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To my sons Nityan and Haris



Preface 

The fundamental dynamical variables of any physical system take values in what is 
referred to as the phase space. The geometry and topology of this space play a guiding 
role in the dynamics of the physical system. While this was well-appreciated and 
well-understood in classical dynamics, early formulations of quantum mechanics 
did not have an easy flexibility to accommodate features of geometry and topology. 
Over the years, this problem was addressed with increasing levels of sophistication. 
Geometric quantization gives an elegant framework for accommodating geomet-
rical and topological features of the phase space. By now there are many books 
and mathematically sophisticated reviews of this topic. Most of these focus on the 
formalism and some of the subtleties involved. While this is of great value, I think that 
highlighting a variety of diverse applications, especially those which are physically 
motivated and interesting, can be a very useful complementary approach. This book 
is an attempt in this direction. In keeping with this motivation, most of the material 
here is presented from a physicist’s point of view. 

Some of the topics were covered in lectures at different summer schools in theo-
retical physics. More recently, a skeletal draft of most of the topics was prepared 
for lectures at the Second Autumn School on High Energy Physics & Quantum 
Field Theory in Yerevan, Armenia, in October 2014. This book is an augmented and 
updated version of the lecture notes. 

I thank all the organizers of the summer school in Armenia for the invitation to 
speak there. I have discussed some of these topics with my colleagues and express 
my thanks for their insights and comments. I also thank my wife Dimitra for collabo-
rations, discussions and for a span of time free from mundane worries while working 
on this. This work was supported in part by the U.S. National Science Foundation 
Grant PHY-2112729. 

New York, USA 
May 2024 

V. Parameswaran Nair
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Chapter 1 
Introduction 

A physical theory, as a logical explanation of physical phenomena, is to be constructed 
taking account of general principles and incorporating data and information from 
experiments. Any effects we attribute to the quantum nature of phenomena should be 
included from the outset. A classical description may then be obtained, in a suitable 
regime of parameters, as a useful and simpler working approximation. The flow of 
logic should thus be: 

. 
General principles+
experimental input

⎞
=⇒ Quantum theory =⇒ Classical approximation.

But the build-up of a theory along these lines is almost never done in practice. 
Primarily, this is because, at the human level of direct experience, most phenomena 
are well described by classical dynamics, and hence our intuition about physical 
systems is mostly classical. So we tend to start there and try to “quantize” the classical 
theory. This is a process with many ambiguities, but over the course of many years, 
we have learned to understand the structure of this procedure of quantization. In 
this book, we will attempt to describe some aspects of geometric quantization and 
consider a few examples or applications. 

We will begin with some general observations on why we need such a proce-
dure as geometric quantization. This is best illustrated by an example. Consider the 
elementary quantum mechanics of a single particle in three spatial dimensions. The 
operators of position.x̂i , i = 1, 2, 3 and momentum. p̂i obey the Heisenberg algebra 

. x̂ i x̂ j − x̂ j x̂ i = 0

x̂ i p̂ j − p̂ j x̂
i = i δij (1.1) 

p̂i p̂ j − p̂ j p̂i = 0 

As is well known these have the standard Schrödinger representation on the .x-
diagonal wave functions .ψ(x), 
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2 1 Introduction

.x̂ i ψ = xi ψ, p̂i ψ = −i
∂

∂xi
ψ (1.2) 

Notice that the commutation rules (1.1) and the specific representation (1.2) are  
expressed in terms of Cartesian coordinates. While we know that we should have the 
freedom of choosing any set of coordinates for the classical description, constructing 
the commutation rules and the operators in coordinate systems other than the Carte-
sian one is not straightforward. What is usually done in textbook solutions, say, of 
the Hydrogen atom in spherical polar coordinates is to set up the quantum theory 
and the Schrödinger equation first in the Cartesian basis (with . p̂2 = −∇2) and then 
make a change of coordinates. While this is an adequate working procedure for many 
situations, it is clearly unsatisfactory; one would like a procedure that works directly 
without the crutch of the Cartesian system. Also, in situations where we may have a 
curved space or a curved phase space, a quantization procedure which takes account 
of the geometry of the manifold is not just a desirable choice, but is actually needed. 

There are also situations, such as in field theory, where the dynamical variables 
are components of fields and have no obvious Cartesian-like structure. In assigning 
commutation rules to the components of fields, a more general procedure is then 
called for. Geometric quantization is a partial answer to these concerns. It highlights 
the geometry and topology of the phase space and gives insights into many physical 
situations. But as it stands, it is still not a complete answer to the issues mentioned 
above. We will comment on some of these inadequacies later in the text. 

There are many other approaches to quantization as well. Quantum theory may be 
viewed as a unitary irreducible representation (UIR) of the algebra of observables, 
the latter being selected by physical criteria [ 1]. The algebra itself must satisfy certain 
conditions so as to have the correct physical requirements. Generally it ends up as 
a .C∗-algebra with further additional conditions equivalent to symmetries or other 
desirable properties (such as Lorentz invariance, relativistic causality) and so on. In 
relativistic field theory, this would lead to a von Neumann algebra. Here we are 
not going to pursue such an algebraic approach to quantization. Instead, we will 
consider the essential geometry (which has to do with the symplectic structure) of 
the classical theory and work out how a quantum theory can be constructed. This 
will be done in the language of Hamiltonians and Hilbert space. The key principle 
of quantization, as always, is that canonical transformations of the classical theory 
should be represented as unitary transformations on the Hilbert space of states in the 
quantum theory. 

There is yet another approach to the quantum theory, the functional integral 
approach, which is formulated directly in terms of the action and can be made man-
ifestly covariant if the theory of interest has relativistic invariance [ 2, 3]. Here we 
will not discuss this formulation either, but some points of overlap will be pointed 
out as the occasion arises.
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Chapter 2 
Symplectic Form and Poisson Brackets 

We start with the formulation of theories in the symplectic language [ 4, 5]. Later, we 
will briefly discuss how this is connected to the action which may be used to specify 
the physical theory. 

2.1 Symplectic Structure 

In the analytical formulation of classical physics, the key concept is the phase space, 
which is a smooth even dimensional orientable manifold .M (say, of dimension .2n) 
endowed with a symplectic structure . Ω . By this we mean that there is a differential 
2-form .Ω defined on .M which is closed and nondegenerate. Closure means that 
.dΩ = 0, where. d denotes exterior differentiation. The qualification “nondegenerate” 
refers to the fact that for any vector field . ξ on . M , if  .iξΩ = 0, then . ξ must be zero. 
Here. iξ indicates interior contraction with the vector field. ξ. We will use.qμ to denote 
local coordinates on . M . In terms of these, we can write 

.Ω = 1

2
Ωμν dq

μ ∧ dqν (2.1) 

The closure condition .dΩ = 0 can be written out as 

. dΩ ≡ 1

2

∂Ωμν

∂qα
dqα ∧ dqμ ∧ dqν

= 1

3!
[
∂Ωμν

∂qα
+ ∂Ωαμ

∂qν
+ ∂Ωνα

∂qμ

]
dqα ∧ dqμ ∧ dqν

= 0 (2.2) 

© The Author(s) 2024 
V. P. Nair, Geometric Quantization and Applications to Fields and Fluids, 
SpringerBriefs in Physics, https://doi.org/10.1007/978-3-031-65801-3_2 

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65801-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2
https://doi.org/10.1007/978-3-031-65801-3_2

