

Peter Klein Michael Kennedy

Fundamentals of Plastics Thermoforming

Second Edition

This series publishes concise books on topics that include advanced and state-of-the-art methods to understand and develop materials for optics. Leading experts on the subject present and discuss both classical and new wave theory, techniques, and interdisciplinary applications in the field. Optical materials play an integral role in the development of numerous advances in areas from communications to sensors to photonics and more, and this series discusses a broad range of topics and principles in condensed matter physics, materials science, chemistry, and electrical engineering.

Peter Klein · Michael Kennedy

Fundamentals of Plastics Thermoforming

Second Edition

Peter Klein Ohio University Athens, OH, USA Michael Kennedy Stocker Center Ohio University Athens, OH, USA

ISSN 2691-1930 ISSN 2691-1949 (electronic) Synthesis Lectures on Materials and Optics ISBN 978-3-031-63527-4 ISBN 978-3-031-63528-1 (eBook) https://doi.org/10.1007/978-3-031-63528-1

1st edition: © Springer Nature Switzerland AG 2009

2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Dedicated to my loving wife, children, and grandchildren.

Peter Klein

Acknowledgements

Arvind Polymers, Chennai, India www.arvindpolymers.com
Brown Machine LLC, Beaverton, MI www.bmg-solutions.com
Engineered Plastic Products Inc. (EPPI), Stirling, NJ www.engineeredplastic.com
Helton Inc., Morrison, TN www.heltonplastics.com
Tooling Tech Group, Ft. Loramie, OH www.toolingtechgroup.com

Contents

1	Intr	oductio	n	1
	1.1	Introdu	uction to Thermoforming	1
		1.1.1	Common Thermoformed Products	1
	1.2	Why U	Jse Thermoforming?	7
		1.2.1	Advantages of Thermoforming	7
		1.2.2	Limitations/Disadvantages of Thermoforming	9
	1.3	Plastic	Memory	11
	1.4	Proces	ses Comparison	13
		1.4.1	Injection Molding	14
		1.4.2	Blow Molding	15
		1.4.3	Rotational Molding	15
2	Plastics Materials			
	2.1	Introdu	uction	17
	2.2	Molec	ular Structure	19
	2.3	Morph	ology	21
	2.4	Van Der Waals' Forces		22
		2.4.1	Discovering Van Der Waals' Forces	23
	2.5	Most U	Used Materials	24
		2.5.1	Polystyrene (PS)	26
		2.5.2	Acrylonitrile Butadiene Styrene (ABS)	26
		2.5.3	Polyvinyl Chloride (PVC)	27
		2.5.4	Polymethyl Methacrylate (PMMA or Acrylic)	27
		2.5.5	High Density Polyethylene (HDPE)	27
		2.5.6	Low Density Polyethylene (LDPE)	27
		2.5.7	Polypropylene (PP)	28
		2.5.8	Cellulosics	28

x Contents

		2.5.9	Polyethylene Terephthalate (PET)	28
		2.5.10	Green Plastics	28
	2.6	Importa	ant Terminology	29
		2.6.1	Heat Deflection Temperature (HDT)	29
		2.6.2	Glass Transition Temperature (Tg)	29
		2.6.3	Melt Temperature (Tm)	30
		2.6.4	Polymer Set Temperature	30
		2.6.5	Homopolymer	30
		2.6.6	Thermoforming Window	30
3	The	rmoforn	ning Process Overview	31
	3.1		ermoforming Process	31
	3.2	Sheet P	reparation	35
		3.2.1	Drying	35
	3.3	Loading	g	36
	3.4	Heating	ţ	36
	3.5	Forming	g	39
	3.6	Cooling	· · · · · · · · · · · · · · · · · · ·	41
	3.7	Unload	ing	41
	3.8	Trimmi	ng	42
4	The	Forming	g Process	45
	4.1	Forming	g Introduction	45
	4.2	Mechan	nical Forming	45
	4.3	Vacuum	n Forming	48
	4.4	Pressure	e Forming	49
	4.5	Combin	nation Forming Processes	50
		4.5.1	Drape Forming	51
		4.5.2	Pneumatic Preforming	52
		4.5.3	Mechanical Preforming	54
	4.6	Twin Sl	heet Thermoforming	54
	4.7	Lamina	ting Thermoforming	56
5	Part	Design		57
	5.1	Design	Questions	57
	5.2	Wall Th	nickness Variation	58
		5.2.1	Plug Versus Cavity	58
	5.3	Draw R	tatios	63
		5.3.1	Aerial Draw Ratio (ADR)	64
		5.3.2	Linear Draw Ratio (LDR)	65
		5.3.3	Height—to—Dimension Ratio	66
	5.4	Materia	l Selection	67

Contents xi

	5.5	Part Ge	eometry	67
		5.5.1	Corners and Radii	67
		5.5.2	Draft Angles	68
		5.5.3	Depth of Draw	69
		5.5.4	Webbing	70
		5.5.5	Undercuts or Negative Draft	71
	5.6	Part Ap	pplication Issues	72
		5.6.1	Useful Temperature Range	72
		5.6.2	Strength Requirements	73
		5.6.3	Stiffness	73
	5.7	Quality	Requirements	74
		5.7.1	Cosmetics	74
		5.7.2	Optics	75
		5.7.3	Dimensional Tolerances	75
	5.8	Texture	ed Surface Finishes	75
6	Mol	d/Tool D	Design	77
	6.1		e of the Mold or Tool	77
	6.2	-	Materials	78
		6.2.1	Low Volume Mold Making	78
	6.3	Mold C	Geometry/Shrinkage	82
	6.4		Z	83
	6.5		rature Control	87
	6.6	Multi C	Cavity Molds	89
7	Oua	lity Con	itrol Issues	91
	7.1	•	ction	91
	7.2	Materia	al Source	91
		7.2.1	Regrind	92
		7.2.2	Sheet Orientation	92
		7.2.3	Orientation Test	93
		7.2.4	Moisture	96
		7.2.5	Cosmetics	96
	7.3	Process	Quality	97
		7.3.1	Machine Set-Up	97
		7.3.2	Variation	97
		7.3.3	Tool Quality	98
		7.3.4	Facility Quality	98
	7.4	Quality	Inspection	99
		741	Quality Tools	99

XII	ontent	

	vironmental Issues
	Introduction
	Source Reduction
	Recycling
8.4	Material Selection
8.5	Green Plastics

About the Author

Dr. Peter Klein was the Chair of the Department of Engineering Technology and Management in the Russ College of Engineering and Technology at Ohio University in Athens, Ohio. He was a faculty member since 1990 and was responsible for the development and teaching of a variety of courses including Industrial Plastics, Plastics Forming and Fabrication, Plastics Molding Processes, Quality Assurance, Introduction to Manufacturing, Introduction to Manufacturing Processes, and Product Manufacturing. He also taught Operations Management for the College of Business at the undergraduate, graduate, executive MBA, and international MBA levels. Prior to joining the faculty at Ohio University, he held various management positions in the manufacturing operations areas within Hewlett Packard, IBM, and AMPEX corporations. He began developing and teaching classes in plastics processing in 1975 at Colorado State University.

Dr. Klein has authored numerous publications in the areas of plastics processing, operations management, and quality assurance. He regularly made presentations on these topics at national and international conferences. He was a member of the Society of Plastics Engineers, the Association of Rotational Molders International, the American Society of Engineering Educators, and the Association of Technology, Management and Applied Engineering.

Michael Kennedy is the assistant director of Ohio University's Institute for Sustainable Energy and the Environment (ISEE). His research mostly focuses on manufacturing processes but he has also collaborated on numerous projects in a wide range of fields including emissions & particulate control, recyclability of post-consumer plastic materials, material science, AI/ML uses in manufacturing, and automation. Previously Michael was an assistant professor in the Department of Engineering Technology and Management in the Russ College of Engineering & Technology at Ohio University in Athens, Ohio for 8 years. He developed and taught a variety of courses including Industrial Plastics, Plastics Forming & Fabrication, Production Tooling, Introduction to Manufacturing, Metal Machining, and Product Design. Michael was the faculty mentor for the NFPA fluid power vehicle challenge team. He is a member of SME, EPT and ATMAE. He also serviced 16 years in the Army with deployments to both Iraq and Afghanistan.