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Preface

Soil, largely equivalent to the critical zone, is the outer crust of the earth essential
to support life by enabling plants, animals and microorganisms to thrive. The prop-
erties of this crust develop out of an intricate and complicated system of physical,
chemical, mineralogical and biological processes, affecting a parent material. The
part of this development that took place over past millenniums with limited human
influence is traditionally called soil formation and leads to the identification of soil
horizons. Since the impact of human activities on soils has increased, with consider-
able impact on the performance of soils for their various functions and in cases even
the “rerouting” of soil formation, it seems better to use a more neutral and wider
term like soil development. As the factor time is of importance and soil develop-
ment has a much slower response to external influences than a super tanker to its
helmsman, measurement of changes is insufficient to predict the effect and effective-
ness of human impact. That is why modelling soil development is important to assess
the impact of global change (i.e. climate and land use change). This book gives a
personal perspective on the state of progress in the modelling of soil development.
During my Ph.D., I started to recognize the value of modelling, for short: the simu-
lation of site-specific N-addition scenarios under precision agriculture to combine
good crop productivity with minimal nitrate leaching. It was the combination of
extending a water- and solute flow model (LEACHM) with crop biomass production
routines, its testing, calibration and subsequent application in scenario studies that
made me recognize the potential of modelling to answer scientific questions. The
seed for all of this was sown by Johan Bouma, Jeff Wagenetf and John Hutson in
the 1980s. Much later, the announcement of a workshop on modelling of pedoge-
nesis (in Orléans, 2006) gave me the idea to develop a new model (starting from
LEACHM) to simulate, at pedogenetic (multimillennial) timescales, aspects of soil
formation such as C-cycling, (de)calcification, cation exchange chemistry. This trig-
gered thinking on questions like What soil properties can be considered constant
at a chosen timescale; What feedbacks between soil properties exist and should be
modelled and How to deal with processes with yet unquantified dynamics, such as
clay migration and bioturbation. As these are not minor questions, they stimulated
usage of part of my brain capacity over a substantial period of time, largely outside
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working hours. In other words: the topic became a passion. Frequent visits to Sophie
Cornu, Jérome Balesdentt and coworkers at INRA between 2012 and 2018, and the
fact that [ inherited an M.Sc.-course on soil genesis certainly contributed to working
on these questions as well. A soil development model produces great teaching mate-
rial! A network of colleagues with interest in soil development modelling developed
as a consequence of the ITUSS working group on modelling of soil and landscape
evolution that I led between 2013 and 2018. We organized several workshops in
Pedometrics and EGU-conferences. Research collaborations, an Erasmus Mundus
master programme on soils and global change as well as various PhDs are still keeping
the topic alive today in my personal environment. More generally, soil development
modelling is at present recognized as one of the 10 challenges of Pedometrics because
it allows the quantification of the supporting ecosystem service “soil formation”.

The precipitate of my own work on soil development modelling is the SoilGen
model. This booklet describes the status of soil development modelling, and espe-
cially of SoilGen, at the time of my retirement, as some form of legacy document.
This legacy includes the release of the source code of the model via a public domain
repository, to be used, criticized, extended, simplified or cannibalized by colleagues.

Understanding and quantifying soil development is complicated because it
involves the interaction between biological, physical, chemical and mineralogical
processes acting at various temporal resolutions. Knowledge on some of these
processes is still limited, which implies that an entirely mechanistic description is
not possible. At the same time, mechanistic process descriptions allow better incor-
poration of feedback relations between processes in a model than empirical descrip-
tions. The challenge is in finding the balance that maximally represents the state of
knowledge. Another challenge is to keep potential users in mind, which requires a
user interface and recognizing what a user may want to do with a soil development
model. I surely used my Ph.D. students as guinea pigs to try out application domains
(sorry!) I hope that these challenges are partly met in this book and model.

I am grateful for support by the research fund of the Faculty Bioscience Engi-
neering at Ghent University for granting a sabbatical shortly before my retirement
(which is not obvious). Equally grateful I am to Nicholas Jarvis and coworkers from
the research group Soil and Environmental Physics, Department of Soil and Envi-
ronment at the Sveriges Landbruksuniversitet in Uppsala for hosting this sabbatical
and fruitful interactions. Several of my own Ph.D. students were SoilGen users and
asked so many questions stimulating its development and robustness: Ann Zwert-
vaegher, Saba Keyvanshokouhi, Keerthika Nirmani Ranathunga, Sastrika Anindita
and especially Emmanuel Opolot who codeveloped code on mineral weathering.
Several coauthors significantly contributed to model development, testing and appli-
cation studies: John Hutson, Yanyan Yu, Daniela Sauer, Sophie Cornu and Jérdme
Balesdentt, Tom Vanwalleghem and especially Qiuzhen Yin, who added the dimen-
sion of palacoclimate modelling. To Alex McBratney, Budiman Minasny and Arnaud
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Temme, [ am grateful for their inputs in our joint review publications and book chap-
ters. To Brit and Mazzel, I am grateful for lighting up my life for so many years

(including the sabbatical).

Ghent, Belgium Peter Finke
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