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Introduction

Survey samples provide the most important sources of information in
the social sciences. Basic to all statistical considerations is the random
selection of elements of the population into the sample. The sampling
design specifies the specific procedure of sampling. While in a strict
sense our knowledge will be confined to the elements in the sample,
knowledge of the properties of specific sampling designs is indispensable
to plan, carry out and analyse survey samples.
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16 1 Introduction

1.1 Sources of randomness

Introductory courses in probability calculus discuss properties of
random variates. Basic to the idea of randomness is the random
generator G. In most applications of probability calculus in the
social sciences, characteristics of individuals, e.g. the working
status or the income, are regarded as realizations of random variates.
A stochastic model can be regarded as a detailed description of a
complicated random generator.

In the design approach applied in survey sampling the random
process is strictly confined to the random sampling of elements
from the population. The characteristics of the elements (e.g. their
income) are treated as fixed. The difference of the modelling and
the design approach can be illustrated by means of simple random
experiments, casting dices and dimes and drawing balls from urns.

1.1.1 Stochastic model

Stochastic models are specific random generators that can repeat-
edly be used to generate realizations of random variates. A very
specific understanding of social reality, most common in economics,
regards this reality as being the product of the application of
random generators. Assume we have a fair dice and will provide
each person an amount of money equal to the number obtained
from casting the dice (in 1000 euro) and call that amount income.
Therefore, the income of a person is a random variate having a
specific probability distribution. E.g., the expected income is 3500
euro and so is the average of two generated incomes. If we have
the impression that this model is not a realistic description of the
social process in which incomes are determined, we can improve
(complicate) the random process. E.g., we can additionally cast
a dime if the person is male. If head comes up, the income is
increased by 1000 euro, if tail comes up by 2000 euro. Being still
not satisfied with the model, we can throw additionally a dime if
the person has an academic degree and increase the income by 1000
euro if head comes and by 2000 euro if tail. Obviously, we can pro-
ceed in complicating the model but the main point is that income
is generated by means of a (perhaps rather complicated) random
number generator and therefore a random variate. Moreover, we
can generate as many incomes as we want making use of the
random generator repeatedly. Alternatively, as is most common in
econometrics, one can imagine the income of a person being a linear
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combination of her characteristics, e.g. age, years of education and
so on, to which a realization of a normally distributed random
variate is added.

1.1.2 Design approach

In the design approach, the characteristics of the individuals, e.g.
their working status or their income, are treated as fixed. Assume
a population of six individuals having incomes of 1000, 2000, .. .,
6000 euro. We do not speculate why person number six earns 6000
whereas person number one only earns 1000 euro. Now assume
that we do not know the income of the six persons but that we
can sample randomly two persons and get information about their
income. To obtain a sample, we number six otherwise identical
balls, put them in an urn, and draw blindly two balls. The two
numbers obtained refer to two of the six persons and we will be
informed about their incomes. Obviously, the incomes we observe
depend on the sample we happen to draw. The expected average
income of the two persons sampled is 3500 euro just as in the
example of stochastic modelling. However, the difference is, in the
sampling example the incomes are treated as fixed. Therefore, the
income is not regarded as a random variate but as a fixed property
of the persons. It is only random, which specific persons will be
included in the sample.

1.2 Surveys

Surveys based on random selection are important sources of
information about conditions and changes in society. In Germany,
e.g. the micro census (Mikrozensus) carried out every year by
the German Federal Statistical Office (Statistisches Bundesamt)
includes about 1 million individuals. The German Socio Economic
Panel (GSOP) carried out by the German Institute for Economic
Research (DIW Berlin) is an important source of information
about social and economic conditions in Germany and is used in a
large number of scientific analyses.

1.2.1 Characteristics of surveys

A survey sample denotes a statistical inquiry and analysis that
meets several important requirements.
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. The interest is confined to a well-defined population denoted

by U. A census would include all elements of U but is very
rarely carried out because of cost and time considerations.

. Instead of questioning all elements of U, a sample s C U is

sampled and information for the elements in s is obtained.

. To apply random calculus, the individuals of the sample

have to be selected by making use of (pseudo) random
numbers, usually generated by means of implemented random
generators. We denote a random generator by G.

. A most simple random generator can be seen in an urn

filled with different balls, which are drawn blindly, that is
independently of what is written on the balls or their colour.
Therefore, the ideal vision of obtaining a random sample is
an urn with a ball for each element of the population marked
with a non-ambiguous identifier and the blind draw of a
specified number of balls.

. The sample obtained making use of a random generator is

called a random sample. We will restrict the discussion in
this text towards random samples.

. The sampling frame contains information to identify all

elements in the population. Ideally, we can think of the
sampling frame being a file, which uniquely assigns a non-
ambiguous identifier to each element of the population. We
will abstract from the fact that, in practice, it is often difficult
to obtain a complete list for a defined population.

. The variables of interest are often quite numerous but we

denote a representative variable of interest by Y.

. The distribution of variable Y in the population can be

characterized by different parameters, e.g. total (sum), mean,
standard deviation, and so on. As we do not observe Y for
all members of the population but only for the members
of the sample, we cannot calculate the true parameters for
the population. Instead, we try to estimate the population
parameters based on the information provided by the sample.

. We try to grasp the extent of the expected estimation error

by providing estimates of the variance of the estimation
functions.
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1.2.2 Sampling frame

The sampling frame ideally is a list containing a non-ambiguous
identifier for all elements of the population. Furthermore, informa-
tion on how the elements can be contacted must be included in
the frame. As an example one can think of a complete and up to
date register maintained by the city’s registration office including
e.g. name, date of birth and address of all inhabitants. Note
that in practice a complete and up to date register of the target
population is seldom available due to non-registered inhabitants,
incomplete registration of persons moving in or out of the relevant
area and so on. Furthermore, even if a potential useful register
exists, data privacy or prohibitive costs may prevent its use.

1.2.3 Probability sampling

Throughout this text, we focus on probability sampling. The
sampling space S = {s1, s2,...,sm} consists of the M different
samples that can possibly be drawn from the population U. The
sampling design associates a probability P(S = s) = p(s) to each
of the M possible samples.

1.2.4 Sampling and inference

People often associate some miraculous capabilities with survey
sampling. However, from the IV elements in the population we will
know the specific values y only for the n elements contained in the
sample, and therefore our knowledge will be restricted to these
sampled elements. About all the N — n elements of the population,
which have not been sampled, we cannot say anything specific.

Therefore, the relevant question is not what can be said about
the elements which have not been sampled but rather in what
specific way we should carry out the sampling, which estimating
functions with their specific characteristics we should apply, and
what we can expect to happen in doing so. Hence, we focus on
the procedure of sampling and on the general characteristics of
estimating functions.

A simple trick will be helpful to learn about the properties of
sampling designs and estimating functions: We counterfactually
consider a population as completely known and observe the out-
comes when drawing samples and applying estimating functions to
these samples.



