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Preface 

Owing to advances in wireless communication, networking, and data analysis tech-
nologies, the generation, dissemination, and acquisition of data are more frequent 
and accessible than ever. Consequently, data services, which move data from its gen-
erator(s) to its consumer(s) through individual connections, are quickly migrating to 
the edge of networks. Such wireless systems are composed of numerous devices that 
are different in many aspects, e.g., communication technology, mobility pattern, and 
so on. Though service latency can be greatly reduced at the network edge, emerging 
data services at the edge create new challenges to the network: heterogeneity of 
individuals adds to the complexity of system design, management, and performance 
evaluation, while proliferating end devices impose an ever-increasing demand on 
resources, that are already scarce at the edge. To exploit the full potential of data 
services, it is essential to understand the cause, governing rules, and impact of data’s 
mobility in such heterogeneous wireless networks, for the benefit of data owners, 
service providers, and network operators. 

Therefore, this book is dedicated to study mobile data dynamics, that is, dynamic 
processes of mobile data. Specifically, we identify three dynamic processes, of 
information, coverage, and spectrum, as the cause, manifestation, and impact of 
mobile data, respectively. Then we examine these dynamic processes and the 
governing rule of data movements, through a modeling and analysis approach to 
answer the following questions: When data move and stop? Where data are? How 
data move? What impact mobile data induce on network resources? 

In particular, we first study conflicting information propagation with a novel 
Susceptible-Infected-Cured (SIC) model to answer the when question. Our results 
reveal the impact of network topology on the lifetime of the undesired information, 
which provides bounds, scaling laws, and guidelines for practical information 
control measures. For the where question, we quantify the whereabouts of data, 
that is, data coverage, with a data-strength metric, and find that the change of data 
coverage depends heavily on user mobility, by which prediction is possible. Then, 
we consider dissemination processes of multiple data blocks in the emerging DSA-
enabled fog paradigm, to answer the how and what questions. We propose a gravity 
model to describe how data move in an offloading process, based on which we
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find the amount of storage and communication resource needed for data offloading 
scales linearly with the network size. Particularly for the spectrum resource, a 
scarce resource in wireless networks, we study spectrum activity surveillance (SAS) 
to observe the impact of mobile data, and propose multi-monitor deployment 
strategies with guaranteed performances for both the dedicated and crowdsourcing 
SAS scenarios. Finally, we recapitulate the key findings with regard to mobile 
data dynamics, and outline the open research questions in the context of Edge 
Intelligence (EI). We hope this book helps advance understanding on mobile data 
and provides design guidelines for future data services in heterogeneous wireless 
networks. 

Shanghai, China Jie Wang 
Raleigh, NC, USA Wenye Wang 
Triangle Park, NC, USA Cliff Wang 
March 2024 
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Chapter 1 
Introduction 

1.1 Motivation 

Data, which refers to transmittable and storable computer information, has been an 
integral part of modern society ever since the invention of computers. Especially 
in the past decade, its indispensable role in various applications, ranging from 
marketing [26] to scientific researches [7], has been re-enforced by advances in 
data mining, machine learning, and artificial intelligence (AI) studies. As the 
proliferation of smart devices that can interconnect with each other on-the-go, the 
creation, collection, and analysis of data are much easier and more accessible than 
before, leading to huge amounts of data being generated in both wired and wireless 
networks almost every second. For instance, the online social network (OSN) giant 
Facebook (now Meta) has 1.6 billion daily active users, who generate more than 
4 PetaBytes new data every single day [27]. Meanwhile, the delivery networks of 
data are evolving into large and complex systems, due to the explosive growth of 
wireless devices, e.g., the number of Internet-of-Things (IoT) devices is expected to 
exceed 500 billion by 2030 [4], imposing a tangible impact on mobile data traffic. 
Consequently, recent years are witnessing the transition of data from a commodity 
owned by big companies, to a service that can be provided/acquired by practically 
anyone, just like the transition of computing resource in the cloud infrastructure 
a decade ago [22]. The principal course of such service is to move data from its 
generator(s) to its consumer(s) through a network of data carriers. In this data 
dissemination process, data is mobile, in the sense that both the traffic volume and 
whereabouts are constantly changing due to user movements and data forwarding 
actions. 
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2 1 Introduction

1.1.1 Data Is Alive and Mobile 

From the data owner or disseminator’s perspective, it is their natural rights to know 
who have taken (temporary) possession of their data, where those data blocks have 
traveled to, and when a data block of interest stops circulating in a certain region. 
All of these questions are tied closely to movements of data during dissemination. 

From the delivery network’s perspective, data is alive, that is, interacting with 
individuals in the network, only when it is mobile. In other words, the lifetime of 
data begins at the time instant when it is first injected into the network, and stops 
when none of its copies is circulating in the network of interest any more. During its 
lifetime, every move of a data block induces dynamical changes in the network, 
with respect to both resources and network status. In the former aspect, mobile 
data utilizes various kinds of network resources, for example: storage resource is 
consumed at a device, when the data block is temporarily stored by intermediate data 
carriers (for later forwarding); bandwidth/spectrum resource is consumed, when it 
is transmitted between data carriers; computation resource is also consumed, when 
the data block needs to be fragmented, processed, or routed. On the other hand, 
operating status of both individuals and the networked system as a whole, e.g., 
capacity and system integrity, are in turn impacted by mobile data. For example, a 
computer malware, e.g., the SMS Trojan [8] that spreads over emails and messages, 
can hide in data blocks, piggyback on their dissemination processes, and attack 
multiple users in an institutional computer network. As such a process unfolds in 
time, normal operations of the networked system may no longer be sustained. 

Therefore, it is both primitive and essential to understand data’s mobility, for  
the design, management, and recovery of data-delivery networks, as well as the 
provision of service transparency to data owners. Specifically, we identify the 
following open questions to understand the dynamic processes with respect to 
mobile data: 

1. When does a data block start and stop moving in a network? 
2. Where is the data block of interest accessible during dissemination? 
3. How do data blocks move in the heterogeneous wireless network? 
4. What is the observable impact of mobile data on data-delivery networks? 

Among these, the first and second questions focus on the dissemination process 
of a single data block, while the rest two questions are for cases of multiple blocks. 
Particularly, the first question focuses on the time domain, in which the cause, or the 
driving force of mobile data, dictates the start and stop of the dissemination process, 
i.e., the lifetime of a data block in a network. The second question focuses on the 
space domain, in which the whereabouts of data refer to the time-varying locations, 
where the data block (and its copies) is accessible. The third question asks for the 
governing rule of mobile data, taking interactions of multiple data dissemination 
processes into consideration. The last question focuses on the consequence and 
impact of data being mobile, especially on shared network resources.
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Considering that movements of a single data block already create a dynamic 
process in the space that spans over time, geographical location, and spectrum 
domains, the sheer complexity of multiple data blocks being replicated, piggy-
backed and transmitted in the same network prohibits these questions to be answered 
with a single model, nor a simple solution. Therefore, we first specify and analyze 
the scenario of mobile data, and then introduce our solution that tackles the 
aforementioned problem in different domains. 

1.1.2 Mobile Data Dynamics in Heterogeneous Wireless 
Networks 

Thanks to developments in wireless communication and networking technologies, 
including 5G [24], dynamic spectrum access (DSA) [17], IoT [1], fog computing 
[25], and so on, wireless network has become the primary choice of many data 
disseminators, and the common practice of content delivery services as well. This 
phenomenon can be observed by the ever-increasing volume of wireless (especially 
mobile) traffic [5] and spectrum demand. For instance, ever since 2015, over 80% of 
social media traffic in the U.S. comes from wireless mobile devices, as well as over 
50% of all website traffic worldwide [11]. Such a wireless data-delivery paradigm is 
adopted by various application scenarios, including data sharing/forwarding [13, 14] 
in Long Term Evolution (LTE) device-to-device communication (D2D) networks, 
mobile advertisement [21] in WiFi-LTE networks, safety message dissemination 
[14, 30] in vehicular networks, IoT provisioning by LTE-based fog [1], and many 
more. Motivated by its extensive applications, this book is devoted to mobile data in 
heterogeneous wireless networks, which are composed of both wireless end devices, 
such as mobile phones, smart vehicles, and sensory devices, and network elements 
of the wireless access network, such as base station (BS) in cellular networks, access 
point (AP) in wireless LAN, and roadside unit (RSU) in vehicular networks. 

Such wireless data-delivery networks exhibit distinct characteristics, bring-
ing new challenges to the field of networking: First, data carrying individuals 
(users) themselves are mobile, resulting in intermittent data transmission links and 
changing network topologies. Moreover, user mobility introduces the notion of 
‘where’, i.e., geographical location, which further complicates the problem. Second, 
individuals in such networks can be highly diverse in many aspects, including com-
munication protocol, radio access technology (RAT), data forwarding preference, 
mobility pattern, etc., creating a dynamic and heterogeneous environment, which is 
difficult to model and experiment on. Last but not least, the data-delivery network 
can be formed in a spontaneous manner, lacking possible control of any form, which 
further complicates the design, maintenance, and operation of such systems. 

To address these challenges, we identify three dynamic processes, each of which 
describes the behavior of mobile data in one of the three domains, namely, time, 
geographical space, and spectrum, such that their properties are tractable to be ana-
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lyzed individually, and collectively they are comprehensive enough to understand 
mobile data in heterogeneous wireless networks. These dynamic processes reflect 
the cause, manifestation, and result of data’s mobility, respectively, and are hence 
referred to as mobile data dynamics. 

1.1.2.1 Information Dynamics: The Driving Force of Mobile Data 

Any data-delivery network is designed to facilitate the flow of information, in  
the form of moving data blocks, so the beginning and the end of information 
propagation decide the start and stop time of data movements. However, as networks 
evolve into more complex systems, increasing users of diverse backgrounds intro-
duce information of different aspects, even conflicting information, e.g. rumor vs. 
truth, into delivery networks. Similar phenomena can also be observed in various 
forms of networked systems, if the information concept is generalized to include 
virus/malware, system operation status, and adoption of new products. 

Despite different manifestations, we observe that all the conflicting information 
propagation instances share some common characteristics: the later-injected desired 
information targets at an existing undesired information, stops its propagation, and 
terminates a potential/ongoing epidemic of the latter. In this way, the undesired 
information resembles an infectious virus that can infect susceptible individuals, 
while the desired information functions as an antidote that can permanently immune 
susceptible individuals or cure infected individuals. Due to this asymmetry, the 
propagation process is transient, in the sense that its asymptotic behavior at time t 
goes to infinity is known (virus-free), and the two epidemic processes co-exist only 
for a short period of time, as opposed to the long-term coexistence (and equilibrium) 
in existing models on competing epidemics, e.g., [2, 6, 19]. 

Accordingly, a natural question is, how such propagation process evolves in 
finite time. In other words, there is little knowledge on the aftermath of conflicting 
information propagation via individual spreading, especially when the undesired 
information (virus) dies out, how fast the number of victims of the virus decreases 
below a predetermined level, and how to design effective information (antidote) 
distribution strategy to reduce the lifetime of undesired information in a network. 

These questions have a broad impact on the design, operation, and management 
of networks, because information propagation is the driving force of mobile data, 
and the extinction of the undesired information marks the end of its propagation 
(generation of data traffic), while the impact of the propagation reveals requirements 
of data delivery services. 

1.1.2.2 Coverage Dynamics: The Whereabouts of Mobile Data 

In a wireless data-delivery network that includes mobile devices, a data dissem-
ination process is actually a sequence of data relocation actions, which are the
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superposition of data transmissions and entity (data-carrying individuals) move-
ments. In this scenario, data’s mobility is manifested in its time-varying coverage, 
that is, the geographical location where the data block of interest can be accessed 
(legally by its consumers or monitors, and illegally by malicious attackers). 

Then the direct question of mobile data follows: where is the data during a 
dissemination process? If such a dissemination process is viewed as a cause-and-
effect phenomenon, existing researches mainly focus on single factors from the 
cause-direction, e.g., from the network topology and communication aspects. While 
most literature [14, 18, 21, 30] do not carry the notion of ‘where’, the ones that 
do [12, 36] assume entities are homogeneous in every aspect. To answer the where 
question for a heterogeneous scenario, a new model is needed to describe data’s 
current whereabouts/coverage. 

Knowing the dynamically changing data coverage is important to both the data 
owner(s) and the delivery network. To the former, data dissemination should be 
transparent to the customer (data owner/disseminator) as a service, while to the later, 
particularly network elements, including AP, BS, RSU, and gateways, changing 
coverage translates to traffic load and is hence relevant to resource management, as 
well as policy and charging plan design. 

1.1.2.3 Spectrum Dynamics: Impact of Mobile Data in the Spectrum 
Domain 

Due to the natural gap between its scarcity and high communication demand, 
radio spectrum is one of the most important resources in current wireless systems. 
Any data transmission in a wireless network will result in a spectrum activity, 
i.e., occupancy of a spectrum slice for a certain period of time (typically several 
milliseconds) at a geographical location, so that no other individual in this region 
can utilize the same slice simultaneously. In other words, spectrum dynamics, that 
is, time-varying spectrum activities over a geographical region, are the outcome of 
mobile data, as well as an impact to the system capacity. 

To observe and evaluate such impact, it is necessary to have a spectrum 
surveillance system, which carries out continuous scans of spectrum activities on 
the frequencies of interest, for the purpose of usage data collection, including 
temporal and spatial patterns of spectrum occupancy, user mobility, as well as 
traffic patterns. Spectrum surveillance is particularly crucial to dynamic spectrum 
access (DSA)-enabled systems, because of the risks introduced by the open and 
opportunistic nature of DSA. In prior studies of spectrum surveillance strategies 
(e.g., [10, 15, 23]), an implicit assumption is that spectrum monitors are sufficiently 
powerful, such that they can watch over the entire geographical region of interest 
and tune/move without any limit. The fact is that most spectrum activities, including 
communications, attacks/jamming and monitoring/sniffing, are local, i.e., confined 
in both the spectrum domain and the space domain during a fixed-length time inter-
val. This discrepancy is especially pronounced in wide-band wide-area spectrum


