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1Introduction

Artificial intelligence (AI) refers to the capability of a computer to perform cognitive
tasks that are typically associated with human intelligence such as learning, reasoning,
and problem-solving. Due to the success of machine learning, especially foundation models
(e.g. , ChatGPT), the field of AI is currently experiencing rapid growth and has the potential
to revolutionizemany aspects of our lives, fromhealth care to finance, criminal justice to edu-
cation. With the increasing deployment of AI systems in these fields, ensuring their ability
to generalize to new, unseen data has become crucial for optimal performance and practical
utility in real-world applications. Furthermore, it is crucial that the decisions made by these
systems are transparent and explainable for greater accountability and trustworthiness.

1.1 Generalization and Interpretability of AI

Machine Learning serves as the foundational backbone and a critical component in the
field of AI. It centers on the development and refinement of models that learn from large
amounts of data, identify patterns, predict outcomes, andmake decisions based on input data.
Generalization, the ability of an ML model to perform well on new and previously unseen
data, is crucial for high performance and real-world applicability. This ability enables an AI
system to perform robustly in the presence of changes in the data distribution.When amodel
lacks strong generalization capabilities, it tends to overfit the training data by capturing the
spurious correlations and statistical noise of the training data instead of the underlying
patterns and rules. In such cases, the model may perform poorly on new data and result in
poor performance and low applicability in real-world scenarios. Therefore, ensuring that AI
systems can generalize well is a critical challenge in the development and deployment of
these systems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
S. Liu et al., Visualization for Artificial Intelligence, Synthesis Lectures on Visualization,
https://doi.org/10.1007/978-3-031-75340-4_1
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2 1 Introduction

On the other hand, as AI becomes more ubiquitous in various high-stake tasks such as
precision medicine, law enforcement, and financial investment, there is a growing need for
transparency and interpretability of MLmodels and their predictions. This is where explain-
able artificial intelligence (XAI) comes in [8, 146]. It enables users to understand the inner
workings of these models and trust their generated outputs. In the aforementioned areas,
the significance of XAI has increased substantially due to the potential risks and conse-
quences related to inaccurate or biased predictions. This makes XAI techniques essential to
ensure the reliability, fairness, and accountability of AI systems [132]. First, the increasing
reliance on machine learning models, particularly complex ones like large language models,
has made the field of XAI indispensable. These models may have billions of parameters
or even more, which makes them hard to interpret. This lack of transparency raises trust
issues, especially in critical applications. For example, doctors may be reluctant to rely on
a deep model for diagnosing medical conditions if it cannot explain its predictions. Second,
without understanding how a model works, it can be difficult to diagnose problems when
the model fails to perform as expected. For example, if a self-driving car fails to detect an
obstacle and causes an accident, it is important to understand why the associated model
failed. This understanding is crucial for implementing effective corrections. Third, XAI is
essential to ensure fairness and accountability in decision-making. Machine learning mod-
els are increasingly used to make decisions that have a significant impact on people’s lives,
such as determining whether to grant a loan or hire a job candidate. If the model is biased
or unfair, it can have a negative impact on certain groups of people. XAI can help ensure
that models are fair and unbiased by providing insights into how the models arrive at their
decisions. Finally, XAI can help build trust and acceptance of machine learning models in
real-world applications. People are often skeptical of models they do not understand, and
this can lead to resistance or even rejection of the technology. By providing explanations
of how models work, XAI fosters trust and acceptance among users, which leads to more
widespread adoption of machine learning technologies.

1.2 Visualization for AI

Visualization transforms data into graphical forms such as charts, graphs, and maps, and
allows users to interact with it. Its interactive nature enables users to engage directly with
the data, often in real time. This interaction results in a more dynamic and personalized
understanding of the data presented. Visualization is frequently used in data analysis and
decision-making activities because it allows users to examine complex and massive data
from various angles and gain insights and understanding that may not be obvious through
othermethods. It has demonstrated effectiveness in providing explanations, facilitating com-
munication, and promoting human-machine collaboration [153]. This makes visualization a
suitable choice for fully understanding and analyzing AI systems [259, 270]. Visualization
can be particularly useful for understanding the data used to train machine learning models,
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the inner workings of these models, and how they arrive at their predictions. Consequently,
the area of visualization for artificial intelligence (VIS4AI) has emerged as an exciting area
for research and development. It offers many opportunities for advancing the use of visual-
ization techniques that can improve the interpretability and reliability of machine learning
models. In addition, VIS4AI fosters human-machine collaboration and paves the way for
more reliable and effective AI applications.

VIS4AI methods fully combine the advantages of interactive visualization and machine
learning techniques to facilitate the analysis and understanding of key components in the
learning process, with the aim of improving performance. For example, research in VIS4AI
that focuses on explaining the inner workings of deep neural networks has successfully
increased the transparency of deep models and has received growing attention from the
research community in recent years [44, 98, 154, 272]. These methods are applicable in all
phases of the machine learning lifecycle, from data preparation to model development.

As shown in Fig. 1.1, the machine learning lifecycle consists of two pipelines: a data
pipeline and a model pipeline. The data pipeline prepares the data for machine learning. It
typically includes data collection, data cleaning, data augmentation, and feature engineering.
The goal of this pipeline is to ensure that the training data collected is representative, unbi-
ased, and of high quality, while also ensuring that the training data contains the necessary
features for training amachine learningmodel. Awell-designed data pipeline guarantees not
only the accuracy and robustness of the model, but also its ability to effectively generalize
to new datasets. Themodel pipeline involves selecting, training, evaluating, and deploying
a machine learning model. This pipeline consists of both the model development and model
deployment stages.Model development centers on the creation, training, and optimization of
a machine learning model. This includes tasks such as model selection, training, validation,
and evaluation, all of which aim to identify the best model for the given task and improve its
performance. Model deployment aims to make a trained machine learning model available
for use in a production environment. This stage includes the tasks of monitoring the model
such as scalability, reliability, security, and fairness, as well as maintaining themodel such as
addressing concept drift. A well-designed model pipeline ensures that the model is accurate,
reliable, and robust and, therefore, capable of delivering effective and trustworthy results.

Both the data pipeline and the model pipeline are important components of machine
learning. They are often used in combination to build and deploy effective machine learning
models. By carefully designing and implementing each pipeline, machine learning practi-

Fig. 1.1 Machine learning lifecycle consists of a data pipeline and a model pipeline
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tioners can ensure that their models are accurate, robust, and effective in solving real-world
problems. VIS4AI methods seamlessly integrate with the well-established data pipeline and
the model pipeline essential for developing and deploying machine learning models. In the
data pipeline, VIS4AI techniques aim to improve the quality of data and features used to train
machine learning models. This includes tasks such as cleaning training data and creating
interpretable and meaningful features through feature engineering. VIS4AI techniques can
effectively identify and mitigate issues such as dataset bias, annotation inconsistency, and
outliers, which affect the accuracy and reliability of machine learning models. In the model
pipeline, VIS4AI techniques support the development and deployment of machine learn-
ing models. During model development, these techniques facilitate model understanding,
diagnosis, and steering. They employ visualizations to explore and understand the behav-
ior of the model, identify potential issues, and suggest improvements. Once the model has
been developed, the VIS4AI techniques assist in model deployment by enabling decision
explanation, model monitoring, and model maintenance. They use interactive visualization
techniques to explain the model decisions, monitor model performance in real time, and
maintain the performance by tackling the robustness and fairness issues.

1.3 The Development of VIS4AI

Over the past two decades, there has been a growing interest in the development of VIS4AI
techniques. The goal of these techniques is to enhance the generalizability, interpretability,
trustworthiness, and reliability of machine learning models by using visualization tech-
niques. This has become increasingly important as machine learning continues to be used in
various applications. To achieve this goal, many VIS4AI methods have been developed to
advance the understanding of how an ML model works and how it arrives at its predictions.
Figure1.2 summarizes the evolution of VIS4AI methods over time. The lower part outlines
the VIS4AI methods related to the data pipeline, and the upper part outlines the VIS4AI
methods related to the model pipeline. The VIS4AI methods on the model pipeline can be
classified into two categories based on their target users: model development tailored for
model developers and model deployment designed for model consumers.

Initial attempts in VIS4AI for the data pipeline focus on feature engineering, which
involves interactive feature selection [124] and feature creation [24]. Later, there are increas-
ing advocates for improving the quality of training data, including improving crowd-
sourced annotations [157], correction of mislabeled data [260], and the detection of out-
of-distribution samples [38]. The researchers also proposed to use unannotated data [37]
and multi-modal data [39] to improve model performance. Recently, efforts have been made
to reweight training samples in order to address data bias, including noisy labels and imbal-
anced class distributions in training datasets [267]. In addition, how to detect and analyze
data heterogeneity in federated learning is also studied [251].
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Fig. 1.2 The evolution of VIS4AI methods over time

Initial efforts in model development focus on utilizing visualization techniques to facili-
tate the understanding of classicalmodels such as neural networks [234], decision trees [232],
and regressionmodels [178].With the development of deepmodels, efforts have been shifted
to understanding various deep models such as convolutional neural networks (CNNs) [154],
recurrent neural networks (RNNs) [172], deep generative models (DGMs) [115], and
transformer-based models [53, 145]. Hereafter, researchers seek to diagnose the training
process of machine learning models [151] and the prediction results [27]. Recent efforts
focus on analyzing AutoML pipelines [186] and neural architecture search [271], and steer-
ing classical models [264] and deep models [175]. In the model deployment stage, the
researchers focused on analyzing concept drifts [263] and model fairness [26].

1.4 Conceptual Framework andMethod Overview

The core principle of VIS4AI is based on the well-established mantra of visual analytics,
which advocates the integration of interactive visualization and data analysis techniques to
facilitate human reasoning and decision-making processes. Keim et al. [119] defined visual


