
Synthesis Lectures on Data Management

Alberto Lerner · Philippe Bonnet

Principles of
Database and
Solid-State
Drive Co-Design

Synthesis Lectures on Data Management

Series Editor

H. V. Jagadish, University of Michigan, Ann Arbor, MI, USA

This series publishes lectures on data management. Topics include query languages,
database system architectures, transaction management, data warehousing, XML and
databases, data stream systems, wide scale data distribution, multimedia data manage-
ment, data mining, and related subjects.

Alberto Lerner · Philippe Bonnet

Principles of Database
and Solid-State Drive
Co-Design

Alberto Lerner
Computer Science Department
University of Fribourg
Fribourg, Switzerland

Philippe Bonnet
Department of Computer Science
University of Copenhagen
Copenhagen, Denmark

ISSN 2153-5418 ISSN 2153-5426 (electronic)
Synthesis Lectures on Data Management
ISBN 978-3-031-57876-2 ISBN 978-3-031-57877-9 (eBook)
https://doi.org/10.1007/978-3-031-57877-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-57877-9

Foreword

When I acquired my first hard disk drive in 1988, it was a modest 5.25-inch disk with
a 30 MB capacity. Looking back, neither its storage capacity nor its performance was
remarkable, but compared to the floppy diskettes of that era, it felt like a leap into a
new realm. Over time, the performance of computer systems has advanced at an aston-
ishing pace. Hard disk drives (HDDs), which have been a cornerstone of data storage
for decades, are swiftly making way for solid-state drives (SSDs). SSDs stand out as a
fascinating storage solution for several reasons. They offer exceptional performance and
substantial storage capacities. The high-performance feature of SSDs can be attributed to
the advent of the NVMe interface, purpose-built for SSDs, and the parallel operation of
multiple flash memory components. NVMe not only facilitates rapid data transfers but
also unlocks new horizons for storage capabilities, significantly enhancing overall com-
puter system performance and introducing features that were once elusive with HDDs,
such as computational storage.

At present, I am involved in SSD development at a memory semiconductor com-
pany, working on diverse SSD types, including those designed for servers, PCs, and
laptops. With each generation of interfaces, SSDs continue to push the boundaries of
capacity and performance. Moreover, SSDs can be tailored to harmonize seamlessly with
server and computer systems, unlocking numerous additional features and performance
enhancements. Nevertheless, despite most storage products efficiently fulfilling their roles,
there is still limited progress in optimizing performance and functionality through vertical
integration.

Vertical optimization necessitates a profound comprehension of both the host system
and the storage device. While the roles of the host system and the storage device remain
distinct, the richness of the semantics supported by interfaces has unlocked the potential
for vertical optimization. Surprisingly, there is only a limited body of literature explor-
ing software and hardware layers from applications to devices, especially concerning
interactions related to database applications prevalent in servers and data centers.

This is where Philippe and Alberto, two researchers whom I deeply admire, come
into the picture. They are diligently crafting a book that addresses precisely these topics.
Their substantial body of work in storage vertical optimization has left an indelible mark,

v

vi Foreword

inspiring me to delve into their papers and engage in research with my students. It is with
immense pleasure and a sense of honor that I write this message after finally getting a
glimpse of their draft.

Philippe and Alberto are wonderful advocates for open-source SSD, called OpenSSD,
and have been exceptional mentors. When I embarked on my journey with OpenSSD
alongside my university students, my initial motivation was to contribute to their remark-
able efforts. Despite the myriad challenges they faced, they have made remarkable
contributions to OpenSSD, presenting their findings at prestigious conferences and
journals.

As we stand on the cusp of a new era in storage interfaces, one that promises to
usher in a wave of groundbreaking storage devices, the landscape of data access is on the
brink of transformation. These new storage devices are poised to deliver lightning-fast
data access performance for data centers and AI applications, paving the way for novel
vertical optimizations. Traditional block devices are evolving to embrace byte device char-
acteristics, offering enhanced data access efficiency. This efficiency surge is empowered
by the storage device’s deeper understanding of the host system.

I eagerly anticipate this book’s publication for the fresh insights it provides and how
collaborations with my colleagues to expedite product development will benefit. I trust
you will find this book to be a source of enlightenment about the present and future of
storage.

Seoul, South Korea
October 2023

Yong Ho Song

Preface

The motivation to write this book started perhaps some ten years ago. At that time,
Philippe had his Research Statement posted online, and, thanks to one of those coin-
cidences that life is full of, Alberto got a glimpse at it. Philippe had argued that storage
devices and their stack should be more flexible than they were at the time. There were
some ideas on how to use software—programmability, really—to put that flexibility into
the hands of application writers. Right there, Philippe got Alberto’s attention, even though
neither of us realized it at the time. We have started a conversation that has lasted ever
since and culminates in this book.

The book attempts to describe a Solid-State Drive as a layered system. We are far
from the first to talk about SSDs’ inner workings, but we felt that such information was
too scattered. Certain layers are interfaces to devices and are commonly discussed in the
context of File or Operating Systems. Other layers are firmware that live inside the device
and are published at very specific storage venues. Lastly, some layers consist entirely of
hardware and present idiosyncrasies that are less accessible to software programmers. By
presenting the layers in a single place, we hope to give the reader a better chance at
comprehending a typical device’s behavior.

However, consolidating information was but an initial goal. We also wanted to formu-
late and substantiate what can be seen as the book’s central claim: SSDs are malleable.
There should be no such thing as a standard behavior for this class of device. Our premise
is that if we understand what an application wants from a device, we can (increasingly
easily) tailor it to meet these needs. By doing so, we can achieve much better performance
and efficiency throughout the entire system. We say that SSDs and the applications using
them can be co-designed. This is no small claim; generations of SSD users have been
trained to unilaterally adapt their applications to how a mythical standard SSD works,
never to try to decide how the device and the application may, together, accomplish a
task.

But to which applications should we tailor SSDs? In the book, we focus on data-
intensive applications, such as database systems, for two reasons. First, we are familiar
with these systems, having helped build several of them throughout our careers. Second,
these systems generate a rich set of workloads that can be easily characterized. If we

vii

viii Preface

know a workload, that is, the patterns and sensitivities that an application exposes while
performing I/Os, we can alter a traditional SSD structure to better adapt to these.

Therefore, the core of the book lies in the chapters that describe such alterations.
Indeed, we created a classification of techniques to change devices. Chapter 4 describes
how to do so by attaching a computational element between an SSD and an application.
Neither the application nor the device is changed internally, but now the application can
issue requests beyond fetching and storing data that the computational element will carry
out.

Chapter 5 discusses how to affect behavioral changes in an entirely different way. It
swaps specific subsystems within an SSD so as to perform tasks in a way that benefits
the target workloads. In other words, in contrast to the external changes made in compu-
tational devices, the changes here are all internal, and no new element is introduced to
the device.

Chapter 6 takes a hybrid approach to customizing devices. It mixes the techniques seen
in the previous two chapters by allowing both internal component changes and additions.
These three chapters introduce a new taxonomy through which we study the different
techniques. We tried to fill the discussions in these chapters with actual device examples,
both commercial and academic.

There are many ways for readers to prepare before getting to those core chapters. Those
already exposed to SSD internals, the OS storage stack details, and the interface between
both could warm up in the introduction presented in Chapter 1 and jump straight into one
of the core chapters. If we mention concepts in those chapters introduced elsewhere, we
try to leave links connecting the two.

For the beginner or intermediate readers, we recommend looking into Chapters 2 and
3 after the Introduction. They discuss layers that will come in handy when talking about
the different ways we believe devices could be co-designed along with the applications
that use them. For the curious reader, regardless of their level, we tried to get to the very
fundamentals of Flash memory in Appendix A. We also paint a portrait of an SSD as an
orchestration of several algorithms in Appendix B.

Lastly, we humbly feel that this book is in its infancy and hope that, if it helps other
researchers and practitioners, we could improve it in a future edition. Your feedback as a
reader would go a long way. In the meantime, we sincerely hope you enjoy the book. We
certainly had a blast writing it.

Fribourg, Switzerland
Copenhagen, Denmark
January 2024

Alberto Lerner
Philippe Bonnet

Acknowledgments

We are indebted to Yong Ho Song and to the many students and collaborators who have
helped shape our understanding of the field. We would like to name in no particular
order: Sangjin Lee, Kibin Park, Jinwoo Jeong, Luc Bouganim, Björn Þór Jónsson, Niclas
Hedam, Matias Björling, Simon Lund, Ivan Luiz Piccoli, and Javier Gonzalez.

Alberto received funding from the Swiss State Secretariat for Education (SERI) in the
context of the SmartEdge EU project (grant agreement No. 101092908). Philippe received
funding from the European Union’s Horizon 2020 Research and Innovation Programme
(grant agreement No. 957407/Daphne).

ix

Contents

1 Introduction . 1
1.1 A Cambrian Explosion . 1
1.2 How Did We Get Here? . 3
1.3 The Modern Era of Storage . 6
1.4 A Taxonomy of Specialized Devices . 8
1.5 Structure of the Book . 11
References . 12

2 Internal Interfaces . 13
2.1 The Life of a Write . 13
2.2 Lower Subsystem . 15

2.2.1 The Flash Interface Controller . 16
2.2.2 The Flash Channel Controller . 17

2.3 Middle Subsystem . 19
2.3.1 The Data Cache Area and Manager . 20
2.3.2 The Flash Translation Layer . 20
2.3.3 The Scheduler . 21

2.4 Upper Subsystem . 21
2.4.1 The NVMe Controller . 22
2.4.2 The Command Manager . 22

2.5 Workloads Characterization and Interference . 23
2.5.1 Interference in Garbage Collection . 25
2.5.2 Interference Due to Cache Policy . 26
2.5.3 Interference During Read Operations . 27
2.5.4 Interference Due to Overpowering Workload 27

2.6 A Glimpse into Reprogrammable Devices . 28
2.7 Take-Aways . 29
References . 30

xi

xii Contents

3 External Interfaces . 31
3.1 Introduction . 31
3.2 Historical Perspective . 32

3.2.1 Block Devices . 33
3.2.2 POSIX I/Os . 34
3.2.3 Legacy . 35

3.3 PCIe . 36
3.3.1 Protocol . 36
3.3.2 Fabric . 39
3.3.3 BAR Apertures . 40
3.3.4 DMAs . 41

3.4 NVMe . 43
3.4.1 Queue Pairs . 44
3.4.2 Transport Model . 46
3.4.3 Storage Model . 48
3.4.4 Command Sets . 49
3.4.5 Cross-Layer Communications . 51

3.5 I/O Interfaces . 53
3.6 Take-Aways . 56
References . 56

4 Computational Storage . 59
4.1 Motivation . 59
4.2 Historical Perspective . 62

4.2.1 Active Disks . 62
4.2.2 Near-Data Processing . 63
4.2.3 Programming the Storage Infrastructure . 63
4.2.4 Research Prototypes and Commercial Products 63

4.3 SNIA Standard . 66
4.4 NVMe Standard . 67
4.5 On-Path Versus Off-Path Architectures . 69
4.6 Code Offload . 70
4.7 Examples of Computational Devices . 70

4.7.1 Scan Workload . 70
4.7.2 Buffer Flushes . 71

4.8 Take-Aways . 71
References . 72

5 Reprogrammed Devices . 75
5.1 Motivation . 75
5.2 Deconstructing the Streams Directive . 77
5.3 Standard Reprogrammed Devices . 79

Contents xiii

5.3.1 Zoned Namespaces Devices . 79
5.3.2 Key-Value Device . 80
5.3.3 Predictable Latency Mode . 80

5.4 Academic Reprogrammed Devices . 81
5.4.1 GraphSSD . 82
5.4.2 FLIXR . 83
5.4.3 Group-Aware Buffering . 84

5.5 Reprogrammability . 86
5.6 Take-Aways . 86
References . 87

6 Co-Designed Devices . 89
6.1 Motivation . 89
6.2 Examples of Co-Design Devices . 90

6.2.1 Early Predicate Execution . 91
6.2.2 Alternative Write Data Path . 94
6.2.3 In-Storage LSM Compactions . 97

6.3 Design Space for Co-Designed Devices . 99
6.3.1 Reasoning About Computational Sites . 99
6.3.2 Programmability . 101

6.4 Take-Aways . 103
References . 103

7 Conclusion . 105
References . 107

Appendix A: Anatomy of a Flash Array . 109

Appendix B: Internal Algorithms . 123

About the Authors

Alberto Lerner has a mixed industrial and academic profile with over 30 years of expe-
rience. He was a research or software technical staff at numerous tech companies, such
as IBM, Google, and MongoDB, or a consultant at many database start-ups. His interest
revolves around high-scale, high-performance distributed systems, particularly using het-
erogeneous hardware to support them. He has participated in designing and implementing
several such systems, including, more recently, the X-SSD device and ongoing efforts to
create more easily programmable co-designed devices.

Alberto has been a Senior Researcher at the Computer Science Department of the
University of Fribourg in Switzerland since 2018. He has been on several Program Com-
mittees for the Database and Systems communities, including SIGMOD, VLDB, CIDR,
EDBT, ICDE, and Usenix ATC.

Philippe Bonnet is an experimental computer scientist with a background in database
systems. For 30 years, Philippe has explored the design, implementation, and evaluation of
database systems in the context of successive generations of computer classes, including
wireless sensor networks, computer clusters, and most recently computational storage.
Philippe is an expert on storage system software. He contributed to the uFlip Benchmark,
the Linux multi-queue block layer, the Linux framework for Open-Channel SSDs, the OX
architecture for computational storage, the xNVMe library, and Delilah, a prototype for
eBPF offload on computational storage.

Philippe is a professor at DIKU, the Department of Computer Science of the University
of Copenhagen. He was faculty at the IT University from 2009 to 2023. He is a trustee
of the VLDB Endowment and currently chairs the ACM EIG on Reproducibility and
Replicability.

xv

