SpringerBriefs in Computer Science
Samuel D. Okegbile · Jun Cai · Changyan Yi

Human Digital TwinExploring Connectivity
and Security Issues

SpringerBriefs in Computer Science

SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic.

Typical topics might include:

- A timely report of state-of-the art analytical techniques
- A bridge between new research results, as published in journal articles, and a contextual literature review
- A snapshot of a hot or emerging topic
- An in-depth case study or clinical example
- A presentation of core concepts that students must understand in order to make independent contributions

Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer's eBook collection, with millions of users worldwide. In addition, Briefs will be available for individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts are considered for publication in this series.

**Indexing: This series is indexed in Scopus, Ei-Compendex, and zbMATH **

Samuel D. Okegbile • Jun Cai • Changyan Yi

Human Digital Twin

Exploring Connectivity and Security Issues

Samuel D. Okegbile Department of Electrical and Computer Engineering Concordia University Montreal, QC, Canada

Changyan Yi College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing, Jiangsu, China Jun Cai
Department of Electrical and Computer
Engineering
Concordia University
Montreal, OC, Canada

ISSN 2191-5768 ISSN 2191-5776 (electronic) SpringerBriefs in Computer Science ISBN 978-3-031-57533-4 ISBN 978-3-031-57534-1 (eBook) https://doi.org/10.1007/978-3-031-57534-1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Preface

Human digital twin (HDT) is a pivotal emerging technology poised to revolutionize the existing human-centric landscape. When adopted toward personalized health-care systems, it has the potential to deliver fast, efficient, and accurate healthcare services following the concept of digital twin by combining various technologies including artificial intelligence (AI), data analytics, internet of things (IoT), and virtual and augmented reality. The HDT framework encompasses three fundamental components: humans who are generally located in the physical environment, their counterpart digital replicas—also called their virtual twins—located in the virtual environment, and ultrareliable data links facilitating the co-evolution of both physical and virtual environments.

Despite enormous promising solutions that may come with such a framework, HDT relies on real-time physical-to-virtual connectivity due to the need for continuous exchange of data and information among each human-virtual twin pair. Thus, physical-virtual connectivity modelling becomes one of the most important issues for HDT. One specific concern in modelling the physical-virtual connectivity of HDT pertains to establishing a secure and privacy-preserving data-sharing framework between every human and its paired virtual twin. Considering the benefits of HDT, considerable research has been carried out toward the design and modelling of physical-virtual connectivity. To the best of our knowledge, there is currently no book addressing secure, privacy-preserving, and efficient human-to-virtual twin connectivity problems in HDT. This book endeavors to bridge this gap, providing academia and industry a comprehensive coverage of connectivity modelling in HDT.

The book covers a range of essential topics, encompassing the overarching concept of HDT, its design requirements and challenges, an edge-assisted human-to-virtual solution, blockchain-enabled data sharing, and differentially private federated multi-task learning (DPFML) schemes for HDT, accompanied by in-depth discussions and insightful analyses. In the first part of this book, the general overview of HDT, its application scenarios, and its specific characteristics compared to conventional digital twin models are discussed. In addition, specific requirements and challenges related to sophisticated and high-quality data; extreme ultra-reliable

viii Preface

and low-latency communication; ultra-low round-trip time; data privacy, security, and integrity; as well as storage, computation, and information technology-driven analytics are explored. In the second part of the book, an edge-assisted human-to-virtual twin connectivity framework is first introduced before delving into the human-to-virtual twin connectivity modelling. An extensive discussion on the general practical Byzantine fault tolerance (PBFT) framework is then discussed, followed by presenting a shard-based Byzantine fault-tolerant scheme for HDT with exploration of latency and throughput analysis modelling. This part concludes with the introduction of the DPFML-assisted human-to-virtual twin connectivity scheme and the modelling of the connectivity cost based on a new consensus algorithm called the proof of model quality. Finally, this book closes up with conclusions and promising research directions.

This book is expected to stimulate future research in the field of HDT from several perspectives including networking, data management, and security and privacy. While the primary audience is researchers and professionals in wireless communications and physical-cyber systems, advanced-level students in computer science and/or electrical engineering will also find the content valuable.

Montreal, QC, Canada Montreal, QC, Canada Nanjing, China December, 2023 Samuel D. Okegbile Jun Cai Changyan Yi

Acknowledgments

The authors would like to extend their sincere appreciation to several individuals and organizations whose contributions and support were instrumental in the creation of this book. In particular, we wish to acknowledge the research students at the Network Intelligence and Innovation Laboratory, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, Canada, for their invaluable contributions to various aspects of the research work presented in this book. We would also like to express our gratitude to Hao Zheng and Jiayuan Chen from the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China, for their significant contributions and outputs that have been integrated into this book. Furthermore, we would like to extend our heartfelt recognition to Professor Attahiru S. Alfa for his invaluable suggestions, reviews, and critiques, which greatly enriched the content and quality of some parts of this book. Finally, we would like to acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, the Concordia University PERFORM Research Chair program, and the National Natural Science Foundation of China (NSFC) under Grant 62002164. These grants were essential in facilitating the research and development that led to the completion of this work.

Contents

2.2.2

Part I		Fundamentals of Human Digital Twin			
1	Cor	cept of	Human Digital Twin: An Introduction		
	1.1	Overv	iew of HDT		
	1.2	Digita	l Twin and HDT		
	1.3	Applie	cation Scenarios and Potential Solutions		
		1.3.1	Personalized Healthcare Services		
		1.3.2	Personalized Learning and Training		
		1.3.3	Environmental Sustainability and Crisis Management		
	1.4	Archit	tectural Framework of HDT		
		1.4.1	Communication and Computation		
		1.4.2	Digital Modelling and Virtualization		
		1.4.3	HDT Migration and PT Mobility		
		1.4.4	Multi-Layer ML Algorithms		
		1.4.5	Data Acquisition and Storage Format		
		1.4.6	Security and Privacy		
		1.4.7	Data Management and Analysis		
	1.5				
	Ref	erences			
2	Design Requirements and Key Technologies for HDT				
	2.1		n Requirements and Challenges		
		2.1.1	Sophisticated and High-Quality Data		
		2.1.2	Extreme Ultra-Reliable and Low-Latency		
			Communication		
		2.1.3	Ultra-Low Round-Trip Time		
		2.1.4	Data Privacy, Security and Integrity		
		2.1.5	Data Storage and Advanced Computing Power		
		2.1.6	Scalable AI-Driven Analytics		
	2.2 Key Networking Technologies				
		2.2.1	Key Technologies for Communications		
			•		

Key Technologies for Data Acquisition

27

xii Contents

		2.2.3	Key Technologies for Data Management	28		
		2.2.4	Key Technologies for Data Analysis and			
			Decision Making	30		
		2.2.5	Key Technologies for Computation	31		
	2.3	Summ	nary of the Chapter	33		
	Refe			34		
Pa	rt II	Secur	re Connectivity Solutions in HDT			
3	Edg		ted Connectivity Framework for HDT	39		
	3.1		feed for Edge Computing in HDT	39		
	3.2	Frame	ework for Edge-Assisted PT-VT Connectivity Scheme	41		
		3.2.1	FL Model	42		
		3.2.2	Validation Model	44		
		3.2.3	Offloading Model	44		
	3.3	PT-V7	Γ Connectivity Modelling Analysis and Problem			
		Formu	ılation	45		
	3.4	Simul	ations and Discussions	47		
	3.5	Summ	nary of the Chapter	49		
	Refe	erences		49		
4	Blockchain-Enabled Data Sharing Solution for HDT					
	4.1		chain Technology as a Tool in HDT	51		
		4.1.1	Advantages of Byzantine Fault Tolerance			
			Consensus Scheme.	52		
		4.1.2	Description of Latency and Data Age	54		
	4.2	A Ger	neral PBFT Framework for HDT	55		
		4.2.1	Spatial and Temporal Model	56		
		4.2.2	Validation Model for BeDS Framework	57		
	4.3	Analy	sis of Communication Process in BeDS	59		
		4.3.1	Offloading Success Probability	60		
		4.3.2	Average Achievable Rate	61		
		4.3.3	PBFT Message Delivery Success Probability	62		
		4.5.5				
		4.3.4		64		
			Number of Reachable Receiving Validators	64 65		
	4.4	4.3.4 4.3.5				
	4.4	4.3.4 4.3.5	Number of Reachable Receiving Validators Offloading and Message Exchange Latency sis of Validation Process in BeDS	65		
	4.4	4.3.4 4.3.5 Analy	Number of Reachable Receiving Validators Offloading and Message Exchange Latency	65 66		
	4.4	4.3.4 4.3.5 Analy 4.4.1	Number of Reachable Receiving Validators Offloading and Message Exchange Latency sis of Validation Process in BeDS Package-Centric Erlang Distribution Modelling	65 66 67		
	4.4	4.3.4 4.3.5 Analy 4.4.1 4.4.2 4.4.3	Number of Reachable Receiving Validators. Offloading and Message Exchange Latency. sis of Validation Process in BeDS Package-Centric Erlang Distribution Modelling Stage-Centric Erlang Distribution Modelling Blockchain-Building Process	65 66 67 69		
		4.3.4 4.3.5 Analy 4.4.1 4.4.2 4.4.3 Analy	Number of Reachable Receiving Validators. Offloading and Message Exchange Latency. sis of Validation Process in BeDS. Package-Centric Erlang Distribution Modelling. Stage-Centric Erlang Distribution Modelling.	65 66 67 69 72		
	4.5	4.3.4 4.3.5 Analy 4.4.1 4.4.2 4.4.3 Analy Simul	Number of Reachable Receiving Validators. Offloading and Message Exchange Latency. sis of Validation Process in BeDS. Package-Centric Erlang Distribution Modelling. Stage-Centric Erlang Distribution Modelling. Blockchain-Building Process. sis of AoDP in BeDS.	65 66 67 69 72 72		
	4.5 4.6	4.3.4 4.3.5 Analy 4.4.1 4.4.2 4.4.3 Analy Simul A Sha	Number of Reachable Receiving Validators. Offloading and Message Exchange Latency. sis of Validation Process in BeDS Package-Centric Erlang Distribution Modelling Stage-Centric Erlang Distribution Modelling Blockchain-Building Process sis of AoDP in BeDS ations for Latency and AoDP in BeDS Framework.	65 66 67 69 72 72 75		

Contents xiii

5	Diff	Differentially Private Federated Multi-Task Learning						
	Solu	Solution for HDT						
	5.1	Background						
		5.1.1	FL in DT-Related Applications	86				
		5.1.2	DP Solutions for FL	87				
	5.2	Framework for DPFML-Assisted Human-to-Virtual Twin						
		Conne	Connectivity Scheme					
		5.2.1	Federated Multi-Task Learning Model	90				
		5.2.2	Blockchain-Enabled Validation Model for DPFML	93				
	5.3	Conne	ectivity Cost Modelling Based on Proof of Model Quality	94				
		5.3.1	Analysis of DPFML Model	95				
		5.3.2	Analysis of Communication and Validation Model					
			Under DPFML Scheme	96				
		5.3.3	Analysis of the Connectivity Cost	98				
		5.3.4	Synchronization Accuracy	99				
	5.4	Proble	em Formulation and Optimization of DPFML Scheme	102				
		5.4.1	Problem Formulation	103				
		5.4.2	MDP Problem and Solution	104				
		5.4.3	DRL Solution Using DDPG	105				
	5.5	Nume	rical Simulations and Discussions	106				
	5.6	Summ	nary of the Chapter	109				
	Refe	erences		109				
6	Con	clusion	s and Future Research Directions	113				
-	6.1		is the Future	113				
	6.2	Networking Perspective						
		6.2.1	Mobility in HDT	114 114				
		6.2.2	FL Solutions for HDT	115				
		6.2.3	Green HDT	116				
	6.3		Management Perspective	117				
	0.0	6.3.1	Data Scarcity	117				
		6.3.2	Interoperability Management	118				
		6.3.3	Interface Design	118				
	6.4		ity and Privacy Perspective	119				
	٠	6.4.1	Intelligent Blockchain	119				
		6.4.2	Secure AI.	120				
	6.5		d Machine Learning Perspective	121				
	0.0	6.5.1	Full-Fledged Explainable AI for HDT	121				
		6.5.2	Generalized AI and Metaverse for HDT	121				
	6.6		uding Remarks	122				
				123				
	11010	.1011000		120				
CI	occar	* 7		125				

Acronyms

5G Fifth generation
6G Sixth generation
AI Artificial intelligence
AIGC AI-generated content
AoDP Age of data package
AoI Age of information
AR Augmented reality

BeDS Blockchain-enabled data sharing

BFT Byzantine fault tolerance

BS Base stations

BSN Body sensor network

DDPG Deep deterministic-policy gradient

DOs Data owners

DP Differential privacy

DPFML Differentially private federated multi-task learning

DQN Deep Q-network

DRL Deep reinforcement learning

DRs Data requesters DT Digital twin

ECC Edge-cloud collaboration

eQoS Extremely high quality-of-service

FCFS First come first serve FL Federated learning

FML Federated multi-task learning

HDT Human digital twin

HPPP Homogeneous Poisson point process

GA Global aggregator
IHD Ischemic heart disease
IoT Internet of Things
LA Local aggregator
LCFS Last come first serve