

James Hughes · Sheridan Houghten · Michael Dubé · Daniel Ashlock · Joseph Alexander Brown · Wendy Ashlock · Matthew Stoodley

Al Versus Epidemics

Synthesis Lectures on Learning, Networks, and Algorithms

Series Editor

Lei Ying, ECE, University of Michigan-Ann Arbor, Ann Arbor, USA

The series publishes short books on the design, analysis, and management of complex networked systems using tools from control, communications, learning, optimization, and stochastic analysis. Each Lecture is a self-contained presentation of one topic by a leading expert. The topics include learning, networks, and algorithms, and cover a broad spectrum of applications to networked systems including communication networks, data-center networks, social, and transportation networks.

James Hughes · Sheridan Houghten · Michael Dubé · Daniel Ashlock · Joseph Alexander Brown · Wendy Ashlock · Matthew Stoodley

AI Versus Epidemics

James Hughes St. Francis Xavier University Antigonish, NS, Canada

Michael Dubé University of Guelph Guelph, ON, Canada

Joseph Alexander Brown Department of Computing Science Thompson Rivers University Kamloops, BC, Canada

Matthew Stoodley Department of Mathematics and Statistics University of Guelph Guelph, ON, Canada Sheridan Houghten Department of Computer Science Brock University St. Catharines, ON, Canada

Daniel Ashlock University of Guelph Guelph, ON, Canada

Wendy Ashlock Guelph, ON, Canada

 ISSN 2690-4306
 ISSN 2690-4314 (electronic)

 Synthesis Lectures on Learning, Networks, and Algorithms
 ISBN 978-3-031-64372-9
 ISBN 978-3-031-64373-6 (eBook)

 https://doi.org/10.1007/978-3-031-64373-6
 ISBN 978-3-031-64373-6
 ISBN 978-3-031-64373-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

At the beginning of the COVID-19 pandemic, the authors of this book formed a research group that met weekly to discuss how we could apply our research to the public health emergency. The group includes mathematicians, computer scientists, and bioinformaticians. We have expertise in computational intelligence including evolutionary algorithms, genetic programming, and agent-based modelling and in combinatorial graph theory. We all worked though the pandemic, moving our minds from our normal diverse tasks. We were compelled by the moment to work on this problem. Given the severity of the problem, we felt a responsibility to use and develop technologies to enable and inform the most effective and least disruptive solutions. Besides doing this research, we took on our roles as educators, many of us speaking locally on vaccine deployment and public health topics.

Our first idea was that when (and if) vaccines were developed they were likely to be in short supply. So, we started by developing a "smart" system for vaccine deployment that would minimize the spread of the virus with the fewest possible vaccines. The system would be based on an agent-based model of the spread of the epidemic in combinatorial graphs representing contact networks. Along the way, we developed techniques for creating models of contact networks from the public data released on the number of cases each day and also techniques for visualizing and interpreting results on very large graphs.

In the event that vaccines were developed, our communities chose to use a much simpler algorithm for deployment—give the vaccine first to the people most at risk. This was a reasonable decision, and we do not fault the hard-working public health decision makers. Our hope is that the tools in this book will help with making plans for the next epidemic, possibly limiting the need for lockdowns or allowing for smarter lockdowns. The tools developed are also useful for solving other problems. For people working on those problems, we hope that this book provides a helpful example of how our techniques can be applied.

We sadly lost Daniel Ashlock while this book was being written. His last public lecture in 2021 was talking about the Russian Sputnik V vaccine at a meeting of a

Western-focused university in Kazan, debunking the various claims about 5G networks, government tracking, and sterilization. He was responsible for a number of people "on the fence" getting inoculated, including a few who would later be diagnosed with COVID and survive. Till the end he was selfless and trying to save lives, even as his own was nearing the end. This book has been completed in his memory and in the hope that his work will continue to inspire students to use their knowledge to help others.

Antigonish, Canada St. Catharines, Canada Guelph, ON, Canada Guelph, Canada Guelph, Canada Niagara-on-the-Lake, Canada Guelph, Canada August 2022 James Hughes Sheridan Houghten Michael Dubé Matthew Stoodley Daniel Ashlock Joseph Alexander Brown Wendy Ashlock

Acknowledgments

This research was supported in part by ResearchNS' Nova Scotia COVID-19 Health Coalition, consisting of Dalhousie University, Dalhousie University Medical Research Foundation, QEII Health Science Centre Foundation, IWK Foundation, Dartmouth General Hospital Foundation, Nova Scotia Health Authority, and Research Nova Scotia.

This research was also supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This research was enabled in part by support provided by Compute Ontario (www. computeontario.ca), ACENET (www.ace-net.ca/), and Compute Canada (www.comput ecanada.ca).

This research was also supported in part by the Heaps Chair Endowment Fund at St. Francis Xavier University through the Dr. H. Stanley and Doreen Alley Heaps Chairship, which promotes the constructive interaction of computer science with liberal arts, such as language and communication, ethics, philosophy, political science, and social history.

August 2022

James Hughes Sheridan Houghten Michael Dubé Matthew Stoodley Daniel Ashlock Joseph Alexander Brown Wendy Ashlock

Contents

1	Introduction				
	1.1	Overview of Concepts	2		
	1.2	Organization of the Book	3		
	References				
2	Evolutionary Computation				
	2.1	Evolutionary Algorithms	7		
		2.1.1 Representation	8		
		2.1.2 Fitness	10		
		2.1.3 Selection	11		
		2.1.4 Genetic Operators	11		
	2.2	Putting it Together	13		
	2.3	Genetic Programming	14		
	2.4	Representation and Language	14		
	2.5	Selection and Genetic Operators	15		
	2.6	Genetic Programming for Vaccine Distribution	16		
	2.7	7 The Takeaway			
	References				
3	Gra	ph Compression	21		
	3.1	Concepts of Graph Compression	22		
		3.1.1 Lossy Versus Lossless Compression	22		
	3.2		25		
		3.2.1 Representation	25		
		3.2.2 Initial Population	26		
		3.2.3 Selection	30		
		3.2.4 Crossover	30		

		3.2.5	Mutation	31		
		3.2.6	Fitness Function	32		
		3.2.7	Multi-objective Algorithm	33		
	3.3	Weigh	ted Graph Compression	33		
		3.3.1	Changes in Edge Weights During Compression			
			and Decompression	34		
		3.3.2	Fitness Function	37		
	Refe	erences		38		
4	Network Induction					
	4.1	Evolut	ionary Algorithm	39		
		4.1.1	Representation	40		
		4.1.2	Initialization	43		
		4.1.3	Fitness Evaluation	44		
		4.1.4	Selection	46		
		4.1.5	Reproduction	46		
		4.1.6	Mutation	47		
		4.1.7	Parameter Selection	47		
	4.2	Apply	ing to Epidemic Data	50		
		4.2.1	Real Life Data	50		
	4.3	Visual	izations	51		
		4.3.1	Visualizing Evolved Networks	51		
	Refe	erences		53		
5	Vaccine Distribution					
	5.1	How E	Best to Vaccinate a Population	55		
	5.2	Graph	s as a Representation for Social Contact Networks	57		
		5.2.1	Graph Measures	59		
	5.3	The SI	EIR Model of an Infectious Disease	63		
	5.4	Simula	ating an Infectious Disease Scenario with Interventions	64		
	5.5	Geneti	c Programming for Finding Vaccination Strategies	65		
	5.6	Genera	ated Strategies	68		
	Refe	erences		72		
6	Network Induction Issues					
	6.1	Search	1 Space	75		
		6.1.1	Numerically Representing Graphs	76		
		6.1.2	Comparing Representations	78		
		6.1.3	Surrogate Representations	81		
	6.2	Impact	t of Choice of Starting Graph	82		