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Preface 

Preface to the German Edition 

Artificial Intelligence (AI) is the buzzword of our time. As the central driver of 
digitization, it is fundamentally changing society, the economy and almost all 
other areas of life. The speed of this process is almost unprecedented compared 
to previous social and technical changes. Breakthroughs in the development of so-
called deep artificial neural networks on high-performance computers have triggered 
this rapid technological development. 

As early as the beginning of the 1950s, AI pioneer Alan Turing realized that 
computers could not be programmed by hand down to the last detail for many 
problems. There would have to be a more expeditious way to program computers: 
that method is Machine Learning. The techniques by which computers learn to 
improve their behavior from existing data are now so powerful that they are used 
in many places in everyday life and in our professional routines. 

There are hardly any limits to the spectrum of application areas. Intelligent 
machines perceive the environment, make forecasts, give recommendations and 
make automated decisions. They relieve us of routine tasks and support us in 
responsible activities. The human-machine relationship is changing into a partner-
ship model. Intelligent systems free us from routine work, expand our creative 
capabilities and increase our quality of life, but also lead to profound changes in 
society. 

In this way, AI can make a contribution to tackling major societal challenges 
such as mobility and health. However, in order to be able to discuss the benefits, 
opportunities and risks of AI in a well-founded manner, users must understand how 
intelligent systems work in principle. To do this, he or she must grasp the most 
important concepts of the underlying Machine Learning technology. In addition, 
it is becoming clear in more and more areas of application that careful design is 
necessary to ensure that AI is in harmony with our societal values and our idea of 
sovereignty. Here, even non-computer scientists must be able to have an expert and 
informed say.

v



vi Preface

The purpose of this book is to clearly demonstrate the new possibilities of 
Machine Learning in different application areas, such as autonomous driving, 
medical diagnosis or the analysis of the meaning of language. The technical 
vocabulary but also concepts, methods and network architectures are explained 
with many graphics and pictures. Mathematical relationships are formulated when 
helpful, and always explained in a comprehensible way. It turns out that the methods 
used are composed of very simple operations, such as addition and multiplication. 
These gain their performance by being applied to very large sets of numbers and 
several times in succession. If one would like to understand the technical Chaps. 3, 
4, 5, 6, 7, 8, and 9 in detail, a mathematical understanding at senior high school level 
is sufficient. 

The book enables decision-makers, but also interested laypersons, to have a say 
in the design of intelligent systems and to better assess the impact of requirements. 
For data analysts, students, engineers, and researchers who are new to the field, this 
book is an ideal introduction to more advanced literature. 

Preface to the English Edition 

After the publication of the book, the authors received a very positive response from 
readers, who described it as a very easy-to-understand introduction to artificial intel-
ligence and neural networks. Therefore, the authors and Springer Verlag decided to 
produce an English translation. The book describes the state of research up to early 
2020, including transformers and GPT-3, and covers all major approaches used in 
AI models today. It is therefore suitable as an introduction to artificial intelligence 
and provides a basic understanding of current models such as ChatGPT. 

In the meantime, a number of new Large Language Transformer models have 
been developed that are applicable to a wide variety of language tasks as well as to 
new media such as images, videos, DNA, or even control tasks. Because of their 
universality across most AI use cases, these approaches are called ‘Foundation 
Models’. These extensions are described in the book Foundation Models for 
Natural Language Processing – Pre-trained Language Models Integrating Media 
by G. Paaß, and S. Giesselbach, published Open Access by Springer Nature in 
2023. It is recommended for in-depth study of large language models and requires 
a background knowledge of Machine Learning and Deep Learning provided in the 
current book. 
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Chapter 1 
What Is Intelligent About Artificial 
Intelligence? 

Abstract Recently, the term Artificial Intelligence (AI) came into the focus of 
public discussion. An Artificial Intelligence system is supposed to be able to 
perceive its environment and behave intelligently, similar to humans. However, 
this definition is imprecise because the term “intelligence” is difficult to delineate. 
Therefore, this chapter discusses the individual dimensions of AI. Most AI systems 
are tasked with associating an input (e.g., an image) with an output (e.g., a class 
of images objects). Inputs and outputs are represented by sets of numbers. This 
mapping is not manually programmed, but successively adapted and trained based 
on observations and data. This process is also called “learning”. 

Recently, the term Artificial Intelligence (AI) has been on everyone’s lips. Press, 
parliaments and governments regard AI as a crucial driver for the country’s further 
economic development. The German and other governments have therefore adopted 
a massive program to promote AI (Álvarez 2018). Experts from the consulting firm 
McKinsey estimate that AI will generate a global sales volume of around 12 trillion 
euros by 2030 (Tung 2018). 

“Artificial Intelligence is the ability of a computer or computer-controlled robot 
to solve tasks normally performed by intelligent beings” (Copeland 2019). The 
system should be able to behave intelligently and learn on its own, similar to a 
human. However, this definition is imprecise because the term “intelligence” is 
difficult to delineate. 

1.1 Human Intelligence Has Many Dimensions 

There are a number of different descriptions of human intelligence. Gardner (1983) 
has developed a theory of multiple intelligences that lists eight dimensions of 
intelligence (Fig. 1.1). Movement intelligence is the ability to feel and move one’s 
body in a controlled manner. Figurative-spatial intelligence enables the recognition 
of images and the grasp of spatial relationships. Linguistic intelligence includes 
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Fig. 1.1 The dimensions of human intelligence according to Gardner (1983). Image credits in 
Appendix A.3 

the understanding of language and the appropriate verbal phrasing of matters. 
Logical-mathematical intelligence enables the analysis and solution of logical 
problems. Musical intelligence is required for listening to music with appreciation 
and for making music. Naturalistic intelligence includes the ability to observe, 
distinguish, and recognize nature, and to develop sensitivity for natural phenomena. 
Interpersonal or emotional intelligence is the ability to understand and predict 
the intentions, feelings, and motives of other people. Self-reflective intelligence 
includes the ability to recognize one’s own moods, drives, motives, and feelings. 
It also includes an awareness of oneself and the capability to predict one’s own 
behavior in new situations and motivate oneself to take action. We will see that AI 
is now applicable to many—but not all—of these dimensions. 

1.2 How To Recognize Artificial Intelligence 

To evaluate whether a computer system is intelligent, the British mathematician 
Alan Turing proposed a test procedure—the Turing test (Turing 1950). In the test, a 
human referee can communicate with two partners by exchanging text electronically 
and ask any questions: one partner is a human, the other a computer (Fig. 1.2). If,
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Fig. 1.2 In the Turing test, the referee on the left asks questions to partners he cannot see: a human 
and a computer on the right. He receives answers from both. If the referee cannot distinguish the 
computer from the human partner by their answers, the computer must also be intelligent 

after asking many questions, the referee cannot decide from the answers which of 
the partners is the computer, the computer is said to be intelligent. 

With regard to the dimensions of intelligence presented previously, however, 
the Turing test needs to be extended so that other dimensions (vision, movement, 
speech) can also be captured. 

Many researchers have started to favor new test criteria that more closely examine 
how profound the computer system’s understanding of a situation is. For example, 
the referee might talk to partners about a Netflix video. The question: “Why is this 
scene with Bill Murray funny?”, for instance, would be more difficult for a computer 
to answer than “Tell me about your mother!”. 

Attempts were made early to manually program computers to exhibit intelligent 
behavior. Unfortunately, these approaches only achieved the desired success with 
severe limitations. As an alternative, the approach of developing a computer 
program capable of learning prevailed. This learning procedure trains the desired 
functionality using sample data. As a result, it is now possible to solve subtasks of 
AI satisfactorily. Examples are the diagnosis of diseases on the basis of symptoms 
or X-ray images, the transcription of spoken language into text or the recognition of 
objects in images. 

1.3 Computers Learn 

But what does “learning” mean for a computer system? Let’s take the recognition 
of objects in images, e.g. a cat, as an example. 

The computer receives the image of a cat (Fig. 1.3) as input. In the right part of 
Fig. 1.3 you can see an enlarged section of the image, from which it is clear that 
the image of the cat is a rectangle consisting of a number of small square color 
areas (pixels). Each of these pixels has a color, which can be characterized by the 
proportions of the three primary colors: red, green and blue. Thus, a pixel can be
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Fig. 1.3 Image of a cat and image section with individual pixels. Each pixel is described by three 
numbers, the color values for red, green and blue. Image credits in Appendix A.3 

described by a triple of numbers and the whole image by a rectangular scheme of 
number triples. 

The computer receives the image in the form of a rectangular scheme of 
number triples as input. The goal now is for the computer to be able to name the 
most important object in the image, in our case “cat”. This task is called object 
classification in images, a subtask of image recognition. So the computer is not told 
where in the image the object is that it should name. 

Early approaches to this task attempted to first recognize given parts of the image 
objects, e.g., corners, edges, lines, and surfaces. The larger objects (e.g., eye) were 
then reconstructed as connections of the smaller parts. However, this approach did 
not generate good results. 

Recently, methods have been tested in which the computer no longer uses human-
defined features (corners, edges, lines and color blobs). Instead, it automatically 
selects important features, recognizes them in the image, and uses them to classify 
objects. To do this, however, it needs a large number of sample images in which the 
target image object (e.g., cat) occurs, as well as sample images in which the target 
does not occur. Only in this way can the computer recognize the similarities and 
differences between the objects. and the corresponding features. 

Thus, the basis of object classification is a large set of examples, which consist 
of the input (image) and the corresponding output, the object class (e.g. monkey, 
cat,  . . . )  (Fig. 1.4). The set of examples is called the “training set” or “training data”. 
The elements of the training set are also called training examples. 

The task of the computer is now to analyze the set of examples and the 
corresponding object classes. Subsequently, the system has to develop a computing 
instruction by itself, with which the object classes of new objects can be predicted 
as well as possible. The determination of such a calculation rule is called “learning”. 
The situation is comparable to that of a toddler to whom the mother, as in Fig. 1.5, 
tells the names of objects in the picture book. In the process, the child learns how to 
distinguish and name the different objects. 

Learning is defined as the process by which new or modified skills, knowledge 
content, or behavior patterns are acquired (De Houwer et al. 2013).
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Object class 

Input image 

Instance 1 Instance 2 Instance 3 

Monkey Cat Human 

Fig. 1.4 Training data from different classes for an image recognition system. Each training 
example consists of an input image and the associated object class. A large number of training 
examples are required per class. Image credits in Appendix A.3 

Fig. 1.5 A mother shows her child objects in a picture book. Image credits in Appendix A.3 

Commonly, learning is understood as a profoundly human ability. Therefore, 
many people are unwilling to concede a computer program an ability to learn. 
However, animals can also learn, as many experiments from biology prove. In 
contrast to living organisms, learning in the field of AI is more akin to the term 
“training”: Here, the system can acquire the ability to determine the appropriate 
outputs (e.g., object class) for given inputs. This does not mean that the system 
“learns by heart” the objects in the training set, but it can also assign the correct 
class to new images that have not yet been processed. This is the sense in which the 
term “learn” is used in this book. 

There are a number of other verbs that are normally used in the context of 
humans, but also appear in the field of AI. These include “recognize,” “know,” 
etc. When humans perform these activities, it is always associated with human 
consciousness and emotions. In the field of AI, these aspects are completely 
excluded. This must always be taken into account when reading this book.
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1.4 Deep Neural Networks Can Recognize Objects 

Learning tasks, such as object classification in images, can now be performed by 
deep neural networks. As shown in Sect. 5.1.2, deep neural networks (DNNs) have 
structural similarities to information processing in the brain. They process the input 
in a number of successive layers, transforming the input data into more abstract 
features represented by packets of numbers. Each layer processes specific features 
of the scene—the higher the layer, the more complex the features. These features are 
selected and generated by the system itself. Figure 1.6 shows the features extracted 
in this way by Lee et al. (2011) for classifying an object as human. Finally, the 
desired results, e.g., the names of the objects, can be determined in a simple way 
from the features of the last layer. 

However, the deep neural network can only recognize images if its parameters 
have been adjusted. The parameters are also a set of numbers—a number packet— 
which controls the properties of the DNN. Previously, the structure of the DNN and 
the count of numbers in the parameter number packet were specified by the designer 
of the network. The parameter number packet is initially filled with random number 
values. As shown in Fig. 1.7, the DNN in this state can neither recognize meaningful 
intermediate features nor identify the object in the image. 

As discussed previously, the values of the parameter number package are adapted 
to a large set of training examples. These usually consist of the input (image) and the 
corresponding output, i.e. the class of the image object (e.g. monkey, cat, . . . ,  see  
Fig. 1.4). Usually hundreds of such training examples are required for each class. 
The computer now gradually adjusts the values of the parameter number packet so 
that the DNN outputs the correct class for each input image, if possible. In recent 
years, it has been possible to modify even millions of different parameter values 

input image 

simple features complex features possible objects 

class 

parameters: 
optimal values 

human 

Fig. 1.6 A deep neural network (DNN) receives an input, e.g., the image of a person. From this 
image, simple features are extracted in the bottom layer, and more complex features are extracted 
in subsequent layers. The assignment to an object class takes place in the last layer. Image credits 
in Appendix A.3
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input image 

simple features complex features possible objects 

class 

parameters: 
initial values 
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Fig. 1.7 Calculated intermediate features of the DNN and output classification at the beginning 
of training with randomly selected initial values for the parameter number package. The DNN has 
not learned anything yet. Image credits in Appendix A.3 

Fig. 1.8 Artificial Intelligence is an umbrella term of Machine Learning, which in turn encom-
passes deep learning 

simultaneously by successive small changes in such a way that the correct output is 
generated in a high percentage of cases. 

This approach has recently led to surprisingly good results in a variety of 
sophisticated recognition tasks. This process is also called “Deep Learning”. The 
details of this learning process will be presented in later chapters. 

Deep learning is a special technique of Machine Learning, which includes all 
methods for finding patterns and relationships in data (Fig. 1.8). For example, such 
a system can predict tomorrow’s precipitation from today’s measurements of air 
pressure, temperature and wind direction. Artificial Intelligence is an umbrella term 
of Machine Learning, which in turn encompasses Deep Learning. 

Although Artificial Intelligence and deep neural networks are discussed in many 
journal articles and talk shows, for most people the workings of these computer 
programs are in the dark. This book therefore aims to clarify for an interested public 
what Artificial Intelligence and deep neural networks are and how they work. Not
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only the internal mechanisms will be presented, but also the current possibilities and 
limitations will be clarified. 

1.5 How To Understand Artificial Intelligence 

Most people will think of themselves as understanding how a car works. Figure 1.9 
shows the functional diagram of a car. In the engine, pistons catch the pressure 
generated by combustion and convert it into rotary motion via the crankshaft. The 
transmission in interaction with the clutch determines the speed of the rotary motion, 
which is transmitted to the wheels via the differential. This rough sequence is 
sufficient for most people to understand the reactions of the car when controlled 
by the driver. Yet details of the electronic engine control, the transmission with its 
twisted gears, the power steering, the brake booster, etc. are extremely complicated 
and cannot be understood without an engineering education. 

Artificial Intelligence can be understood on a similar level of abstraction. Here, 
forces are not transmitted by mechanical components, but number packets are sent 
through operators that transform an input number packet into an output number 
packet according to a simple scheme (Fig. 1.10). The input number packets represent 
the application’s inputs, e.g. images, sound recordings, texts, videos. Each operator 
generates a new number packet, which is usually used as the input number packet of 
the next operator. The set of connected operators is called a model. The last output 

Fig. 1.9 Functional diagram of a car with engine, transmission, drive shaft, differential and 
wheels. Image credits in Appendix A.3
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Fig. 1.10 Functional 
diagram of an Artificial 
Intelligence model with input, 
number packages, operators, 
and output. The number 
packets represent different 
content depending on the 
layer. Image credits in 
Appendix A.3 

Input 

Output 

Number package 
represents input 

Number package 
represents output 

Operator transforms 
number package 

Operator transforms 
number package 

Operator transforms 
number package 

number packet of the model represents the desired response, e.g. an image category, 
a translation, or a new image, which is generated by the model. 

The understanding of Artificial Intelligence in this book is conveyed at this high 
level of abstraction. The rough function of the individual operators are explained, 
similar to the explanation of the engine, the transmission and the differential in 
a car. The flow of number packets through the model is explained, analogous to 
the transmission of power in a car. And it roughly outlines the operation of the 
optimization modules that adapt the model to the training examples. These modules 
are usually provided by the existing programming tools. 

The idea of Artificial Intelligence conveyed in this book remains at this relatively 
abstract level. Many details are very complex, but also not necessary for a basic 
understanding.
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1.6 The History of Artificial Intelligence 

It is instructive to consider the mercurial history (Haenlein & Kaplan 2019) of  
Artificial Intelligence (Fig. 1.11). When the first programmable computers were 
developed in the middle of the last century, researchers soon wondered whether 
these devices could also exhibit intelligent behavior. To test a system for intelligent 
behavior, Alan Turing suggested the “Turing test” in 1950. In 1956, the Dartmouth 
Workshop was held by John McCarthy and Marvin Minsky, which coined the term 
“Artificial Intelligence.” A year later, Frank Rosenblatt developed a neural network, 
the perceptron, which could be trained to distinguish simple patterns. Around the 
same time, the first programs for logical reasoning were introduced. One application 

Fig. 1.11 Milestones in the history of Artificial Intelligence. Image credits in Appendix A.3
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of this was the expert systemDENDRAL, presented in 1965 by Edward Feigenbaum 
and others, which was based on rules and could solve problems in organic chemistry. 

In 1969, Marvin Minsky and Seymour Papert showed that single-layer percep-
trons cannot solve complicated problems. This almost brought research on neural 
networks to a halt. During this time, symbolic Artificial Intelligence was being 
developed in parallel, which aimed to create intelligent systems that could reason 
with facts and rules. Several years later it could be shown that multilayer neural 
networks with nonlinear elements can also represent complex relationships. In 1986, 
David Rumelhart, Geoffrey Hinton and Ronald Williams propagated the use of the 
backpropagation algorithm for training such networks. Based on this approach they 
founded connectionism, which aims to describe mental phenomena by networks of 
simple units. Artificial Intelligence at this time consists of two camps: symbolic AI 
as well as connectionism. In the 1990s, neither the symbolic expert systems could 
solve larger problems, nor the neural networks could handle complex recognition 
tasks with the computers available at that time. 

In 1997, Sepp Hochreiter and Jürgen Schmidhuber suggested the Long Short-
Term Memory, which promised much better results in the modeling of sequences 
(text, speech recognition). However, a decade passed before these advantages could 
be realized, and graphics cards with high computing power became available. In 
2015, a Deep Neural Network with 152 layers that can recognize images better than 
humans is presented by Kaiming He and others. Similar successes are reported in 
subsequent years for translation into other languages, speech recognition, image 
captioning and other tasks. 

1.7 Summary 

When machines or computers exhibit cognitive or mental abilities similar to those 
of humans, this is called Artificial Intelligence. These abilities can be, for example, 
problem solving or learning from experience. To test whether a system is intelligent, 
the Turing test is used, in which an examiner can communicate via text messages 
with a computer and an intelligent human expert. If, after extensive communication 
with both communication partners, the examiner cannot decide who is a computer 
and who is a human, then—so the conclusion is—the computer can be called 
intelligent. 

The assessment of whether a task requires intelligence or not has changed 
considerably in recent decades. At first, chess was considered one of the highest 
intelligence achievements of humans. Then, computer programs were developed 
that were able to beat even the world chess champion by logically evaluating the 
possible chess moves. After that, playing chess was devalued as “mechanistic” rea-
soning and no longer counted as part of the core of human intelligence (Fig. 1.12). If 
a problem can be solved by a machine, it is often subsequently stated that problem 
solving does not require intelligence (McCorduck 2004, p. 204). Thus, the definition 
of “true” human intelligence changes over time.
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Optical character 
recognition 

Chess Localization 
of faces 

Share price 
prediction 

Handwriting 
recognition 

Fig. 1.12 Tasks solved by computers, which are usually no longer considered “intelligent” 
problem solutions by the public. Image credits in Appendix A.3 

The concept of intelligence covers abilities in very different fields of application, 
from figurative-spatial intelligence to linguistic intelligence to interpersonal, social 
intelligence. The goal of the research field of Artificial Intelligence is, on the one 
hand, to develop systems that can perform intelligently in all of these areas. On the 
other hand, there is also the desire to use these systems to understand how humans 
accomplish these intelligence capabilities in their brains. Unfortunately, today’s 
“intelligent” computer systems function according to largely different principles 
than the human brain. Therefore, the mechanisms of human intelligence are still 
largely in the dark. 

Artificial Intelligence computer programs receive information from outside in the 
form of images, texts, sound sequences, etc. All this information is transformed into 
packets of numbers. The program itself consists of many “layers” or “operators” 
that receive number packets as input and transform them into new number packets 
by simple mathematical operations (addition, multiplication, application of simple 
functions). The output number packets generated in this way are further processed 
by other simple structured operators. In the process, the input is transformed into 
increasingly abstract representations that better and better represent the essential 
features of the inputs for the sought problem solution. Finally, the last operator can 
compute the desired output in a simple way from the last representation. 

The program defined in this way is called a Deep Neural Network (DNN). It 
contains parameters, which themselves form a number package, with millions up to 
billions of numerical values. These numerical values are adjusted by optimization 
procedures so that the observed data can be reproduced as well as possible. The 
operation of the individual operators can be well understood and the contents of the 
intermediate number packages can usually be well visualized. In this sense, such a 
deep neural network can be understood. 
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