Numerical
Python

Scientific Computing and Data Science
Applications with Numpy, SciPy and
Matplotlib

Third Edition

Robert Johansson

Apress’

Numerical Python

Robert Johansson

Apress-

Numerical Python: Scientific Computing and Data Science Applications with
Numpy, SciPy and Matplotlib

Robert Johansson
Urayasu-shi, Chiba, Japan

ISBN-13 (pbk): 979-8-8688-0412-0 ISBN-13 (electronic): 979-8-8688-0413-7
https://doi.org/10.1007/979-8-8688-0413-7

Copyright © 2024 by Robert Johansson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Gryffin Winkler

Copyeditor: Kim Burton

Cover designed by eStudioCalamar
Cover image by author

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit

www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0413-7
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:booktranslations@springernature.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
https://github.com/Apress
https://www.apress.com/gp/services/source-code

To Mika, Erika, and Mia

Table of Contents

Y 0T T € 1T] XV
About the TechniCal REVIEWENccureeeerirrsmmssssmsmnssssmssnsssssssssssssssnnsssssssnnssssssnnnnssnnnns Xvii

L0 0 [T (] | R () (

Chapter 1: Introduction to Computing with Python............ccccuscmmnsmmmsssnnmsssasssssnns 1
Environments for Computing with Python...........cocoveecicnnc e 4
110 o 4
101 Ty 0] =] (] SRS 4
IPYENON CONSOIE.......ceeeeeeeeeeceree e r e r e r e sr e sn e n e sn e sn e srenn e sn e nn e nn e nn s 5
Input and OULPUL CACKINGcveeieeeec e a e s a e a e s 6
Autocompletion and Object INtroSPECHION..........cccvverecrecr s 7
DOCUMENTALION ... 7
Interaction with the SySTem ShEll...........cooueerr e s 8
IPYENON EXTENSIONS ...cocvvieecee ettt e s s 8
10) 12
The JUPYLEr QECONSOIE.ccceeeerreerererree s se e rsa s e s re e e ae e s e e nnnnns 13
The JUPYLEr NOTEDOOKceeeeereercreee e r s r e r e nn s 14
] 0 (-] ol I T 16
Gl TYPRS.cuetereueererseesesrsseese s s se e e se e e s e s s ae e s A e Re e A e Re e e e R e R e e e e A e R e Re e e A e R e e e e e R e e e e e R e Rn e e e R e nn s 17
EQITING CRIIS ...ueeeteeeeerteteese st se s a e e e e s ne R e R e e e nnnn e s s 18
MArKAOWN CEIISveueeerereererisseesesesse e e s s s s s s e s sn s ne s p s e e e s e e e pe e e s e e e e nresn s 19
RiCh QUEPUL DISPIAY ...cuveviveeerirreesesesseesesssss e ss s ss s e s sa s se s s s ne s nn s e s s ssnsnnes 20
010 011 o P 24

TABLE OF CONTENTS

Spyder: An Integrated Development ENVironment.............ccccvveenienienniesnnensesessessesenens 25
SOUICE COUE EIONuvrecrircrrisisiss i 27
CONSOIES N SPYUETcuerivrceririe e e e e b e e b e e R et ne b e e e p e 27
00T B 1< (0] O 28

B30T] 1 - 28

Further Reading........cccvververienieriererense st ss s sn s sn s s s sa s sn s sae s 28

Chapter 2: Vectors, Matrices, and Multidimensional Arrayscccuussssssssmssssssssnes 29

IMPOrting the MOTUIEScceeeuereeeeererere e sa e n e 30

The NUMPY Array ODJECT..........ccoerereer e 30
D U B 0T OSSPSR 3
Order of Array Data in MEMOIY ..o a s sesn s 33

Crealing ArTAYS.....ccceereeeerrersersesse e ssessesse e ssessessessessessessesaesaesaesaesresnesaennesaesnennsnnennnnnnnnes 34
Arrays Created from Lists and Other Array-LiKe ODJECTSccoeeererererererineeresesee e 35
Arrays Filled with CONSEANT VAIUEScccouruiiiririce e 36
Arrays Filled with Incremental SEQUENCEScuceecrerircieririree e 37
Arrays Filled with LogarithmiC SEQUENCESceeeererrreeririreeseses e 37
MESIGEIA AITAYSecueeeieeecerieieeire e s e se s e e e R b e s e e e e s be e e e s R e e e e nse s 37
Creating UninitialiZed AITAYScccoureieeerereereririee e 38
Creating Arrays with Properties of Other Arrays...........ooocoerrencrrrenesesree s s 38
Creating MatriX AITAYScovcierererere e s et se s e st se s e e e b e e b et ae e ae b e e e e ae e ne st eaenananas 39

INAeXing @Nd SHCINGcocevirirere e sa e sa e sa e sn e sn e snenn e 40
ONE-DIMENSIONAI AITAYSeeveereeereerereraeserseserseressesessessssessssessesessessssessssessesessssssssssssessssessessssessssssassens 40
MUIRIAIMENSIONAI AITAYSeveeereeereerererasessesessesessesessessssessesessssessessssessesessssessssssessssessssessesessessssssansens 4
LT N 42
Fancy Indexing and Boolean-Valued INAEXINGccovcerrrerrerererersererseressersesessesessesesessssessesessssessesassens 43

Reshaping and RESIZING.......c.ccucurerrersersensensesssssessessessessessessessesssssssssssssssssssssssssssssssssssees 45

Vectorized EXPreSSIONSccvcercersersessessissesses s s e s e ses e s e e s s s s e s e snssnssnssnsssssnanssnnnns 48
Arithmetic OPErationS.........ccovu et 50
Elementwise FUNCLIONS ... 52

AQQregate FUNCLIONS..........cccoeeeeeirece ettt 55

TABLE OF CONTENTS

Boolean Arrays and Conditional EXPreSSions........ccccurrernnnsesensnssesesssssesesssssssesssssssesssssssssssssssenes 57
L 0] 0T 110 P 59
OPEratioNS ON AITAYScveveeeerirseeseresse e seses e s s e ss s se e se e e se e b e e e b b e e s b b e e b e b e et ee b e e e e e b e ae s 60
Matrix and Vector Operations...........ccvcvvrnrsensensnsis s sn e e s 61
1111 0P S 65
Further Reading........c.ccvcveerimriensessessessesses s s sn s snssn e s s snssnsnnssnnnnas 66
Chapter 3: Symbolic Computing........ccussemrmnsssnnnnmssssnnsmsssssssssssssssssssssssssssssssannness 67
IMPOFING SYMPY ... e r s se s n e e 67
SYMDIOIS....c. e ——————————————————— 68
NUMDEIS ..t A e E R e e e R e e e e s R e e e e e R e e e e e s e s s 70
(0TS (0] 75
Manipulating EXPreSSioNsccccveeerersersessesssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssnes 76
LS 13410 = 0o P 76
{02 1 o SRS 77
Factor, Collect, and COMDINE ..o srs s s b s s sas b s b s b b s snssnssnssnasnasnans 78
Apart, Together, and CANCEI ... e 79
SUDSHEULIONS. .. .cvcveeteectcteictceteie s b s s s s s s s e s s s e s e s nbssessansesesnsnsasasas 79
Numerical EVAlUGLION ..ot 80
07 11 81
DEIIVALIVESvvvisccsr s 82
INEBOTAIS.....eeveeeeeeeeseesesses s ses s s s s s R R 83
L3]S 85
LIMITS 1ottt —————— 86
SUMS AN PIOUUCTSoeviiissrriissss bbb 87
EQUALIONS.......cceiercriri s n e n e nnnn s 88
LiN@Ar AIGEIIAeeeeeeeeeereeererserre e sse s s e s ae e s e s e sn e snesaesae s e sn e snesnennennennennnnnnnnenas 90
31111 1P 2SS 93
Further Reading........c.ccvcvierimirenrersessessesses s se s sn s s s e s s snsnnnnnas 93

vii

TABLE OF CONTENTS

Chapter 4: Plotting and Visualizationccusccemmnnsssnmnmnssssssnmnssssssssssssssssssssssnsns 95
IMPOrtING MOUUIES ...t a e r e n e r e n e n e sr s sn e nn e nnnnnenas 96
GEttiNg STAMEdcc e ——————————— 96
Interactive and NONINtEractive MOTES...........cocoeeerererererererereresesesese e 99
FIQUIE ettt e s r s e e s nn e nn e nn e e e nn e nnnnn e nnnnnn 101
T SRS 102
PIOT TYPES ..ottt et e A e R e e b e Re e bR e e e R e e e 103
LN PrOPEITIES ...cvveeceereeiecisisie et se b n e e e e ne e e e 104
LI 0T T TSSO RT 108
Text Formatting and ANNOTAtIONS..........ccocrurueeeirrceer e 109
LR o (0] 1] (- SR ORS 110
Advanced AXes LayoUuLS.........ccccecrrerierncriee s 119
TS 119
L]0 0]) 3R 120
RS] 07 0] 0 0 o PR 122
0 123
(000 (0T P2 o (0] RSO RRS S 124
B I 0 SRS 126
E3 1111 P2 7SS 128
FUrther REadiNG.......c.cceverreiiirre e n e e 128
Chapter 5: Equation SoIVINGccccnmmmmsmmnmmmsssssnmmssssssnsmssssssnssssssssssssssssnsssssssnnnss 129
IMPOrtING MOUUIES ...t sre e e sr e saesre s s e srenresa e sresaesansnennennnnnennnnnns 130
Linear EQUAtioN SYSTEMS........cccoeeeeeierere e ssesne s s e snssnesns s snesnssnssnennnnns 130
SQUAIE SYSTBIMS......ceeeieeeirirees et e e R e se e b e e e e s e nn s 131
RectanguIar SYSIEMS..........coc e 135
Eigenvalue ProbIems.........ocvrininsnsner st n e 138
Nonlinear EQUALIONSc.cvoeiieiierierensessesses s e se e sn e s s e s sns e snssnssnsssnnnnns 139
Univariate EQUAtiONS........coceiiiiiiienene s sa s s a e s sa e s r e s a e st s a e b e sa e a e na e enn e s 140
Systems of Nonlinear EQUALIONS...........ccveecrerinicnerns e sss e ss s sessssssssssssssssnes 145

viii

TABLE OF CONTENTS

RS0 T2 149
FUrther Reading........cccoeevierrimrenirinss s s 149
Chapter 6: Optimization.........ccccunsemmnmnsssssnmmsssssnmmnssssnmessssn s —————— 151
IMPOrtING MOUUIES ...t sr e a e sr e sn e n e sn e sn e snenn e nnennennnnans 151
Classification of Optimization Problems..........cccccorirererernnc s 152
Univariate Optimizationccoceeeeiiennsce e 154
Unconstrained Multivariate Optimizationcccoeeeeecece s 156
Nonlinear Least Square Problems..........cccocrvrververiensenses s ses e e e s ssssnns 162
Constrained Optimizationccoceeiceensnesncse e 164

Lin@ar PrOgramImMiNgccccceeererieresesessessessessessessessessessessesassssssssssssssssssssasssssssssssssssssssssessssssssssssnsenes 168
1111 112 SRS 170
FUIThEr REAUING........ccereeerererirresesesee e en e 170
Chapter 7: Interpolationcccceemmmmnmnmmmssssssssmmmmmmssssssssnsssssssssa———" 171
IMPOrtiNg MOUUIES ..o e 171
11T 10 3R 172
POIYNOMIAIScceeererirer e sn s sn s sn e n e sn s nnennennen e 173
Polynomial INterpolation............ccuceeeeerennsesessnesne s sss e sse e sssesnes 175
Spline INTerpolationccoeeriieeniere e e 179
Multivariate Interpolation ... 181
SUMMEAIY ...ttt r s ne e s sae e s e e s e e s e a e e e nenn s e nnnnnnnnns 187
FUrther Reading.........cccvververiernercer st n e s s 187
Chapter 8: Integrationc.ccucsmmssesmmsssnmmssssmsssssnssssnnmsssssmsssssssssssssssnsssssnnssssnnnnss 189
IMPOrtING MOUUIEScveeeeeerereerrecrerse e e sse e se s e sae s s ssessesaensesnesresaesnesansnssnnsnnnsnnnnns 190
Numerical Integration Methods...........cocvcrercris s e 190
Numerical Integration With SCIPY........ccccovvrerieers e 194

Tabulated INTEGraNd..........o e r e e 196
Multiple INtegrationccoceerierrcr e —————— 198
Symbolic and Arbitrary-Precision Integrationcccvererercrcscscsse e 202

ix

TABLE OF CONTENTS

LiNE INTEQIAIS.....coveeeeeecesiresie st b e e bR e r e e R e R e R e e 204
Integral TrANSTOIMSccucoeeececee e e sr e s sr e r e snesn e nnenn 204
1111 P2 7SS 207
FUrther REadiNg.........ccevverreriir s n e s 207
Chapter 9: Ordinary Differential Equations...........cccunmmmmmmmsnnnnnnmmnsssssssnnssmmmn. 209
IMPOrtiNG MOUUIES ... e resresr e renr e sn e snesnesnesnennennsnnennnnnnns 209
Ordinary Differential EQUAtiONScccoeeeeerenecere e sne e sn e 210
Symbolic SOIULION 10 ODESccvverrerrerrerser s se s se s e e e sa e sneeas 211

DiIreCtion FIelUS.......cvuiiiiniriniir s 216

Solving ODEs Using Laplace TransSformationscccoceeevererereriesesseressersesessesessesesessssessssessssessesessens 219
Numerical Methods for SoIVing ODES..........cccceiernnirenniesnsesesesse e sessessssesnes 222
Numerical Integration of ODES USIiNG SCIPYccccocvvrirircircer s ses s senens 225
1111 P2 7SS 236
FUrther REadING.........ccevverreriirre et n e s 236
Chapter 10: Sparse Matrices and Graphs.......cccceuursmmmsssssssssnnsmsssmsssssssssessssnns 237
IMPOrtiNG MOUUIES ... e aesr e n e s e sr e snesnssnesnennennnnnennnnnnns 237
Sparse MatriCes iN SCIPY.......ccvcecececr e 238

Functions for Creating SParse MatriCescooreeeerrreierirreeser et 241

Sparse Linear Algebra FUNCHONS ...t 244

Linear EQUAtiON SYSTEMSccouciiieriieccriree st s s s neas 244

Graphs and NETWOTKS ..ot e s e 249
1111 P2 7SR 255
Further Reading........c.ccocevierieiiernenserses s ssessesse s se e e e s s e snssns s s snssnsnnnns 256
Chapter 11: Partial Differential Equations.......cccccicnnnnnssesssnnnnnnssnssssssssssnnssssnnes 257
IMPOrtiNG MOUUIES ...t e sae s e sresrsnr e sn e sresnesnesnennennnnnennnnans 258
Partial Differential EQUAtioNS.........c.ccocrircrirsssr s 258
Finite-Difference Methods..........ccovoriecrrcsrrr e 259
Finite-Element Methods ... s 264

SUrVEY Of FEM LIDIAIIES.....ccovercrirircrcrisire et ss s ss st se s sss s 266

TABLE OF CONTENTS

Solving PDES USing FENICS ..o sse e ses e snssesnens 267
1111 112 SRS 285
Further Reading........ccvcerveriiriirierrerserser s se st ss s e e se s s e sn s sassn s sn s e e 285
Chapter 12: Data Processing and AnalysSiS......ccccourrmssssssssssnnsssssssssssssssnnssssssssnns 287
IMPOrtING MOUUIES ... sa e s sa s sr e sa s sn e sn e sa e sa e sa s sn e nn e nnenens 288
Introduction to Pandas ... 288

RS T=] 1TSS 288

DALAFTAME 290

TIME SEIIBS ...cueeererereresirerere s ne e e e e e e ne e e e e e e e e e e e s 298
The Seaborn GraphiCs LIDFaryc..cccuceeieiernsssnsssessssesssssses s sssessssssssssens 307
RS0 2 312
Further Reading.........cooccevereiiirnninirirssisssss s 312
Chapter 13: StatiStiCScccorrmmmmmmnmmmmnmmmmsmnsssssssnr s ————— 315
IMPOrtING MOUUIES ... e saesre e s e aenresnesresaesnesnennennnnnnnnnnnns 315
Review of Statistics and Probability..........c.cccvvreririscr e 316
Random NUMDEIS.......occiiirii s 317
Random Variables and DistribUutionscccocvnnnnnncnnnsess s 320
HyPOthEsSiS TESHINGccccecerierierierse st n s sn s e sn e sn e nnann 327
Nonparametric MEthods..........ccvveeririerririer e n e s s s s neeaes 331
SUMMEATY ...ttt a s e b e s ae e e s e s e n e ae e e e nne e nanas 333
Further Reading.........ccvcevcerierierierser s se e sn s s sn s snesnesn e 334
Chapter 14: Statistical Modeling.......c..cccemrnssennnnssssnsnsmssssssnnsssssssssssssssssesssssnnns 335
IMPOrtING MOUUIES ...t sr e a e sr e sr e sn e sn s sn e snennennennennnnans 336
Introduction to Statistical MOAEIINGcccevereererrrerr e 336
Defining Statistical Models with Patsy...........cccocerirernienssresrc e 337
Lin@ar REGIESSIONccceeeererrerrerrersessessessessessessessessesssessansans 345

EXAMPIE DALASELS......cceieiierir e 351
DiSCrete REQreSSIONccceverierierirer st se e sn e sn s sn s sn e sn e sn e sn e 352

xi

TABLE OF CONTENTS

LOQISEIC REGIESSIONcveereiecriecrreir e s r e e p e b p e e n e e e nn e r e e 353

POISSON IMOTEI ...ttt 357
TIME SEIIBS v s se s ne s nnn s 360
RS0 2 363
Further Reading.........coocoevernninnnininsirssissssss s s 364
Chapter 15: Machine Learningccccuusssessssssssssnsssssssssssssssssnssssssssssssssssnssssssnnnnss 365
IMPOrtiNG MOUUIES ... e resresr e renr e sn e snesnesnesnennennsnnennnnnnns 366
Brief Review of Maching Learningc.ccecverversersensenscssessesses s ses s ses e e sessnssssssnenns 366
212 0TS (0] SRS 368
(0T T 0] TS 376
0 1T (=] T OSSR 380
1111 P2 7SS 384
Further Reading........c.ccoceeeerimiiernensessessessesses s se s se e s sns e s s snssnssnnnnnns 384
Chapter 16: Bayesian StatistiCS.......cccirmmmmmmmmmmnmmmmmmmmmmssssssnnnssssss. 385
IMPOrtiNG MOUUIES ...t sre s nenresnssresnssnesnennennnnnennnnnnns 386
Introduction to Bayesian StatistiCs..........cccevererereriscre e 386
Model DEFINIIONccueereiccrerce e 388

Sampling Posterior DiStrDULIONScc e nenna 393

LiNEAr REQIESSION......cceeuereeereeereeersesersesesaesesessesersesesaesessessssessesessesessesessssssessssessesesssnessssessessssessenees 396
SUMMEATY ...ttt a e e e e ae e e r e e s n e e ae e e e enennanas 407
Further Reading........c.ccvcerieriirieririrer st sn e sn s sn s sn s sn e nn e nn 407
Chapter 17: Signal ProcesSsingcccuusssssssssssssansssssnsssssssesssssssssnsesssnsssssnnssssnnssss 409
IMPOrtING MOUUIES ... e sr e r e sr e sn e sr e sr e snesn e sn s snesnennnnen 409
SPECIFAl ANAIYSISccveeeerirrirrer e a e sa s se e r e n e n e nn s 410

FOUNET TrANSTOIMS ... e 410

WINOOWING ... se e e se s se e e e s e e e e e e e e sesesesesesesesessssesesesenesesenes 415

S 0 L= 100 R 418
SIGNAI FILEI'S ...vcereeeerece et n s e s r s a s e ne s 421

xii

TABLE OF CONTENTS

L0 L0 L o] 1L 422
FIR @NU 1R FIEIS ..v.oovvveessereesssssseessssssssesss 424
SUMMEAY ...t s se s e r e s a e ae e s nnnnnnns 428
FUrther REAGING........cccoerureirereirere s s 428
Chapter 18: Data Input and OQutput.........cccciiimininmmnss s ——————— 429
IMPOrtING MOUUIES ... sa s sa e sa e sa s sn e sa e sa e sa e sa s sn e sn e snenens 430
Comma-Separated ValUes...........ccoeeererninenness s s sns s 430
HDFD......eececce sttt e e e 434
PBY cvvvveeeeeesssssessssssssssssssssessssssssessss s RS R R ERReRREERn 435
PYTADIES ...ttt A R e AR e Re e e 444
PaNAAs HDFSTOTE........cccouiuieerereeieeis e e s ssn e e n e e e 447
00 [449
USON. et R R E AR 451
SEHANZALIONcvieeeeecre e 454
RS0 - 456
Further Reading.........ccccceverriirnninirssrssssss s 456
Chapter 19: Code Optimization.......ccccovvnmmmmssssssnnmmmmmmmssssssnnse s ——————— 459
IMPOrtiNG MOUUIES ...t s e sr e nesr e sr e sresnesnesnennennnnnennnnnnns 461
1 1] 0 R 461
037 1T S SSSSSRS 467
SUMMAIY ...ttt a e s e e e ae e e e r e e s e n e e e ne e e nennaens 475
Further Reading........c.ccvcereriiriirirsiris st sn e sn s sn e nn e nnenn 476
Appendix: Installation.........cccccmmririnisssssssssmnmnmmnssssss s —————— 477
11T = 487

xiii

About the Author

Robert Johansson is an experienced Python programmer and
computational scientist with a Ph.D. in Theoretical Physics from Chalmers
University of Technology, Sweden. He has worked with scientific
computing in academia and industry for over 15 years and participated
in open source and proprietary research and development projects. His
open-source contributions include work on QuTiP, a popular Python
framework for simulating the dynamics of quantum systems, and he has
also contributed to several other popular Python libraries in the scientific
computing landscape. Robert is passionate about scientific computing
and software development, teaching and communicating best practices
for combining these fields with optimal outcomes: novel, reproducible,
extensible, and impactful computational results.

XV

About the Technical Reviewer

A

Shovon Sengupta is a distinguished data science expert specializing
in advanced predictive analytics, machine learning, deep learning, and
reinforcement learning. As the principal data scientist at the AI Center
of Excellence for Fidelity Investment in the United States, Shovon is
at the forefront of driving innovative initiatives that leverage artificial
intelligence (specifically Generative Al) to solve complex business
challenges. Shovon holds a US patent in automated predictive call routing
using reinforcement learning.

He has also authored a few courses in the realm of machine learning.
He has also presented at various international conferences on machine
learning, time series forecasting, and building trustworthy artificial
intelligence. His primary research is concentrated on deep reinforcement
learning, deep learning, natural language processing, knowledge graphs,
causality analysis, and time series analysis.

Shovon is also a PhD scholar specializing in applying machine learning algorithms in finance. His
primary research interests include deep reinforcement learning, natural language processing, knowledge
graphs, causality analysis, and time series analysis. His dedication to advancing the field of data science is
evident in his continuous pursuit of knowledge and innovation.

For more details about Shovon’s work, please check out his LinkedIn page at www.linkedin.com/in/

shovon-sengupta-272aa917/.

xvii

http://www.linkedin.com/in/shovon-sengupta-272aa917/
http://www.linkedin.com/in/shovon-sengupta-272aa917/

Introduction

Scientific and numerical computing is a booming field in research, engineering, and analytics. The
revolution in the computer industry over the last several decades has provided new and powerful tools for
computational practitioners. This has enabled computational undertakings of previously unprecedented
scale and complexity. Entire fields and industries have sprung up as a result. This development is ongoing,
creating new opportunities as hardware, software, and algorithms keep improving. Ultimately, the enabling
technology for this movement is the powerful computing hardware developed in recent decades. However,
for a computational practitioner, the software environment used for computational work is as important as,
if not more important than, the hardware on which the computations are carried out. This book is about one
popular and fast-growing environment for numerical computing: the Python programming language and its
vibrant ecosystem of libraries and extensions for computational work.

Computing is an interdisciplinary activity that requires experience and expertise in both theoretical
and practical subjects: a firm understanding of mathematics and scientific thinking is a fundamental
requirement for effective computational work. Equally important is solid training in computer programming
and computer science. The role of this book is to bridge these two subjects by introducing how scientific
computing can be done using the Python programming language and the computing environment that
has appeared around this language. In this book, the reader is assumed to have some previous training in
mathematics and numerical methods and basic knowledge of Python programming. The book’s focus is
to give a practical introduction to computational problem-solving with Python. Brief introductions to the
theory of the covered topics are provided in each chapter to introduce notation and remind readers of the
basic methods and algorithms. However, this book is not a self-consistent treatment of numerical methods.
To assist readers who have yet to become familiar with some of the topics of this book, references for further
reading are given at the end of each chapter. Likewise, readers without experience in Python programming
will find it helpful to read this book with a book that focuses on the Python programming language itself.

How This Book Is Organized

The first chapter in this book introduces general principles for scientific computing and the main
development environments available for computing in Python: the focus is on IPython and its interactive
Python prompt, the excellent Jupyter Notebook application, and the Spyder IDE.

Chapter 2 introduces the NumPy library and generally discusses array-based computing and its virtues.
Chapter 3 turns attention to symbolic computing—which in many respects complements array-based
computing—using the SymPy library. Chapter 4 covers plotting and visualization using the Matplotlib
library. These three chapters provide the basic computational tools used for domain-specific problems
throughout the rest of the book: numerics, symbolics, and visualization.

Chapter 5 focuses on equation solving and explores numerical and symbolic methods, using the SciPy
and SymPy libraries. Chapter 6 explores optimization, which is a natural extension of equation solving. It
mainly works with the SciPy library and briefly with the cvxopt library. Chapter 7 deals with interpolation,
another basic mathematical method with many applications, and important roles in higher-level
algorithms and methods. Chapter 8 covers numerical and symbolic integration. Chapters 5 to 8 cover core
computational techniques that are pervasive in all types of computational work. Most of the methods from
these chapters are found in the SciPy library.

Xix

INTRODUCTION

Chapter 9 covers ordinary differential equations. Chapter 10 is a detour into sparse matrices and graph
methods, which helps prepare the field for the following chapter. Chapter 11 discusses partial differential
equations, which conceptually are closely related to ordinary differential equations but require a different
set of techniques that necessitates the introduction of sparse matrices, the topic of Chapter 10.

Chapter 12 changes direction and begins exploring data analysis and statistics. It introduces the Pandas
library and its excellent data analysis framework. Chapter 13 covers basic statistical analysis and methods
from the SciPy stats package. Chapter 14 moves on to statistical modeling using the statsmodels library.

In Chapter 15, the theme of statistics and data analysis is continued with a discussion of machine learning
using the scikit-learn library. Chapter 16 wraps up the statistics-related chapters with a discussion of
Bayesian statistics and the PyMC library. Chapters 12 through 16 introduce the broad field of statistics and
data analytics, which has been developing rapidly within and outside the scientific Python community in
recent years.

Chapter 17 briefly returns to a core subject in scientific computing: signal processing. Chapter 18
discusses data input and output, and several methods for reading and writing numerical data to files, which
is a basic topic required for most types of computational work. Chapter 19 introduces two methods for
speeding up Python code using the Numba and Cython libraries.

The Appendix covers the installation of the software used in this book. This book uses the conda
package manager to install the required software (mostly Python libraries). Conda can also be used to create
virtual and isolated Python environments, which is an important topic for creating stable and reproducible
computational environments. The Appendix also discusses how to work with such environments using the
conda package manager.

Source Code Listings

Each chapter in this book has an accompanying Jupyter Notebook that contains the chapter’s source code
listings. These notebooks and the data files required to run them can be downloaded by visiting the book’s
GitHub page at https://github.com/Apress/Numerical-Python-3rd-ed.

XX

https://github.com/Apress/Numerical-Python-3rd-ed

CHAPTER 1

Introduction to Computing
with Python

This book is about using Python for numerical computing. Python is a high-level, general-purpose
interpreted programming language widely used in scientific computing and engineering. As a general-
purpose language, Python was not specifically designed for numerical computing, but many of its
characteristics make it well-suited for this task. First and foremost, Python is well known for its clean and
easy-to-read code syntax. Good code readability improves maintainability, reduces bugs, and leads to
better applications overall. It also enables rapid code development, since readability and expressiveness
are essential in exploratory and interactive computing, where fast turnaround for testing various ideas and
models is important.

In computational problem-solving, it is important to consider algorithms’ performance and
implementations. It is natural to strive for efficient high-performance code, and optimal performance is
crucial for many computational problems. In such cases, it may be necessary to use a low-level program
language, such as C or Fortran, to obtain the best performance out of the hardware that runs the code.
However, it is not always the case that optimal runtime performance should be the highest priority. It is also
important to consider the development time required to solve a problem in a programming language or an
environment. While the best possible runtime performance can be achieved in a low-level programming
language, working in a high-level language such as Python reduces the development time and often results
in more flexible and extensible code.

These conflicting objectives present a trade-off between high performance but long development time
and lower performance but shorter development time. Figure 1-1 shows a schematic visualization of this
concept. When choosing a computational environment for solving a particular problem, it is important to
consider this trade-off and to decide whether person-hours spent on the development or CPU-hours spent
on running the computations are more valuable. It is worth noting that CPU-hours are cheap and getting
even cheaper, but person-hours are expensive. Your own time is a very valuable resource. This makes a
strong case for minimizing development time rather than the computation runtime by using a high-level
programming language and environment such as Python and its scientific computing libraries.

© Robert Johansson 2024
R. Johansson, Numerical Python, https://doi.org/10.1007/979-8-8688-0413-7_1

https://doi.org/10.1007/979-8-8688-0413-7_1

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

Trade-off between
low- and high-level languages

CPU time 1 emmmmen [OW-lEVel language

s high-level language

Best possible
performance
after a significant S
amount of
development
effort

1 el >

/ / Development time

Development effort until first runnable
code that solves the problem

Figure 1-1. The trade-off between low- and high-level programming languages. While a low-level language
typically gives the best performance when a significant amount of development time is invested in the
implementation of a solution to a problem, the development time required to obtain a first runnable code that
solves the problem is typically shorter in a high-level language such as Python

A solution that partially avoids the trade-off between high- and low-level languages is to use a
multilanguage model, where a high-level language is used to interface libraries and software packages
written in low-level languages. In a high-level scientific computing environment, this type of interoperability
with software packages written in low-level languages (e.g., Fortran, C, or C++) is an important requirement.
Python excels at this type of integration, and as a result, Python has become a popular “glue language” used
as an interface for setting up and controlling computations that use code written in low-level programming
languages for time-consuming number crunching. This is an important reason why Python is a popular
language for numerical computing. The multilanguage model enables rapid code development in a high-
level language while retaining most of the performance of low-level languages.

Due to the multilanguage model, scientific and technical computing with Python involves much more
than just the Python language itself. In fact, the Python language is only a piece of an entire ecosystem of
software and solutions that provide a complete environment for scientific and technical computing. This
ecosystem includes development tools and interactive programming environments, such as Spyder and
IPython, which are designed particularly with scientific computing in mind. It also includes a vast collection
of Python packages for scientific computing. This ecosystem of scientifically oriented libraries ranges
from generic core libraries—such as NumPy, SciPy, and Matplotlib—to more specific libraries for problem
domains. Another crucial layer in the scientific Python stack exists below the various Python modules.
Many scientific Python libraries interface with low-level, high-performance scientific software packages,
such as optimized LAPACK and BLAS libraries' for low-level vector, matrix, and linear algebra routines or
other specialized libraries for specific computational tasks. These libraries are typically implemented in a
compiled low-level language and can be highly optimized and efficient. Without the foundation that such
libraries provide, scientific computing with Python would not be practical. Figure 1-2 is an overview of the
various layers of the software stack for computing with Python.

'For example, MKL, the Math Kernel Library from Intel at https://software.intel.com/en-us/intel-mk1;
openBLAS at www.openblas.net; or ATLAS, the Automatically Tuned Linear Algebra Software at http://math-
atlas.sourceforge.net

2

https://software.intel.com/en-us/intel-mkl;
http://www.openblas.net
http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

IPython console, Jupyter notebook, Spyder, ...

Python 3, ...

numpy, scipy, matplotlib, ...

OS, BLAS, LAPACK, ...

Figure 1-2. An overview of the components and layers in the scientific computing environment for Python,
Jfrom a user’s perspective from top to bottom. Users typically only interact with the top three layers, but the
bottom layer constitutes a very important part of the software stack

Tip The SciPy organization (www.scipy.org) provides a centralized resource for information about the
core packages in the scientific Python ecosystem, lists of additional specialized packages, and documentation
and tutorials. It is a valuable resource when working with scientific and technical computing in Python. Another
great resource is the Numeric and Scientific page on the official Python Wiki (http://wiki.python.org/
moin/NumericAndScientific).

Besides the technical reasons why Python provides a good environment for computational work, it
is also significant that it and its scientific computing libraries are free and open source. This eliminates
economic constraints on when and how applications developed with the environment can be deployed
and distributed by its users. Equally significant, it makes it possible for a dedicated user to obtain complete
insight into how the language and the domain-specific packages are implemented and what methods
are used. For academic work where transparency and reproducibility are hallmarks, this is increasingly
recognized as an important requirement of software used in research. For commercial use, it provides
freedom on how the environment is used and integrated into products and how such solutions are
distributed to customers. All users benefit from the relief of not paying license fees, which may otherwise
inhibit deployments on large computing environments, such as clusters and cloud computing platforms.
The social component of the scientific computing ecosystem for Python is another important aspect of
its success. Vibrant user communities have emerged around the core packages and many domain-specific
projects. Project-specific mailing lists, Stack Overflow groups, and issue trackers (e.g., on GitHub,
www. github.com) are typically very active and provide forums for discussing problems and obtaining help, as
well as a way of getting involved in developing these tools. The Python computing community also organizes
yearly conferences and meet-ups at many venues around the world, such as the SciPy (http://conference.
scipy.org) and PyData (http://pydata.org) conference series.

http://www.scipy.org
http://wiki.python.org/moin/NumericAndScientific
http://wiki.python.org/moin/NumericAndScientific
http://www.github.com
http://conference.scipy.org
http://conference.scipy.org
http://pydata.org

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

Environments for Computing with Python

Several different environments are suitable for working with Python for scientific and technical computing.
This diversity has both advantages and disadvantages compared to a single endorsed environment that is
common in proprietary computing products: diversity provides flexibility and dynamism that lends itself
to specialization for particular uses, but on the other hand, it can also be confusing for new users, and it
can be more complicated to set up a full productive environment. Here, I give an orientation of common
environments for scientific computing so that their benefits can be weighed against each other and an
informed decision can be reached regarding which one to use in different situations and for different
purposes. The following are the three environments discussed in this chapter.

e The Python interpreter or the IPython console run code interactively. Together with
a text editor for writing code, this provides a lightweight development environment.

e The Jupyter Notebook is a web application in which Python code can be written
and executed through a web browser. This environment is great for numerical
computing, analysis, and problem-solving because it allows us to collect the code,
the output produced by the code, related technical documentation, and the analysis
and interpretation all in one document.

e The Spyder Integrated Development Environment can write and interactively run
Python code. An IDE like Spyder is a great tool for developing libraries and reusable
Python modules.

These environments have justified uses, and it is largely a matter of personal preference for which one
to use. However, I recommend exploring the Jupyter Notebook environment, because it is highly suitable for
interactive and exploratory computing and data analysis, where data, code, documentation, and results are
tightly connected. For the development of Python modules and packages, I recommend using the Spyder
IDE because of its integration with code analysis tools and the Python debugger.

Python and the rest of the software stack required for scientific computing with Python can be installed
and configured in many ways, and in general, the installation details also vary from system to system. The
Appendix goes through one popular cross-platform method to install the tools and libraries required for
this book.

Python

The Python programming language and the standard implementation of the Python interpreter are
frequently updated and made available through new releases.? Currently, the active version of Python
available for production use is the Python 3 series; this book requires Python 3.8 or greater. Note that at
the time of writing, versions prior to Python 3.8 have already passed end-of-life, meaning they will no
longer receive important bug fixes and security updates. Should you encounter any such legacy Python
environment, it is therefore recommended that you upgrade the Python interpreter to a newer version.

Interpreter

The standard way to execute Python code is to run the program directly through the Python interpreter. On
most systems, the Python interpreter is invoked using the python command. When a Python source file is
passed as an argument to this command, the Python code in the file is executed.

2The Python language and the default Python interpreter are managed and maintained by the Python Software
Foundation (www. python.org).

4

http://www.python.org

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

$ python hello.py
Hello from Python!

Here, the hello. py file contains a single line.
print("Hello from Python!")

To see which version of Python is installed, we can invoke the python command with the --version
argument.

$ python --version
Python 3.11.4

It is common to have more than one version of Python installed on the same system. Each version
of Python maintains its own set of libraries and provides its own interpreter command (so each Python
environment can have different libraries installed). On many systems, specific versions of the Python
interpreter are available through commands such as python3.11. It is also possible to set up virtual Python
environments independent of the system-provided environments, which has many advantages. I strongly
recommend becoming familiar with this way of working with Python. Appendix A describes setting up and
working with these kinds of environments.

In addition to executing Python script files, a Python interpreter can be used as an interactive console
(also known as a REPL (read-evaluate-print-loop)). Entering python at the command prompt (without any
Python files as arguments) launches the Python interpreter in an interactive mode. When doing so, you are
presented with a prompt.

$ python

Python 3.11.4 (main, Jul 5 2023, 08:41:25) [Clang 14.0.6] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

From here, Python code can be entered, and for each statement, the interpreter evaluates the code and
prints the result to the screen. The Python interpreter itself already provides a very useful environment for
interactively exploring Python code, especially since the release of Python 3.4, which includes basic facilities
such as a command history and basic autocompletion.

IPython Console

Although the interactive command-line interface provided by the standard Python interpreter has been
greatly improved in the Python interpreter itself, it is still, in certain aspects, rudimentary, and it does not
provide a complete environment for interactive computing. IPython® is an enhanced command-line REPL
environment for Python, with additional interactive and exploratory computing features. For example,
IPython provides improved command history browsing (also between sessions), an input and output
caching system, improved auto-completion, more verbose and helpful exception tracebacks, and more.
IPython is now much more than an enhanced Python command-line interface, which is explored in more
detail later in this chapter and throughout the book. For instance, under the hood, IPython is a client-server
application that separates the front end (user interface) from the back end (kernel) and executes the Python
code. This allows multiple types of user interfaces to communicate and work with the same kernel, and a
user-interface application can connect multiple kernels using IPython’s framework for parallel computing.

3See the IPython project web page, http://ipython.org, for more information and its official documentation.

http://ipython.org

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

Running the ipython command launches the IPython command prompt.

$ ipython

Python 3.11.4 (main, Jul 5 2023, 08:41:25) [Clang 14.0.6]

Type 'copyright', 'credits' or 'license' for more information
IPython 8.12.2 -- An enhanced Interactive Python. Type '?' for help
In [1]:

Caution Each IPython installation corresponds to a specific version of Python. If several versions of Python
are available on your system, you may also have several versions of IPython. On many systems, IPython for
Python 3 is invoked with the ipython3 command, although the exact setup varies from system to system. Note
that here, the “3” refers to the Python version, which differs from the version of IPython itself (at the time of
writing it is 8.12.2).

The following sections briefly overview some of the IPython features that are most relevant to
interactive computing. It is worth noting that IPython is used in many different contexts in scientific
computing with Python, for example, as a kernel in the Jupyter Notebook application and in the Spyder IDE,
which is covered in more detail later in this chapter. It is time well spent to get familiar with the tricks and
techniques that IPython offers to improve your productivity when working with interactive computing.

Input and Output Caching

In the IPython console, the input prompt is denoted as In [1]: and the corresponding output is denoted as
Out [1]:, where the numbers within the square brackets are incremented for each new input and output.
These inputs and outputs are called cells in IPython. The input and the output of previous cells can later

be accessed through the In and Out variables that IPython automatically creates. The In and Out variables
are a list and a dictionary, respectively, that can be indexed with a cell number. For instance, consider the
following IPython session.

In [1]: 3 * 3

Outf1]: 9

In [2]: In[1]

Out[2]: '3 * 3'

In [3]: Out[1]

Out[3]: 9

In [4]: In

Out[4]: [", "3 * 3", "In[1]", 'Out[1]", "In']
In [5]: Out

Out[5]: {2: 9, 2: '3 *3', 3:9, 4: [", '3 *3', "In[1]", 'Out[1]', 'In', 'Out']}

Here, the firstinput was 3 * 3, and the result was 9, which later is available as In[1] and Out[1]. A
single underscore _ is a shorthand notation for referring to the most recent output, and a double underscore
__refers to the output that preceded the most recent output. Input and output caching is often useful in
interactive and exploratory computing since the result of a computation can be accessed even if it was not
explicitly assigned to a variable.

Note that when a cell is executed, the value of the last statement in an input cell is, by default, displayed
in the corresponding output cell unless the statement is an assignment or if the value is Python null value
None. The output can be suppressed by ending the statement with a semicolon.

6

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

In [6]: 1 + 2

out[6]: 3

In [7]: 1 + 2; # output suppressed by the semicolon

In [8]: x =1 # no output for assignments

In [9]: x = 2; x # these are two statements. The value of 'x' is shown in
the output

Out[9]: 2

Autocompletion and Object Introspection

In IPython, pressing the TAB key activates autocompletion, which displays a list of symbols (variables,
functions, classes, etc.) with names that are valid completions of what has already been typed. The
autocompletion in IPython is contextual, and it looks for matching variables and functions in the current
namespace or among the attributes and methods of a class when invoked after the name of a class instance.
For example, 0s.<TAB> produces a list of the variables, functions, and classes in the os module, and pressing
TAB after typing os.w results in a list of symbols in the os module that starts with w.

In [10]: import os
In [11]: os.w<TAB>
os.wait os.wait3 os.wait4 os.waitpid os.walk os.write os.writev

This feature is called object introspection, a powerful tool for interactively exploring the properties
of Python objects. Object introspection works on modules, classes, attributes, methods, functions, and
arguments.

Documentation

Object introspection is convenient for exploring the API of a module, such as its member classes and
functions, and together with the documentation strings or docstrings that are commonly provided in Python
code, it provides a built-in dynamic reference manual for almost any Python module that is installed and can
be imported. A Python object followed by a question mark displays the documentation string for the object.
This is similar to the Python function help. An object can also be followed by two question marks, in this
case, IPython tries to display more detailed documentation, including the Python source code, if available.
For example, to display help for the cos function in the math library.

In [12]: import math

In [13]: math.cos?

Signature: math.cos(x, /)

Docstring: Return the cosine of x (measured in radians).
Type: builtin_function_or method

Docstrings can be specified for Python modules, functions, classes, and their attributes and methods.
A well-documented module includes full API documentation in the code itself. From a developer’s point of
view, it is convenient to document a code together with the implementation. This encourages writing and
maintaining documentation, and Python modules tend to be well-documented.

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

Interaction with the System Shell

IPython also provides extensions to the Python language that make interacting with the underlying system
convenient. Anything that follows an exclamation mark is evaluated using the system shell (such as bash
shell). For example, on a Unix-like system, such as Linux or macOS, listing files in the current directory can
be done using the following.

In[14]: !1s
filel.py file2.py file3.py

In Microsoft Windows, the equivalent command would be !dir. This method for interacting with the
operating system is a powerful feature that makes it easy to navigate the file system and use the IPython
console as a system shell. The output generated by a command following an exclamation mark can easily be
captured in a Python variable. For example, a file listing produced by !1s can be stored in a Python list using
the following.

In[15]: files = !ls

In[16]: len(files)

3

In[17] : files

['file1l.py', 'file2.py', 'file3.py']

Likewise, we can pass the values of Python variables to shell commands by prefixing the variable name
with a $ sign.

In[18]: file = "filel.py"
In[19]: !1s -1 ¢$file
-IW-T--r-- 1 rob staff 131 Oct 22 16:38 filel.py

This two-way communication with the IPython console and the system shell can be very convenient,
for example, when processing data files.

[Python Extensions

IPython provides extension commands that are called magic functions in IPython terminology. These
commands all start with one or two % signs.* A single % sign is used for one-line commands, and two %
signs are used for commands that operate on cells (multiple lines). For a complete list of available extension
commands, type %1smagic, and the documentation for each command can be obtained by typing the magic
command followed by a question mark.

In[20]: %1lsmagic?
Docstring: List currently available magic functions.
File: /usr/local/lib/python3.6/site-packages/IPython/core/magics/basic.py

*When %automagic is activated (type %automagic at the IPython prompt to toggle this feature), the % sign that
precedes the IPython commands can be omitted, unless there is a name conflict with a Python variable or
function. However, for clarity, the % signs are explicitly shown here.

8

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

File System Navigation

In addition to the interaction with the system shell described in the previous section, IPython provides
commands for navigating and exploring the file system. These commands are familiar to Unix shell users:
%1s (list files), %pwd (return current working directory), %cd (change working directory), %cp (copy file),

%less (show the content of a file in the pager), and %%writefile filename (write content of a cell to the

file filename). Note that autocomplete in [Python also works with the files in the current working directory,
which makes IPython as convenient to explore the file system as the system shell. It is worth noting that
these IPython commands are system-independent and can be used on both Unix-like operating systems and
Windows.

Running Scripts from the IPython Console

The %run command is an important and useful extension, perhaps one of the most important features of
the IPython console. This command can execute an external Python source code file within an interactive
IPython session. Keeping a session active between multiple runs of a script makes it possible to explore
the variables and functions defined in a script interactively after the execution of the script has finished. To
demonstrate this functionality, consider a script file fib.py that contains the following code.

def fib(n):

Return a list of the first n Fibonacci numbers.

fo, f1 =0, 1

f=1[1] *n
for i in range(1, n):
f[i] = fo + f1
fo, f1 = f1, f[i]
return f
print(fib(10))

It defines a function that generates a sequence of n Fibonacci numbers and prints the result for 7 =10 to
the standard output. It can be run from the system terminal using the standard Python interpreter.

$ python fib.py
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

It can also be run from an interactive IPython session, which produces the same output but also adds
the symbols defined in the file to the local namespace so that the fib function is available in the interactive
session after the %run command has been issued.

In [21]: %run fib.py

Out[22]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
In [23]: %who

fib

In [23]: fib(6)

Out[23]: [1, 1, 2, 3, 5, 8]

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

The preceding example also used the %who command, which lists all defined symbols (variables and
functions).® The %whos command is similar, but also gives more detailed information about the type and
value of each symbol, when applicable.

Debugger

IPython includes a handy debugger mode, which can be invoked postmortem after a Python exception
(error) has been raised. After the traceback of an unintercepted exception has been printed to the IPython
console, it is possible to step directly into the Python debugger using the IPython command %debug. This
possibility can eliminate the need to rerun the program from the beginning using the debugger or after
employing the common debugging method of sprinkling print statements into the code. If the exception is
unexpected and happens late in a time-consuming computation, this can be a big time-saver.

To see how the %debug command can be used, consider the following incorrect invocation of the fib
function defined earlier. It is incorrect because a float is passed to the function while the function is implemented,
assuming that the argument passed to it is an integer. On line 7 the code runs into a type error, and the Python
interpreter raises an exception of TypeError. IPython catches the exception and prints a useful traceback of
the call sequence on the console. If we are clueless about why the code on line 7 contains an error, entering the
debugger by typing %debug in the IPython console could be useful. We then get access to the local namespace at
the source of the exception, which can allow us to explore in more detail why the exception was raised.

In [24]: fib(1.0)

TypeError Traceback (most recent call last)
<ipython-input-24-874ca58a3dfb> in <module>()

----> 1 fib.fib(1.0)

/Users/rob/code/fib.py in fib(n)

5 nnn
6 fo, f1 =0, 1
--=-> 7 f=1[1] *n
8 for i in range(1, n):
9 f[n] = fo + f1

TypeError: can't multiply sequence by non-int of type 'float'
In [25]: %debug
> /Users/rob/code/fib.py(7)fib()
6 fo, fi=o0,1
-—-> 7 f=1[1] *n
8 for i in range(1, n):
ipdb> print(n)
1.0

Tip Type a question mark at the debugger prompt to show a help menu that lists available commands.
ipdb> ?

More information about the Python debugger and its features is available in the Python Standard Library
documentation: http://docs.python.org/3/1library/pdb.html.

*The Python function dir provides a similar feature.

10

http://docs.python.org/3/library/pdb.html

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

Reset

Resetting the namespace of an IPython session is often useful to ensure that a program is run in a pristine
environment, uncluttered by existing variables and functions. The %reset command provides this
functionality (use the —f flag to force the reset). Using this command can often eliminate the need for
otherwise common exit-restart cycles of the console. Although it is necessary to reimport modules after
the %reset command has been used, it is important to know that even if the modules have changed since
the last import, a new import after a %reset does not import the new module but rather reenable a cached
version of the module from the previous import. When developing Python modules, this is usually not the
desired behavior. In that case, a reimport of a previously imported (and since updated) module can often
be achieved by using the reload function from IPython.1ib.deepreload. However, this method does not
always work, as some libraries run code at import time that is only intended to run once. In this case, the
only option might be to terminate and restart the IPython interpreter.

Timing and Profiling Code

The %timeit and %#time commands provide simple benchmarking facilities useful when looking for
bottlenecks and attempting to optimize code. The %timeit command runs a Python statement several times
and estimates the runtime (use %%timeit to do the same for a multiline cell). The exact number of times
the statement is run is determined heuristically unless explicitly set using the -n and -1 flags. See %timeit?
for details. The %timeit command does not return the resulting value of the expression. If the result of the
computation is required, the %time or %%time (for a multiline cell) commands can be used instead, but %time
and %%time only run the statement once and give a less accurate estimate of the average runtime.

The following example demonstrates a typical usage of the %timeit and %time commands.

In [26]: %timeit fib(100)

100000 loops, best of 3: 16.9 ps per loop

In [27]: result = %time fib(100)

CPU times: user 33 ps, sys: 0 ns, total: 33 ps
Wall time: 48.2

While the %timeit and %time commands are useful for measuring the elapsed runtime of a
computation, they do not give detailed information about what part of the computation takes more time.
Such analyses require a more sophisticated code profiler, such as the one provided by the Python standard
library module cProfile.® The Python profiler is accessible in IPython through the %prun (for statements)
and %run commands with the -p flag (for running external script files). The output from the profiler is rather
verbose and can be customized using optional flags to the %prun and %run -p commands (see %prun? for a
detailed description of the available options).

As an example, consider a function that simulates N random walkers, each taking M steps, and then
calculates the furthest distance from the starting point achieved by any of the random walkers.

In [28]: import numpy as np

In [29]: def random_walker max_distance(M, N):
Simulate N random walkers taking M steps, and return the largest
Distance from the starting point achieved by any of the random
walkers.

SWhich can, for example, be used with the standard Python interpreter to profile scripts by running python -m
cProfile script.py

11

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

trajectories = [np.random.randn(M).cumsum() for _ in range(N)]
return np.max(np.abs(trajectories))

Calling this function using the profiler with %prun results in the following output, which includes
information about how many times each function was called and a breakdown of the total and cumulative
time spent in each function. From this information, we can conclude that in this simple example, the calls to
the np.random.randn function consume the bulk of the elapsed computation time.

In [30]: %prun random_walker max_distance(400, 10000)
20011 function calls in 0.285 seconds
Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

10000 0.181 0.000 0.181 0.000 {method 'randn’ of
‘mtrand.RandomState' objects}

10000 0.053 0.000 0.053 0.000 {method 'cumsum' of
"numpy.ndarray' objects}

1 0.020 0.020 0.277 0.277 2615584822.py:3(
random_walker max_distance)
0.019 0.019 0.253 0.253 2615584822.py:8(<Llistcomp>)

1 0.008 0.008 0.285 0.285 <string>:1(<module>)
1 0.004 0.004 0.004 0.004 {method 'reduce' of
"numpy.ufunc' objects}
1 0.000 0.000 0.285 0.285 {built-in method builtins.exec}
1 0.000 0.000 0.004 0.004 fromnumeric.py:71(_wrapreduction)
1 0.000 0.000 0.004 0.004 fromnumeric.py:2692(max)
1 0.000 0.000 0.000 0.000 fromnumeric.py:72(<dictcomp>)
1 0.000 0.000 0.000 0.000 fromnumeric.py:2687(_max_dispatcher)
1 0.000 0.000 0.000 0.000 {method 'disable' of

' Isprof.Profiler' objects}
1 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects}

Interpreter and Text Editor as Development Environment

In principle, the Python or the IPython interpreter and a good text editor are all required for a fully
productive Python development environment. This simple setup is, in fact, the preferred development
environment for many experienced programmers. However, the following sections look at the Jupyter
Notebook and Spyder’s integrated development environment. These environments provide richer features
that improve productivity when working with interactive and exploratory computing applications.

Jupyter

The Jupyter project” is a spin-off from the IPython project that includes the Python independent frontends—
most notably the notebook application, which is discussed in more detail in the following section—and the
communication framework that enables the separation of the frontend from the computational backends,

For more information about Jupyter, see http://jupyter.org.

12

http://jupyter.org

CHAPTER 1 © INTRODUCTION TO COMPUTING WITH PYTHON

known as kernels. Prior to the creation of the Jupyter project, the notebook application and its underlying
framework were a part of the IPython project. However, because the notebook frontend is language agnostic
(it can also be used with many other languages, such as R and Julia), it was spun off a separate project to
better cater to the wider computational community and avoid a perceived bias toward Python. Now, the
remaining role of IPython is to focus on Python-specific applications, such as the interactive Python console,
and to provide a Python kernel for the Jupyter environment.

In the Jupyter framework, the front end can be connected to multiple computational backend kernels,
for example, for different programming languages, versions of Python, or for different Python environments.
The kernel maintains the state of the interpreter. It performs the actual computations, while the front end
manages how code is entered and organized and how the results of calculations are visualized to the user.

This section discusses the Jupyter QtConsole and Notebook frontends. It briefly introduces some of
their rich display and interactivity features and the workflow organization that the notebook provides. The
Jupyter Notebook is the Python environment for computational work that I generally recommend in this
book, and the code listings in the rest of this book are understood to be read as if they are cells in a notebook.

The Jupyter QtConsole

The Jupyter QtConsole is an enhanced console application that can substitute for the standard IPython
console. The QtConsole is launched by passing the gtconsole argument to the jupyter command.

$ jupyter gtconsole

This opens a new IPython application in a console that can display rich media objects such as images,
figures, and mathematical equations. The Jupyter QtConsole also provides a menu-based mechanism for
displaying autocompletion results, and it shows docstrings for functions in a pop-up window when typing the
opening parenthesis of a function or a method call. A screenshot of the Jupyter Qtconsole is shown in Figure 1-3.

[NON) Jupyter QtConsole

Jupyter QtConsole 5.4.2

Python 3.10.12 (main, Jul 5 2023, 15:34:07) [Clang 14.0.6]

Type 'copyright', 'credits' or 'license' for more information
IPython 8.12.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import sympy

In [2]: sympy.init_printingQ)

In [3]: x = sympy.symbols("x")
In [4]: i = sympy.Integral(x**2, (x, 0, 1)); i
Out[4]:

Figure 1-3. A screenshot of the Jupyter QtConsole application
13

