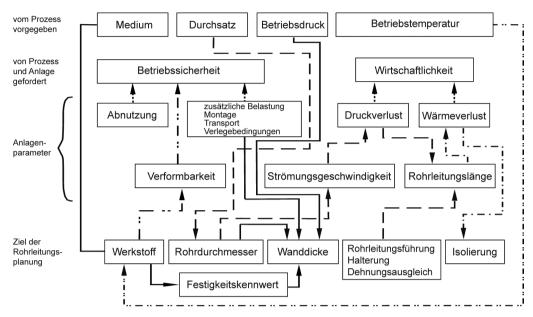


Bild 1.1 Verflechtungen bei der Rohrleitungsplanung

Die Vielfalt der Elemente einer Rohrleitung erfordert zwingend eine **Normung**. Normen repräsentieren den Stand der Technik und sind z.B. im DIN-Normenwerk und in AD-Merkblättern (Arbeitsgemeinschaft Druckbehälter) zu finden. Hinweis: Die hierzu erlassenen Technischen Regeln, z.B. die Technischen Regeln für brennbare Flüssigkeiten TRbF, sind ab dem 01.01.2013 nicht mehr verbindlich. Für die praktische Arbeit können sie aber noch als Orientierung dienen. Außerdem existieren spezielle Auslegungsvorschriften der Berufsgenossenschaften und Verbände. Zu den zu berücksichtigenden DIN-Normen gehören wiederum Grundnormen für Rohrleitungen, Normen für Rohre, Formstücke, Flansche, Dichtungen, Schrauben, Armaturen, Anwendungsnormen, schweißtechnische Normen u.a. Für Projekte im Ausland sind die dort geltenden Normen zu beachten.

Entsprechend dem Stand der Technik sind die Normen ebenfalls einer Weiterentwicklung unterworfen. Das ist bei der praktischen Arbeit unbedingt zu beachten, d. h., es sind stets die neuesten gültigen Vorschriften zu berücksichtigen. Eine Zusammenstellung der Normen ist in Bild 1.2 gegeben.

Richtlinien, Gesetze, Verordnung Richtlinie über Druckgeräte	en
Trustalinie azor znastęprate	RL 97/23/EG; RL 2014/68/EU
Druckgeräteverordnung (14. Verordnung zum ProdSG)	DruckgeräteV
Technische Grundlagen	
Graphische Symbole für technische Zeichnungen, Rohrleit	
- Allgemeines - Funktionelle Darstellungen	DIN 2429-1 DIN 2429-2
Leitfaden für die Beschaffung von Ausrüstungen für	
Kraftwerke, Rohrleitungen und Armaturen - Hochdruckrohrleitungen	DIN EN 45510-7-1
- Ressel- und Rohrleitungs-Armaturen	DIN EN 45510-7-2
Rohrleitungsteile, Definition und Auswahl von DN (Nennweite)	DIN EN ISO 6708
Fluidtechnik, Nenndrücke	ISO 2944
Kennzeichnung von Rohrleitungen nach Durchflußstoff	DIN 2403
Metallische industrielle Rohrleitun	gen
Allgemeines	DIN EN 13480-1
Werkstoffe	DIN EN 13480-2
Berechnung und Konstruktion	DIN EN 13480-3
Herstellung	DIN EN 13480-4
Prüfung und Inspektion	DIN EN 13480-5
Zusätzliche Prüfungen an erdgedeckten Rohrleitungen	DIN EN 13480-6
Anleitung für den Gebrauch des Konformitätsbewertungs-	DIN EN 13480-7
verfahrens Zusatzanforderungen an Rohrleitungen aus Aluminium	DIN EN 13480-8
Technische Grundnormen	
Begriffsbestimmung zur Stahleinteilung	DIN EN 10020
Bezeichnungssysteme für Stähle	
- Kurznamen - Nummernsystem	DIN EN 10027-1 DIN EN 10027-2
Bezeichnungssysteme für Stähle, Zusatzsymbole	CR 10260
Maße und längenbezogene Masse für nahtlose und geschweißte Stahlrohre	DIN EN 10220
Eisen- und Stahlwerkstoffe, Arten von Prüfbescheinigungen	DIN EN 10204

Bild 1.2 Normen für Rohrleitungen, zusammengestellt von Mußmann [87],

Stand: 11.08.2015

Öffentliche verfügbare Spezifikationen							
Rohrklassen für verfahrenstechnische Anlagen - Grundlagen für das Erstellen von Rohrklassen auf	PAS 1057-1						
Basis von EN 13480 - Formstücke - Sonderbauformen	PAS 1057-5						
- Techn. Lieferbedingungen für Rohrbauteile aus leg. u. unleg. Stählen mit festgelegten Eigenschaften bei höhe	PAS 1057-10						
Temperaturen, Gruppe 1.1 und 1.2 (CR ISO 15608) - Techn. Lieferbedingungen für Rohrbauteile aus austeni- PAS 1057-11							
tischen nichtrostenden Stählen, Gruppe 8.1 (CR ISO 1 - Standardrohrklassen PN 10 bis PN 100 Rohrbauteile	PAS 1057-100						
aus unleg. und leg. Stählen mit festgelegten Eigenschaften bei höheren Temperaturen; Gruppe 1.1 und 1.2 und austenitischen nichtrostenden Stählen, Gruppe 8.1 (CR ISO 15608)							
Nahtlose druckgeführte Rohre							
aus unlegierten Stählen mit festgelegten Eigenschaften bei Raumtemperatur	DIN EN 10216-1						
aus unlegierten und legierten Stählen mit festgelegten Eigenschaften bei erhöhten Temperaturen	DIN EN 10216-2						
aus legierten Feinkornbaustählen	DIN EN 10216-3						
aus unlegierten und legierten Stählen mit festgelegten Eigenschaften bei tiefen Temperaturen	DIN EN 10216-4						
aus nicht rostenden Stählen	DIN EN 10216-5						
Geschweißte druckgeführte Rohre							
aus unlegierten Stählen mit festgelegten Eigenschaften bei Raumtemperatur	DIN EN 10217-1						
aus unlegierten u. legierten Stählen mit festgelegten Eigenschaften bei erhöhten Temperaturen	DIN EN 10217-2						
aus legierten Feinkornbaustählen	DIN EN 10217-3						
aus unlegierten Stählen mit festgelegten Eigenschaften bei tiefen Temperaturen	DIN EN 10217-4						
UP-geschw. Rohre aus unlegierten u. legierten Stählen mit festgel. Eigenschaften bei erhöhten Temperaturen	DIN EN 10217-5						
UP-geschw. Rohre aus unlegierten Stählen mit festgel. Eigenschaften bei tiefen Temperaturen	DIN EN 10217-6						
aus nicht rostenden Stählen	DIN EN 10217-7						
Blechmaterial und Schmiedeteile							
Schmiedestücke aus Stahl für Druckbehälter (allgem. Anforderungen, Ferritische u. Martensitische St., Nickel-St Fk-St., martensitische, austenitische, Duplex Stähle	DIN EN 10222-1 bis -5						
Flacherzeugnisse aus Druckbehälterstählen	DIN EN 10028-1 bis -6						

Leitungsrohre für Gas und brennbare Flüssigkeiten						
Erdöl- und Erdgasindustrie - Stahlrohre für Rohrleitungstransportsysteme	DIN EN ISO 3183					
Leitungsrohre für brennbare Medien – Anforderungsklasse C	DIN EN 10208-3					
Rohrzubehör						
Stahlfittings mit Gewinde	DIN EN 10241					
Tempergußfittings	DIN EN 10242					
Formstücke zum Einschweißen aus unlegierten und legierten C-Stählen für Innendruckbelastung	DIN EN 10253-2					
Formstücke zum Einschweißen aus nicht rostenden Stählen für Innendruckbelastung	DIN EN 10253-4					
Kompensatoren mit metallischen Bälgen für Druck- anwendungen						
Leitfaden für die Bestellung und Herstellung von Druc	kgeräten nach DGRL					
- Allgemeine Anforderungen	PAS 1010-1					
- Unbefeuerte Behälter	PAS 1010-2					
- Industrielle Rohrleitungen	PAS 1010-3					
- Druckhaltende Ausrüstungsteile	PAS 1010-4					
- Ausrüstungsteile mit Sicherheitsfunktion	PAS 1010-5					
- Baugruppen	PAS 1010-6					
Flansche und ihre Verbindungen						
Runde Flansche nach PN - aus Stahl	DIN EN 1092-1					
- aus Gusseisen	DIN EN 1092-2					
- aus Kupferlegierungen	DIN EN 1092-3					
- aus Aluminiumlegierungen	DIN EN 1092-4					
Dichtungen für Flansche mit PN-Bezeichnung - Flachdichtungen aus nichtmetallischen Werkstoff mit und ohne Einlagen	DIN EN 1514-1					
- Spiraldichtungen	DIN EN 1514-2					
- nichtmetallische Weichstoffdichtungen mit PTFE-Mantel DIN EN 1514-3						
- aus Metall mit gewelltem, flachem oder gekerbtem Prof	DIN EN 1514-4					
- Kammprofildichtungen	DIN EN 1514-6					
- Metallummanteldichte Dichtungen mit Auflage	DIN EN 1514-7					
- Runddichtringe mit Auflage	DIN EN 1514-8					

Regeln für die Auslegung von Flanschverbindungen mit		
runden Flanschen und Dichtungen - Berechnungsmethoden	DIN EN 1591-1	
- Hintergrundinformationen	DIN EN 1591-1 Beibl. 1	
i i		
- Dichtungskennwerte	DIN EN 1591-2	
- Berechnungsmethode im Kraft-Nebenschluss	DIN CEN/TS 1591-3	
- Qualifizierung von Personal zur Montage von Schraubverbindungen im Bereich der DGRL	DIN EN 1591-4	
- Berechnungsmethode für Verbindung mit vollflächiger [Dichtung	DIN CEN/TS 1591-5	
Runde Flansche für Rohre, Armaturen, Formstücke und		
Zubehörteile, nach Class bezeichnet - Stahlflansche, NPS ½ bis 24	DIN EN 1759-1	
- Flansche aus Kupferlegierungen	DIN EN 1759-3	
- Flansche aus Aluminiumlegierungen	DIN EN 1759-4	
Dichtungen für Flansche mit Class-Bezeichnung		
 Flachdichtungen aus nichtmetallischen Werkstoff mit und ohne Einlagen 	DIN EN 12560-1	
- Spiraldichtungen	DIN EN 12560-2	
- Nichtmetallische Weichstoffdichtungen mit PTFE-Mantel	DIN EN 12560-3	
- aus Metall mit gewelltem, flachem oder gekerbtem Profil	DIN EN 12560-4	
- RTJ-Dichtungen aus Metall	DIN EN 12560-5	
- Kammprofildichtungen	DIN EN 12560-6	
- Metallummanteldichte Dichtungen mit Auflage	DIN EN 12560-7	
Qualitätssicherungsprüfung und Prüfung von Dichtungen	DIN EN 14772	
nach den Normen der Reihe EN 1514 und 12560	DIN EN 14//2	
Dichtungskennwerte und Prüfverfahren für die	DIN EN 13555	
Anwendung der Regeln für die Auslegung mit runden Flanschen und Dichtungen		

Bild 1.2 (Fortsetzung)

> Die Passfähigkeit der Elemente einer Rohrleitung miteinander wird durch zwei zentrale Größen gesichert, die in die Maßnormen eingearbeitet sind:

- Nennweite: Kurzzeichen DN (frz.: diamètre nominal) (alt: NW) Die Nennweite wird durch eine Zahl charakterisiert. Sie orientiert sich bezüglich ihrer Größe am lichten Durchmesser des Rohrs in Millimetern. Sie kennzeichnet aber nur die Rohrleitung insgesamt. Sie hat keine Einheit, sie darf nicht im Sinne einer Maßzahl zur Maßeintragung benutzt werden.
- Nenndruck: Kurzzeichen PN (frz.: pression nominale) (alt: ND) Der Nenndruck ist eine gerundete, auf den Atmosphärendruck bezogene Kennzahl, die sich an der Maßeinheit bar orientiert. Er gibt den Druck an, der bei 20°C ertragen wird. Die Nenndrücke sind in DIN EN 133331 festgelegt. Der maximal zulässige Druck eines Rohrleitungsteils hängt von der PN-Stufe, dem Werkstoff, der Auslegung des Bauteils, der zulässigen maximalen Temperatur usw. ab.

Elemente mit gleichen DN- und PN-Werten sind mechanisch miteinander fügbar. So sind z.B. Flansche und Armaturen, die den Aufdruck DN 100 PN 10 tragen, kompatibel, sie haben die gleichen Anschlussmaße.

DN und PN beruhen auf Normzahl-Reihen. Sie ergeben sich aus der geometrischen Zahlenfolge $a, ax, ax^2, ax^3, ..., ax^n$. Der Stufensprung x ist konstant von Glied zu Glied der Reihe. Jede Dekade (1...10, 10...100 usw.) wird in 10 Intervalle geteilt. Für die erste Dekade gilt a = 1. Entsprechend der Bildungsvorschrift der geometrischen Reihe muss das letzte Glied der 1. Dekade bestimmt werden aus der 10. Potenz des Stufensprunges x, d. h. $10 = x^{10}$. Damit ist der Stufensprung zu berechnen: $x = \sqrt[10]{10} \approx 1,2589$. Für die erste Dekade folgen somit die in Tabelle 1.2 angegebenen Werte. Die zweite Dekade von 10...100 ist mit a = 10, die dritte mit a = 100 zu bilden.

a = 1exakt 1,259 1,585 1,995 2,512 3,162 3,981 5,012 6,310 7,943 10,000 5 2 2,5 8 abge-1,25 1,6 3,15 4 6,3 10 leitet

Tabelle 1.2 Bestimmung der Intervalle in der ersten Dekade

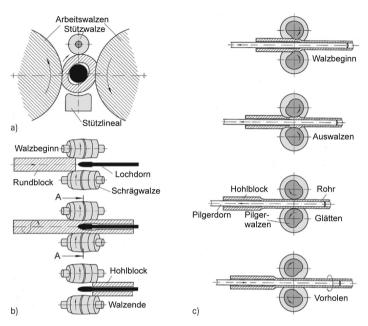
Der Vergleich der dezimal-geometrischen Normzahlreihe mit den genormten DNund PN-Werten zeigt, dass Abweichungen zwischen den theoretischen und den tatsächlich verwendeten Werten vorhanden sind. Während in einigen Bereichen die Übereinstimmung gut ist, gibt es im oberen DN-Bereich aus praktischen Erwägungen noch Zwischenwerte.

¹ In Bild 1.2 nicht enthalten.

Bevorzugte DN-Stufen aus der DIN EN ISO 6708 und PN-Stufen aus der DIN EN 13333 (Werte in Klammer: Schrittweite):

- DN-Stufen
 - DN 10
 - DN 15
 - DN 20
 - DN 25
 - DN 32
 - DN 40
 - DN 50
 - DN 60
 - DN 65
 - DN 80
 - DN 100
 - DN 125
 - DN 150 (50)
 - DN 500 (100)
 - DN 1200
 - DN 1400
 - DN 1500
 - DN 1600 (200)
 - DN 4000

- PN-Stufen
 - PN 1
 - PN 2.5
 - PN 6
 - PN 10
 - PN 16
 - PN 25
 - PN 40
 - PN 63
 - PN 100
 - PN 160
 - PN 250
 - PN 320
 - PN 400


Die DIN-Normen enthalten auch Angaben zu den **Herstellerlängen**, wobei Längenbereiche und Mindestdurchschnittslänge der Gesamtliefermenge vorgegeben sind (z.B. für Rohre aus unlegiertem Stahl Bereich 3...8 m/Durchschnitt 6 m, Bereich 4...12 m/Durchschnitt 8 m). Außerdem existieren Grenzabmaße für zulässige Längentoleranzen.

Die Kennzeichnung von Rohrleitungen erfolgt durch farblich gestaltete rechteckige Schilder, die eine in Fließrichtung weisende Spitze haben. Wechselnde Durchströmungsrichtungen zeigen zwei Spitzen an. Wortangaben können zur Ergänzung aufgeführt werden. Die Schildfarbe richtet sich nach DIN 2403, Tabelle 1.1, z.B. Wasser grün, Wasserdampf rot, Luft grau, Gase gelb, Säuren orange. Die Rohrleitungen selbst können neutrale Farben aufweisen.

Die Herstellungsverfahren hängen stark vom Rohrmaterial und der Rohrart ab. Die Fertigung **nahtloser Stahlrohre** erfolgt meist durch Warmformung, die in zwei Schritten durchgeführt wird:

Lochen eines Blockes zu einem dickwandigen Hohlzylinder,

Auswalzen des Hohlzylinders zum Rohr (Bild 1.3).

Bild 1.3 Mannesmann-Schrägwalz-Pilgerschrittverfahren [25]. a) Schnitt A-A, b) Lochen des Blockes, c) Auswalzen

Durch eine anschließende Kaltverformung (Bild 1.4) können spezielle Maße bis $d_{\rm a}$ = 380 mm, bessere Oberflächengüten u. a. erreicht werden. Dazu wird das Rohr durch einen Ziehring gezogen, dessen lichte Weite kleiner als der Rohraußendurchmesser $d_{\rm a}$ ist.

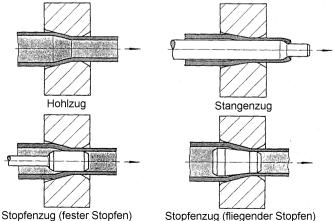


Bild 1.4 r Stopfen) Kaltziehverfahren [25]

Das älteste Warmformverfahren ist das **Schrägwalz-Pilgerschrittverfahren**. Dieses Verfahren wurde um 1880 von den Brüdern *Mannesmann* entwickelt. Der Name leitet sich von der Echternacher Springprozession her: 3 Schritte vor und 2 zurück. Damit sind Rohre der Abmessungen $d_a = 60 \dots 660$ mm, $s = 3 \dots 125$ mm und $l \le 30$ m herstellbar. Die Temperatur beim Pilgern beträgt etwa $1250 \dots 1300$ °C. Eine Alternative für Rohrdurchmesser $d_a \approx 20 \dots 230$ mm ist das **Strangpressverfahren** (Bild 1.5).

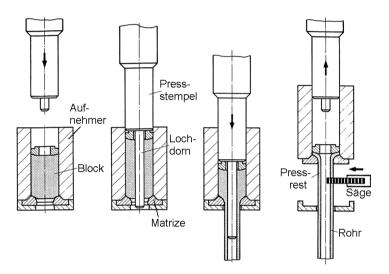


Bild 1.5 Abläufe beim Rohrstrangpressen [25]

Zur Herstellung von **Kunststoffrohren** kommen Extrudierverfahren zum Einsatz (Bild 1.6). Der **Extruder** besteht aus einer oder zwei angetriebenen Transportschnecken. Das zugegebene Pulver oder Granulat wird bis zum an die Schnecken anschließenden Formwerkzeug durch Reibung und eine Heizung auf die gewünschte Verarbeitungstemperatur gebracht. Das austretende Rohr erhält in einer Kühl- und Kalibriervorrichtung die genaue Abmessung. Danach wird es von einer Abzugsvorrichtung erfasst und einer Trenneinrichtung oder einer Ringbund-Wickelmaschine zugeführt. Rohre bzw. Ringbunde werden anschließend mit dem in den Lieferbedingungen vorgeschriebenen Prüfdruck auf Dichtheit geprüft. Nach dem Extrudierverfahren werden Druckrohre für Rohrleitungen bis zu etwa 400 mm und dünnwandige Rohre in Einzelfällen bis zu ca. 1000 mm Durchmesser hergestellt. Die Kunststoffrohre können in werkstoffspezifischen Temperaturbereichen spanlos umgeformt werden.

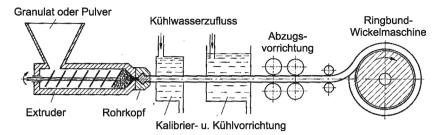
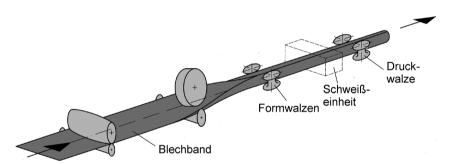



Bild 1.6 Extrudieren von Kunststoffrohren [95]

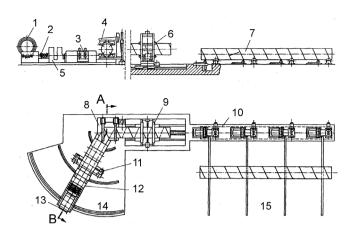

Tafeln und Bänder sind das Ausgangsmaterial für die Herstellung **geschweißter Rohre**. Das Blechumformen ist auf warmem oder kaltem Wege möglich. Wichtige Schweißverfahren sind das **Press**- und das **Schmelzschweißen**. Das **Fretz-Moon-Verfahren** wurde in England seit 1825 entwickelt. Seinen Abschluss fand es 1931 (Arbeitsgeschwindigkeit $100...300 \, \text{m/min}, \, d_{\text{a}} = 40...114 \, \text{mm}$). Der hohen Produktionsgeschwindigkeit sind alle folgenden Arbeitsgänge (Entgraten, Druckprüfung) anzupassen. Die auf Schweißtemperatur erhitzten Kanten werden unter hohem Druck zusammengepresst und verschweißen damit (Bild 1.7).

Bild 1.7 Technologie des Umform- und Fügeprozesses für pressgeschweißte Rohre [43]

Für größere Rohrdurchmesser (d_a = 500...2500 mm) wendet man das Spiralnaht-Schweißen an. Das Halbzeug ist hier ein Blechband, dessen Bandbreite nicht mit dem Rohrumfang übereinstimmt. Maßgebend ist die Schrägstellung des Blechbandes (Einlaufwinkel) gegenüber der Rohrachse (Bild 1.8).

1.2 Armaturen 17

Bild 1.8 Fertigungsprinzip für Spiralnahtrohre [95]. 1, 13 Ringbund; 2, 14 Richtmaschine; 3, 11 Treibwalzen; 4, 8 Formteil mit Schweißköpfen für Innen- und Außenschweißung; 5, 12 Schopfschere und Stumpfschweißeinrichtung; 6, 9 Rohrtrennvorrichtung; 7 fertiges Rohr; 10 Rollgang mit Auswerfer; 15 Auslaufrost

1.2 Armaturen

Armaturen bewirken eine Massenstromveränderung durch mechanische Beeinflussung der Geometrie des Durchflussquerschnitts. Sie erfüllen verschiedene Aufgaben:

Absperren/Öffnen

Auf- und Zu-Funktion, Forderungen beim Absperren: geringe Leckage, Forderungen beim Öffnen: minimaler Druckverlust,

Stellen/Regeln

zeitabhängige Veränderung des Massenstroms bzw. Konstanthalten eines Parameters bei sich ändernden Prozessbedingungen,

Sichern

Unterbindung unzulässiger Betriebszustände (z. B. Vermeidung unzulässiger Drucküberschreitungen, Verhinderung des Rückstroms).

Die Art der Armatur und deren spezielle Gestaltung richten sich nach den von der Anlage vorgegebenen Parametern. Dazu zählen PN, DN, chemische Beständigkeit, geringe Korrosion und Verschleißfestigkeit, aber auch die Instandhaltungsfreundlichkeit. Außerdem werden Lösungen für sehr kleine bis zu sehr großen Volumenströmen sowie von sehr niedrigen bis zu sehr hohen Druckdifferenzen und Temperaturen benötigt.

Je nach Ausführung unterscheidet man Ventile, Schieber, Hähne und Klappen, die für die soeben genannten Aufgaben unterschiedlich gut geeignet sind (Tabelle 1.3). Einsatzbereiche zeigt Tabelle 1.4.

Tabelle 1.3 Bewertung der Armaturengrundtypen für Absperraufgaben (+ günstig, o eingeschränkt, – ungünstig) [104]

Anforderung	Ventil	Schieber	Hahn	Klappe
Dichtheit	+	+	0	0
Druckverlust	-	+	+	0
Verschleiß	0	0	0	0
Reparaturaufwand	-	-	-	0
Einsatzbereich				
Druck	+	0	0	-
Nennweite	0	+	-	0
Temperatur	+	+	0	0

Tabelle 1.4 Einsatzbereiche und Eigenschaften von Armaturen

Eigen- schaften Typ	Einsatzbereich	Druckverlust	Nennweite	Medium	Einsatzgebiet
Schieber	bis≈PN 400, 500°C	gering, ζ≈0,20,3	bis zur größten	Dampf, Wasser	Wasser- verteilung, Kraftwerke
Ventile	< PN 1000, 600 °C	hoch, ζ≈2…6	kleine	Flüssigkeiten, Gase	sämtliche Industrien
Membranventile	< PN 10, < 100 °C, je nach Membran- material	gering, ζ≈0,30,5	kleine	aggressive Flüssigkeiten	Verfahrens- technik
Kugelhähne, Hähne	bis ≈ PN 320 400, bis ≈ 200 °C	sehr gering, ζ≈0,10,5	kleine; große für Gase	Gase, Flüssig- gase, Öl	Hydraulik, Gaspipeline
Klappen	bis≈PN 16, < 200 °C, je nach Dichtungs- material	gering	große	Flüssigkeiten aller Art	Verfahrens- technik, Wasserbau