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Preface

Classical engineering materials have reached in many technical applications their
limits, and the demand for more performance drives the development of new mate-
rials such as composite or structured materials. This is many times the result of strict
regulations, for example, in regards to fuel consumption or ecological aspects. Many
of such advanced materials cannot be described by classical constitutive equations
and as a result, commercial finite element packages may lack such advanced formu-
lations. To experimentally investigate the yield condition of advanced materials, the
realization of multiaxial stress states is required. Thus, a comprehensive overview
of different experimental techniques is given. An advantageous description of such
yield conditions is based on so-called stress invariants, which are independent of
particular coordinate systems and represent the physical content of the stress matrix.
This theory is also introduced and serves at the end of the book as the basis for the
implementation of constitutive equations into finite element programs.

Esslingen, Germany Andreas Ochsner
January 2024
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Symbols and Abbreviations

Latin Symbols (Capital Letters)
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Area

Elasticity matrix

Force, yield condition

Shear modulus

Kinematic hardening modulus

Principal invariant, second moment of area
Polar second moment of area

Principal invariant of hydrostatic stress matrix
Principal invariant of deviatoric stress matrix
Basic invariant

Basic invariant of hydrostatic stress matrix
Basic invariant of deviatoric stress matrix
Stiffness matrix

Moment

Melting temperature

Latin Symbols (Small Letters)
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Diameter

Column matrix of external forces
Evolution function of hardening parameter
Index number

Yield stress

Initial yield stress

Element of Jacobian matrix, slope

Vector function

Normal vector



X Symbols and Abbreviations

Pressure

Internal variable (hardening)

Column matrix of hardening variables

Plastic flow direction, radius, residual

Wall thickness

Deviatoric stress matrix

Deviatoric stress matrix

Traction vector

Column matrix of displacements

Argument matrix

Volume-specific work or energy

Deviatoric part of volume-specific work or energy
Spherical part of volume-specific work or energy
Cartesian coordinate

Cartesian coordinate

Cartesian coordinate
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Greek Symbols (Small Letters)

Angle, back stress/kinematic hardening parameter, factor
Parameter

Lode angle

Isotropic hardening parameter
Consistency parameter

Poisson’s ratio

Haigh-Westergaard coordinate

Vector, 1€l =

Volume-specific energy
Volume-specific complementary energy
Haigh-Westergaard coordinate

Vector, lpl = p

Normal stress

om Hydrostatic stress

o  Stress matrix

0°  Hydrostatic stress matrix

o Stress matrix

T Shear stress
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