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Foreword

This short book is the result of various master and summer school courses I
have taught. The objective is to introduce the readers to mathematical control
theory, both in finite and infinite dimension. In the finite-dimensional context, we
consider controlled ordinary differential equations (ODEs); in this context, existence
and uniqueness issues are easily resolved thanks to the Picard-Lindelof (Cauchy-
Lipschitz) theorem. In infinite dimension, in view of dealing with controlled partial
differential equations (PDEs), the concept of well-posed system is much more
difficult and requires to develop a bunch of functional analysis tools, in particular
semigroup theory—and this, just for the setting in which the control system is
written and makes sense. This is why I have split the book into two parts, the
first being devoted to finite-dimensional control systems, and the second to infinite-
dimensional ones.

In spite of this splitting, it may be nice to learn basics of control theory for finite-
dimensional linear autonomous control systems (e.g., the Kalman condition) and
then to see in the second part how some results are extended to infinite dimension,
where matrices are replaced by operators, and exponentials of matrices are replaced
by semigroups. For instance, the reader will see how the Gramian controllability
condition is expressed in infinite dimension, and leads to the celebrated Hilbert
Uniqueness Method (HUM).

Except the very last section, in the second part I have only considered linear
autonomous control systems (the theory is already quite complicated), providing
anyway several references to other textbooks for the several techniques existing
to treat some particular classes of nonlinear PDEs. In contrast, in the first part on
finite-dimensional control theory, there are much less difficulties to treat general
nonlinear control systems, and I give here some general results on controllability,
optimal control, and stabilization.

Of course, whether in finite or infinite dimension, there exist much deeper results
and methods in the literature, established however for specific classes of control
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systems. Here, my objective is to provide the reader with an introduction to control
theory and to the main tools allowing to treat general control systems. I hope this
will serve as motivation to go deeper into the theory or numerical aspects that are
not covered here.

Paris, France Emmanuel Trélat
March 2024
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Part 1
Control in Finite Dimension



Chapter 1 ®
Controllability Qe

Let n and m be two positive integers. In this chapter we consider a control system
in R"?

x(@t) = f(r,x(@), u)) (1.

where f : R x R" x R™ — R" is of class C! with respect to (x, u) and locally
integrable with respect to ¢, and the controls are measurable essentially bounded
functions of time taking their values in some measurable subset € of R (set of
control constraints).

First of all, given an arbitrary initial point xo € R", and an arbitrary control u, we
claim that there exists a unique solution x (-) of (1.1) such that x (0) = x¢, maximally
defined on some open interval of IR containing 0. We use here a generalization of the
usual Picard-Lindelof theorem (sometimes called Carathéodory theorem), where the
dynamics here can be discontinuous (because of the control). For a general version
of this existence and uniqueness theorem, we refer to [6, Theorem 5.3] and [12,
Appendix C3]. We stress that the differential equation (1.1) holds for almost every
t in the maximal interval. Given a time 7 > 0 and an initial point xo, we say that a
control u € L*°([0, T], R™) is admissible if the corresponding trajectory x(-), such
that x(0) = xo, is well defined on [0, T'].

We say that the control system is linear if f(t,x,u) = A(t)x + B(t)u + r(2),
with A(¢) an x n matrix, B(#) a n x m matrix (with real coefficients), r(z) € R”",
and in that case we will assume that t — A(z), t +— B(t) and ¢ > r(t) are of class
L on every compact interval (actually, L' would be enough). The linear control
system is said to be autonomous if A(t) = A and B(t) = B, otherwise it is said
to be instationary or time-varying. Note that, for linear control systems, there is no
blow-up in finite time (i.e., admissibility holds true on any interval).
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4 1 Controllability

Definition 1.1 Let xg € R” and let T > 0 arbitrary. A control u € L*°([0, T'], ©2)
is said to be admissible on [0, T'] if the trajectory x,(-), solution of (1.1), corre-
sponding to the control u, and such that x, (0) = xo, is well defined on [0, T']. The
end-point mapping Ey, r is then defined by Ey, 7(u) = x,(T).

The set of admissible controls on [0, T'] is denoted by Uy, 7 q. It is the domain of
definition of Ey, 7 (indeed one has to be careful with blow-up phenomena), when
considering controls taking their values in €2.

Definition 1.2 The control system (1.1) is said to be (globally) controllable from
xg intime T if Ex, 7 (Uxy,T,0) = R", 1.6, if Ey, 7 is surjective.

Accordingly, defining the accessible set from xq in time T by Accq(xo, T) =
Eyy, 7 (Uxy,T,2), the control system (1.1) is (globally) controllable from x¢ in time
T if Accq(xg, T) = R".

Since such a global surjectivity property is certainly a very strong property which
may not hold in general, it is relevant to define local controllability.

Definition 1.3 Let x; = E,, 7 (i) for some it € Uy, 1 0. The control system (1.1)
is said to be locally controllable from xq in time T around x; if x| belongs to the
interior of Accq(xp, T), i.e., if Ey, r is locally surjective around xj.

Other variants of controllability can be defined. A clear picture will come from
the geometric representation of the accessible set.

In this chapter we will provide several tools in order to analyze the controllability
properties of a control system, first for linear (autonomous, and then instationary)
systems, and then for nonlinear systems.

1.1 Controllability of Linear Systems

Throughout this section, we consider the linear control system x () = A(t)x(¢) +
B®)u(t) + r(t), with u € L*°([0, +00), ). Since there is no finite-time blow-up
for linear systems, we have Uy, 7.0 = L*°([0, T], ) for every T > 0.

1.1.1 Controllability of Autonomous Linear Systems

In this section, we assume that A(t) = A and B(t) = B, where A is an X n matrix
and B is a n x m matrix.
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1.1.1.1 Without Control Constraints: Kalman Condition

In this section, we assume that 2 = R (no control constraint). The celebrated
Kalman theorem provides a necessary and sufficient condition for autonomous
linear control systems without control constraint.

Theorem 1.1 We assume that Q = R™ (no control constraint). The control system
X(t) = Ax(t) + Bu(t) + r(t) is controllable (from any initial point, in arbitrary
time T > 0) if and only if the Kalman matrix

K(A,B)= (B, AB,..., A" 'B)

(which is of size n x nm) is of maximal rank n.

Proof of Theorem 1.1 Given any xo € R", T > 0 and u € L*([0, T], R™), the
Duhamel formula gives

T
Exyr(u) = x,(T) = e Axp + / eT DA (1) dt + Lu (1.2)
0

where Ly : L°°([0, T], R™) — R” is the linear continuous operator defined by
Lru = fOT eT=DABy(t) dt. Clearly, the system is controllable in time 7 if and
only if L7 is surjective. Then to prove the theorem it suffices to prove the following
lemma.

Lemma 1.1 The Kalman matrix K (A, B) is of rank n if and only if Lt is surjective.

Proof of Lemma 1.1 We argue by contraposition. If Lt is not surjective, then there
exists ¥ € R" \ {0} which is orthogonal to the range of L7, that is,

T
W/ eTDABu(t)dt =0  Yu e L*([0, T], R™).
0

This implies that ¥ TeT=D4B = 0, for every ¢ € [0, T]. Taking t = T yields
¥ T B = 0. Then, derivating first with respect to ¢, and taking t = T then yields
¥ T AB = 0. By immediate iteration we get that ¢ ' A¥B = 0, for every k € IN. In
particular ¥ " K (A, B) = 0 and thus the rank of K (A, B) is less than n.
Conversely, if the rank of K (A, B) is less than n, then there exists ¥ € R" \ {0}
such that T K (A, B) = 0, and therefore " AKB = 0, forevery k € {0, 1, ..., n—
1}. From the Hamilton-Cayley theorem, there exist real numbers ag, ay, ..., ap—1
such that A" = Z;(l) ay A*. Therefore we get easily that ' A”B = 0. Then,
using the fact that A"*! = Y7_, axAX, we get as well that T A"*1B = 0. By
immediate recurrence, we infer that wTAkB = 0, for every k € IN, and therefore,
using the series expansion of the exponential, we get that ¥ "e" =04 B = 0, for



