
Shared-Memory
Synchronization

Synthesis Lectures on
Computer Architecture

Michael L. Scott
Trevor Brown

 Second Edition

Synthesis Lectures on Computer
Architecture

Series Editor

Natalie Enright Jerger, University of Toronto, Toronto, Canada

This series covers topics pertaining to the science and art of designing, analyzing,
selecting and interconnecting hardware components to create computers that meet func-
tional, performance and cost goals. The scope will largely follow the purview of premier
computer architecture conferences, such as ISCA, HPCA, MICRO, and ASPLOS.

Michael L. Scott · Trevor Brown

Shared-Memory
Synchronization
Second Edition

Michael L. Scott
University of Rochester
Rochester, NY, USA

Trevor Brown
University of Waterloo
Waterloo, ON, Canada

ISSN 1935-3235 ISSN 1935-3243 (electronic)
Synthesis Lectures on Computer Architecture
ISBN 978-3-031-38683-1 ISBN 978-3-031-38684-8 (eBook)
https://doi.org/10.1007/978-3-031-38684-8

1st edition: © Morgan & Claypool, 2013
2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024, corrected publication 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of thematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-38684-8

To Kelly and Britt

Preface

This monograph grows out of nearly 40 years of experience in synchronization and
concurrent data structures. Though written primarily from the perspective of systems
software, it reflects our conviction that the field cannot be understood without a solid
grounding in both concurrency theory and computer architecture.

Chapters 4, 5, and 7 are in some sense the heart of the monograph: they cover spin
locks, busy-wait condition synchronization (barriers in particular), and scheduler-based
synchronization, respectively. To set the stage for these, Chapter 2 surveys aspects of
multicore and multiprocessor architecture that significantly impact the design or perfor-
mance of synchronizing code, and Chapter 3 introduces formal concepts that illuminate
issues of feasibility and correctness.

Chapter 6 considers atomicity mechanisms that have been optimized for the important
special case in which most operations are read-only. Later, Chapter 8 provides a brief
introduction to nonblocking algorithms, which are designed in such a way that all possi-
ble thread interleavings are correct. Chapter 9 provides a similarly brief introduction to
transactional memory, which uses speculation to implement atomicity without (in typical
cases) requiring mutual exclusion. (A full treatment of both of these topics is beyond the
scope of the monograph.)

Given the volume of material, readers with limited time may wish to sample topics
of particular interest. All readers, however, should make sure they are familiar with the
material in Chapters 1 through 3. In our experience, practitioners often underestimate
the value of formal foundations, and theoreticians are sometimes vague about the nature
and impact of architectural constraints. Readers may also wish to bookmark Table 2.1
(page 21), which describes the memory model assumed by the pseudocode. Beyond that:

• Computer architects interested in the systems implications of modern multicore
hardware may wish to focus on Secs. 2.2–2.3.1, 3.3–3.4, 4.2–4.3, 4.5.1, 5.1–5.2,
8.1–8.18.2.1, and 9.2.

• Programmers with an interest in operating systems and run-time packages may wish
to focus on Secs. 2.2–2.3.1, all of Chapters 3–6, and Sec. 7.5.

vii

viii Preface

• Authors of parallel libraries may wish to focus on Secs. 2.2–2.3.1 and 5.4, plus all of
Chapters 3, 7, and 8.

• Compiler writers will need to understand all of Chapters 2 and 3, plus Secs. 4.5.2, 5.1,
5.3.1, 5.3.3, and 7.3–7.4.

Some readers may be surprised to find that the monograph contains no concrete per-
formance results. This omission reflects a deliberate decision to focus on qualitative
comparisons among algorithmic alternatives. Performance is obviously of great impor-
tance in the evaluation of synchronization mechanisms and concurrent data structures
(and our papers are full of hard numbers), but the constants change with time, and they
depend in many cases on characteristics of the specific application, language, operating
system, and hardware at hand. When relative performance is in doubt, system designers
would be well advised to benchmark the alternatives in their own particular environment.

This second edition, published roughly a decade after the original, has numerous small
improvements throughout—clarifications, bug fixes, and references to newer work. It also
incorporates two major updates.

First, we have re-worked and clarified the memorymodel and notation (Secs. 2.2 and 2.3)
used in our examples. In particular, we now employ explicit load and store operations for all
accesses toshared(atomic)variables,andwehaveadoptedtheC++conventionofmakingsuch
accesses fully ordered (sequentially consistent) unless otherwise noted. These conventions
necessitated changes to most of our algorithmic pseudocode.

Second, we have added significant new material, particularly in Chapter 8 (Nonblock-
ing Algorithms). This includes detailed description of the EFRB tree (Sec. 8.6.1); a survey
of other trees (Sec. 8.6.2); additional lists, queues, deques, hash tables, and skip lists
(Secs. 8.2–8.5); extensive discussion of safe memory reclamation (Sec. 8.7); and expanded
coverage of high-level atomic constructions (Sec. 8.10).

The field, of course, continues to evolve, but the fundamentals remain. We hope our
work helps others to appreciate their beauty and lasting utility.

Rochester, NY, USA
Waterloo, ON, Canada
Summer 2023

Michael L. Scott
Trevor Brown

The original version of this book has been revised: Author provided text corrections and figure cor-
rections has been incorporated in the following chapters: Chapter 3 Fig. 3.1, Chapter 4 Fig 4.14 and
Chapter 8 Figs. 8.2 and 8.8. A correction to this book can be found at https://doi.org/10.1007/978-
3-031-38684-8_10

https://doi.org/10.1007/978-3-031-38684-8_10

Acknowledgments

This monograph has benefited from the feedback of many generous colleagues. Sarita
Adve, Hans Boehm, Dave Dice, Maurice Herlihy, Mark Hill, Victor Luchangco, Paul
McKenney, Maged Michael, Nir Shavit, and Mike Swift all read through draft material,
and made numerous helpful suggestions for improvements. We are particularly indebted
to Hans for his coaching on memory consistency models, to Victor for his careful vetting
of Chapter 3, and to Peter Buhr for detailed guidance on ordering constraints in various
algorithms. (The mistakes that remain are of course our own!) Our thanks as well to the
students of Mark’s CS758 course in the fall of 2012, who provided additional feedback,
and to Dong Chen, Jakub Łopuszański, and Jinjian Ma, who found additional errors in
the first edition. Finally, our thanks to Mark and to Mike Morgan for convincing Michael
to undertake the first edition, and to Margaret Martonosi and Natalie Enright Jerger for
their skillful ongoing stewardship of the Synthesis Series on Computer Architecture.

Rochester, NY, USA
Waterloo, ON, Canada
Summer 2023

Michael L. Scott
Trevor Brown

ix

Contents

1 Introduction . 1
1.1 Atomicity . 3
1.2 Condition Synchronization . 5
1.3 Spinning Versus Blocking . 6
1.4 Safety and Liveness . 8

2 Architectural Background . 11
2.1 Cores and Caches: Basic Shared-Memory Architecture 11

2.1.1 Temporal and Spatial Locality . 13
2.1.2 Cache Coherence . 14
2.1.3 Processor (Core) Locality . 15

2.2 Memory Consistency . 16
2.2.1 Sources of Inconsistency . 16
2.2.2 Special Instructions to Order Memory Access 18
2.2.3 Example Architectures . 23

2.3 Atomic Primitives . 27
2.3.1 The ABA Problem . 30
2.3.2 The Value of FAA . 33
2.3.3 Other Synchronization Hardware . 33

3 Essential Theory . 35
3.1 Safety . 35

3.1.1 Deadlock Freedom . 36
3.1.2 Atomicity . 38

3.2 Liveness . 46
3.2.1 Nonblocking Progress . 47
3.2.2 Fairness . 48

3.3 The Consensus Hierarchy . 51
3.4 Memory Models . 52

3.4.1 Formal Framework . 53

xi

xii Contents

3.4.2 Data Races . 55
3.4.3 Real-World Models . 57

4 Practical Spin Locks . 61
4.1 Classical Load/Store-Only Algorithms . 61

4.1.1 Lamport’s Fast Algorithm . 64
4.2 Centralized Algorithms . 66

4.2.1 Test-and-Set Locks . 66
4.2.2 The Ticket Lock . 67

4.3 Queued Spin Locks . 68
4.3.1 The MCS Lock . 69
4.3.2 The CLH Lock . 74
4.3.3 Hemlock . 77
4.3.4 Which Spin Lock Should I Use? . 78

4.4 Interface Extensions . 79
4.5 Special-Case Optimizations . 80

4.5.1 Locality-Conscious Locking . 80
4.5.2 Double-Checked Locking . 82
4.5.3 Asymmetric Locking . 83

5 Busy-Wait Synchronization with Conditions . 87
5.1 Flags . 87
5.2 Barrier Algorithms . 88

5.2.1 The Sense-Reversing Centralized Barrier . 90
5.2.2 Software Combining . 90
5.2.3 The Dissemination Barrier . 92
5.2.4 Non-combining Tree Barriers . 93
5.2.5 Which Barrier Should I Use? . 94

5.3 Barrier Extensions . 96
5.3.1 Fuzzy Barriers . 96
5.3.2 Adaptive Barriers . 97
5.3.3 Barrier-Like Constructs . 100

5.4 Combining as a General Technique . 100

6 Read-Mostly Atomicity . 103
6.1 Reader-Writer Locks . 103

6.1.1 Centralized Algorithms . 104
6.1.2 Queued Reader-Writer Locks . 108

6.2 Sequence Locks . 111
6.3 Read-Copy Update . 113

Contents xiii

7 Synchronization and Scheduling . 119
7.1 Scheduling . 119
7.2 Semaphores . 122
7.3 Monitors . 124

7.3.1 Hoare Monitors . 125
7.3.2 Signal Semantics . 127
7.3.3 Nested Monitor Calls . 128
7.3.4 Java Monitors . 129

7.4 Other Language Mechanisms . 130
7.4.1 Conditional Critical Regions . 130
7.4.2 Futures . 131
7.4.3 Series-Parallel Execution . 133

7.5 Kernel/User Interactions . 135
7.5.1 Context Switching Overhead . 135
7.5.2 Preemption and Convoys . 136
7.5.3 Resource Minimization . 138

8 Nonblocking Algorithms . 139
8.1 Single-Location Structures . 140

8.1.1 The Treiber Stack . 140
8.2 Linked Lists . 142

8.2.1 Harris and Michael (H&M) Lists . 142
8.2.2 More Recent Linked Lists . 145

8.3 Queues and Deques . 147
8.3.1 The Michael and Scott (M&S) Queue . 147
8.3.2 Double-Ended Queues . 150

8.4 Hash Tables . 155
8.5 Skip Lists . 158
8.6 Search Trees . 159

8.6.1 The EFRB Tree . 159
8.6.2 Other Advances in Nonblocking Trees . 168

8.7 Safe Memory Reclamation (SMR) . 170
8.7.1 Hazard Pointers . 171
8.7.2 Epoch-Based Reclamation . 174
8.7.3 Other Approaches . 178

8.8 Dual Data Structures . 179
8.9 Nonblocking Elimination . 180
8.10 Higher-Level Constructions . 182

9 Transactional Memory . 185
9.1 Software TM . 188

xiv Contents

9.1.1 Dimensions of the STM Design Space . 188
9.1.2 Buffering of Speculative State . 190
9.1.3 Access Tracking and Conflict Resolution . 191
9.1.4 Validation . 193
9.1.5 Contention Management . 197

9.2 Hardware TM . 197
9.2.1 Dimensions of the HTM Design Space . 198
9.2.2 Speculative Lock Elision . 202
9.2.3 Hybrid TM . 206

9.3 Challenges . 208
9.3.1 Semantics . 209
9.3.2 Extensions . 211
9.3.3 Implementation . 213
9.3.4 Debugging and Performance Tuning . 215

Correction to: Shared-Memory Synchronization . C1

References . 219

About the Authors

Michael L. Scott is the Arthur Gould Yates Professor of Engineering and Chair of the
Department of Computer Science at the University of Rochester. He received his Ph.D.
from the University of Wisconsin–Madison in 1985. His research interests span operating
systems, languages, architecture, and tools, with a particular emphasis on parallel and dis-
tributed systems. He is best known for work in synchronization algorithms and concurrent
data structures, in recognition of which he shared the 2006 SIGACT/SIGOPS Edsger W.
Dijkstra Prize. His textbook on programming language design and implementation (Pro-
gramming Language Pragmatics, fourth edition, Morgan Kaufmann, 2016; fifth edition
forthcoming) is a standard in the field. He served as General Chair of SOSP in 2003
and as Program Chair of TRANSACT ’07, PPoPP’08, and ASPLOS’12. He was named a
Fellow of the ACM in 2006, of the IEEE in 2010, and of the AAAS in 2021. At the
University of Rochester, he received the Robert and Pamela Goergen Award for Distin-
guished Achievement and Artistry in Undergraduate Teaching in 2001, the Edmund A.
Hajim School of Engineering Lifetime Achievement Award in 2018, and the William H.
Riker University Award for Graduate Teaching in 2020.

Trevor Brown is an Assistant Professor in the Cheriton School of Computer Science at
the University of Waterloo. He completed his Ph.D. under the supervision of Faith Ellen
at the University of Toronto in 2017, and conducted postdoctoral studies at the Institute
of Science and Technology, Austria, and the Technion, Israel. His research straddles the-
ory and practice, and focuses on the question of how large-scale multicore systems can
be programmed easily, efficiently, and correctly. His specific research interests include
concurrent data structures, lock-free synchronization, memory management, transactional
memory, and non-volatile memory. At the University of Toronto, he won the Award for
Excellence in Teaching Assistance in 2014. He has served multiple times on the Program
Committees of ICDCS, PODC, PPoPP, SIROCCO, and SPAA, and was Publication Chair
for PPoPP’19. He received the Best Paper Award at PPoPP’20, Best Artifact Awards at
PPoPP’21 and PPoPP’22, and Finalist status in the Best Paper competitions at PPoPP’21
and SPAA’22.

xv

1Introduction

In computer science, as in real life, concurrency makes it much more difficult to reason
about events. In a linear sequence, if E1 occurs before E2, which occurs before E3, and
so on, we can reason about each event individually: Ei begins with the state of the world
(or the program) after Ei−1, and produces some new state of the world for Ei+1. But if the
sequence of events {Ei } is concurrent with some other sequence {Fi }, all bets are off. The
state of the world prior to Ei can now depend not only on Ei−1 and its predecessors, but
also on some prefix of {Fi }.

Consider a simple example in which two threads attempt—concurrently—to increment
a shared global counter:

thread 1:
ctr++

thread 2:
ctr++

On any modern computer, the increment operation (ctr++) will comprise at least three
separate instruction steps: one to load ctr into a register, a second to increment the register,
and a third to store the register back to memory. This gives us a pair of concurrent sequences:

thread 1:
1: r := ctr
2: inc r
3: ctr := r

thread 2:
1: r := ctr
2: inc r
3: ctr := r

Intuitively, if our counter is initially 0, we should like it to be 2 when both threads have
completed. If each thread executes line 1 before the other executes line 3, however, then
both will store a 1, and one of the increments will be “lost.”

The problem here is that concurrent sequences of events can interleave in arbitrary ways,
many of which may lead to incorrect results. In this specific example, only two of the(
6
3

)
= 20 possible interleavings—the ones in which one thread completes before the other

starts—will produce the result we want.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. L. Scott and T. Brown, Shared-Memory Synchronization, Synthesis Lectures
on Computer Architecture, https://doi.org/10.1007/978-3-031-38684-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38684-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-38684-8_1

2 1 Introduction

Synchronization is the art of precluding interleavings that we consider incorrect. In a
distributed (i.e., message-passing) system, synchronization is subsumed in communication:
if thread T2 receives a message from T1, then in all possible execution interleavings, all the
events performed by T1 prior to its send will occur before any of the events performed by T2
after its receive. In a shared-memory system, however, things are not so simple. Instead of
exchanging messages, threads with shared memory communicate implicitly through loads
and stores. Implicit communication gives the programmer substantially more flexibility in
algorithm design, but it requires separate mechanisms for explicit synchronization. Those
mechanisms are the subject of this monograph.

Significantly, the need for synchronization arises whenever operations are concurrent,
regardless of whether they actually run in parallel. This observation dates from the earliest
work in the field, led by Edsger Dijkstra (1965, 1968a, 1968b) and performed in the early
1960s. If a single processor core context-switches among concurrent operations at arbitrary
times, then while some interleavings of the underlying events may be less probable than they
are with truly parallel execution, they are nonetheless possible, and a correct program must
be synchronized to protect against any that would be incorrect. From the programmer’s
perspective, a multiprogrammed uniprocessor with preemptive scheduling is no easier to
program than a multicore or multiprocessor machine.

A few languages and systems guarantee that only one thread will run at a time, and that
context switches will occur only at well defined points in the code. The resulting execution
model is sometimes referred to as “cooperative”multithreading.Onemight at first expect it to
simplify synchronization, but the benefits tend not to be significant in practice. The problem
is that potential context-switch pointsmaybe hidden inside library routines, or in themethods
of black-box abstractions. Absent a programming model that attaches a true or false “may
cause a context switch” tag to every method of every system interface, programmers must
protect against unexpected interleavings by using synchronization techniques analogous to
those of truly concurrent code.

As it turns out, almost all synchronization patterns in real-world programs (i.e., all concep-
tually appealing constraints on acceptable execution interleaving) can be seen as instances
of either atomicity or condition synchronization. Atomicity ensures that a specified sequence
of instructions participates in any possible interleavings as a single, indivisible unit—that

Distribution

At the level of hardware devices, the distinction between shared memory and message passing disap-
pears: we can think of a memory cell as a simple process that receives load and store messages from
more complicated processes, and sends value and ok messages, respectively, in response. While
theoreticians often think of things this way (the annual PODC [Symposium on Principles of Dis-
tributed Computing] and DISC [International Symposium on Distributed Computing] conferences
routinely publish shared-memory algorithms), systems programmers tend to regard shared memory
and message passing as fundamentally distinct. This monograph covers only the shared-memory
case.

1.1 Atomicity 3

nothing else appears to occur in the middle of its execution. (Note that the very concept of
interleaving is based on the assumption that underlying machine instructions are themselves
atomic.) Condition synchronization ensures that a specified operation does not occur until
some necessary precondition is true. Often, this precondition is the completion of some other
operation in some other thread.

1.1 Atomicity

The example on page 1 requires only atomicity: correct execution will be guaranteed (and
incorrect interleavings avoided) if the instruction sequence corresponding to an increment
operation executes as a single indivisible unit:

thread 1:
atomic

ctr++

thread 2:
atomic

ctr++

The simplest (but not the only!) means of implementing atomicity is to force threads
to execute their operations one at a time. This strategy is known as mutual exclusion. The
code of an atomic operation that executes in mutual exclusion is called a critical section.
Traditionally, mutual exclusion is obtained by performing acquire and release operations
on an abstract data object called a lock:

lock L

thread 1:
L.acquire()

ctr++
L.release()

thread 2:
L.acquire()

ctr++
L.release()

The acquire and release operations are assumed to have been implemented (at some lower
level of abstraction) in such a way that (1) each is atomic and (2) acquire waits if the lock
is currently held by some other thread.

Concurrency and Parallelism

Sadly, the adjectives “concurrent” and “parallel” are used in different ways by different authors.
For some authors (including the current ones), two operations are concurrent if both have started
and neither has completed; two operations are parallel if they may actually execute at the same
time. Parallelism is thus an implementation of concurrency. For other authors, two operations are
concurrent if there is no correct way to assign them an order in advance; they are parallel if their
executions are independent of one another, so that any order is acceptable. An interactive program
and its event handlers, for example, are concurrent with one another, but not parallel. For yet other
authors, two operations that may run at the same time are considered concurrent (also called task
parallel) if they execute different code; they are parallel if they execute the same code using different
data (also called data parallel).

4 1 Introduction

In our simple increment example, mutual exclusion is arguably the only implementation
strategy that will guarantee atomicity. In other cases, however, it may be overkill. Consider
an operation that increments a specified element in an array of counters:

ctr_inc(int i):
L.acquire()

ctr[i]++
L.release()

If thread 1 calls ctr_inc(i) and thread 2 calls ctr_inc(j), we shall need mutual exclusion
only if i = j. We can increase potential concurrency with a finer granularity of locking—
for example, by declaring a separate lock for each counter, and acquiring only the one we
need. In this example, the only downside is the space consumed by the extra locks. In other
cases, fine-grain locking can introduce performance or correctness problems. Consider an
operation designed to move n dollars from account i to account j in a banking program.
If we want to use fine-grain locking (so unrelated transfers won’t exclude one another in
time), we need to acquire two locks:

move(int n, int i, int j):
L[i].acquire()
L[j].acquire() // (there’s a bug here)

acct[i] −:= n
acct[j] +:= n

L[i].release()
L[j].release()

If lock acquisition and release are expensive, we shall need to consider whether the ben-
efit of concurrency in independent operations outweighs the cost of the extra lock. More
significantly, we shall need to address the possibility of deadlock:

thread 1:
move(100, 2, 3)

thread 2:
move(50, 3, 2)

If execution proceeds more or less in lockstep, thread 1 may acquire lock 2 and thread 2
may acquire lock 3 before either attempts to acquire the other. Both may then wait forever.
The simplest solution in this case is to always acquire the lower-numbered lock first. In
more general cases, if may be difficult to devise a static ordering. Alternative atomicity
mechanisms—in particular, transactional memory, which we will consider in Chapter 9—
attempt to achieve the concurrency of fine-grain locking without its conceptual complexity.

From the programmer’s perspective, fine-grain locking is ameans of implementing atom-
icity for large, complex operations using smaller (possibly overlapping) critical sections.
The burden of ensuring that the implementation is correct (that it does, indeed, achieve
deadlock-free atomicity for the large operations) is entirely the programmer’s responsibil-
ity. The appeal of transactional memory is that it raises the level of abstraction, allowing the
programmer to delegate this responsibility to some underlying system.

1.2 Condition Synchronization 5

Whether atomicity is achieved through coarse-grain locking, programmer-managed fine-
grain locking, or some form of transactional memory, the intent is that atomic regions appear
to be indivisible. Put another way, any realizable execution of the program—any possible
interleaving of its machine instructions—must be indistinguishable from (have the same
externally visible behavior as) some execution in which the instructions of each atomic
operation are contiguous in time, with no other instructions interleaved among them. As we
shall see in Chapter 3, there are several possible ways to formalize this requirement, most
notably linearizability and several variants of serializability.

1.2 Condition Synchronization

In some cases, atomicity is not enough for correctness. Consider, for example, a program
containing a work queue, into which “producer” threads place tasks they wish to have
performed, and from which “consumer” threads remove tasks they plan to perform. To
preserve the structural integrity of the queue, we shall need each insert or remove operation
to execute atomically. More than this, however, we shall need to ensure that a remove
operation executes onlywhen the queue is nonempty and (if the size of the queue is bounded)
an insert operation executes only when the queue is nonfull:

Q.insert(data d):
atomic

await ¬Q.full()
// put d in next empty slot

data Q.remove():
atomic

await ¬Q.empty()
// return data from next full slot

In the synchronization literature, a concurrent queue (of whatever sort of objects) is
sometimes called a bounded buffer; it is the canonical example of mixed atomicity and
condition synchronization. As suggested by our use of the await condition notation above
(notation we have not yet explained how to implement), the conditions in a bounded buffer
can be specified at the beginning of the critical section. In other, more complex operations,
a thread may need to perform nontrivial work within an atomic operation before it knows
what condition(s) it needs to wait for. Since another thread will typically need to access (and
modify!) some of the same data in order to make the condition true, a mid-operation wait
needs to be able to “break” the atomicity of the surrounding operation in some well-defined
way. In Chapter 7 we shall see that some synchronization mechanisms support only the
simpler case of waiting at the beginning of a critical section; others allow conditions to
appear anywhere inside.

In many programs, condition synchronization is also useful outside atomic operations—
typically as a means of separating “phases” of computation. In the simplest case, suppose
that a task to be performed in thread B cannot safely begin until some other task (data
structure initialization, perhaps) has completed in thread A. Here B may spin on a Boolean
flag variable that is initially false and that is set by A to true. In more complex cases, it is
common for a program to go through a series of phases, each of which is internally parallel,

6 1 Introduction

but must complete in its entirety before the next phase can begin. Many simulations, for
example, have this structure. For such programs, a synchronization barrier, executed by
all threads at the end of every phase, ensures that all have arrived before any is allowed to
depart.

It is tempting to suppose that atomicity (or mutual exclusion, at least) would be simpler
to implement—or to model formally—than condition synchronization. After all, it could be
thought of as a subcase: “wait until no other thread is currently in its critical section.” The
problem with this thinking is the scope of the condition. By standard convention, we allow
conditions to consider only the values of variables, not the states of other threads. Seen in
this light, atomicity is the more demanding concept: it requires agreement among all threads
that their operations will avoid interfering with each other. And indeed, as we shall see in
Sec. 3.3, atomicity is more difficult to implement, in a formal, theoretical sense.

1.3 SpinningVersus Blocking

Just as synchronization patterns tend to fall into two main camps (atomicity and condition
synchronization), so too do their implementations: they all employ spinning or blocking.
Spinning is the simpler case. For isolated condition synchronization, it takes the form of a
trivial loop:

while ¬condition
// do nothing (spin)

For mutual exclusion, the simplest implementation employs a special hardware instruc-
tion known as test_and_set (TAS). The TAS instruction, available on almost every modern
machine, sets a specified Boolean variable to true and returns the previous value. Using
TAS, we can implement a trivial spin lock1:

type lock = bool := false

L.acquire():
while L.TAS()

// spin

L.release():
L := false

Here we have equated the acquisition of L with the act of changing it from false to true. The
acquire operation repeatedly applies TAS to the lock until it finds that the previous value
was false. As we shall see in Chapter 4, the trivial test_and_set lock has several major
performance problems. It is, however, correct.

The obvious objection to spinning (also known as busy-waiting) is that it wastes processor
cycles. In a multiprogrammed system it is often preferable to block—to yield the processor

1 Aswe shall see in Secs. 2.2 and 3.3, both of the examples in this section—for condition synchroniza-
tion and for mutual exclusion—would in practice need to be extended with ordering annotations that
prevent the compiler and hardware from performing optimizations that are unsafe in multithreaded
code. Correctly annotated versions of these examples can be found on Secs. 5.1 and 4.1.1, respectively.

1.3 Spinning Versus Blocking 7

core to some other, runnable thread. The prior threadmay then be run again later—either after
some suitable interval of time (at which point it will check its condition, and possibly yield,
again), or at some particular time when another thread has determined that the condition is
finally true.

The software responsible for choosing which thread to execute when is known as a
scheduler. In many systems, scheduling occurs at two different levels. Within the operating
system, a kernel-level scheduler implements (kernel-level) threads on top of some smaller
number of processor cores; within the user-level run-time system, a user-level scheduler
implements (user-level) threads on top of some smaller number of kernel threads. At both
levels, the code that implements threads (and synchronization) may present a library-style
interface, composed entirely of subroutine calls; alternatively, the language in which the
kernel or application is written may provide special syntax for thread management and
synchronization, implemented by the compiler.

Certain issues are unique to schedulers at different levels. The kernel-level scheduler, in
particular, is responsible for protecting applications from one another, typically by running
the threads of each in a different address space; the user-level scheduler, for its part, may
need to address such issues as non-conventional stack layout. To a large extent, however,
the kernel and runtime schedulers have similar internal structure, and both spinning and
blocking may be useful at either level.

While blocking saves cycles that would otherwise be wasted on fruitless re-checks of a
condition or lock, it spends cycles on the context switching overhead required to change the
running thread. If the average time that a thread expects to wait is less than twice the context-
switch time, spinning will actually be faster than blocking. It is also the obvious choice if
there is only one thread per core, as is sometimes the case in embedded or high-performance
systems. Finally, aswe shall see in Chapter 7, blocking (otherwise known as scheduler-based
synchronization) must be built on top of spinning, because the data structures used by the
scheduler itself require synchronization.

Processes, Threads, and Tasks

Like “concurrent” and “parallel,” the terms “process,” “thread,” and “task” are used in different ways
by different authors. In the most common usage (adopted here), a thread is an active computation
that has the potential to share variables with other, concurrent threads. A process is a set of threads,
together with the address space and other resources (e.g., open files) that they share. A task is a well-
defined (typically small) unit of work to be accomplished—most often the closure of a subroutine
with its parameters and referencing environment. Tasks are passive entities that may be executed
by threads. They are invariably implemented at user level. The reader should beware, however, that
this terminology is not universal. Many papers (particularly in theory) use “process” where we use
“thread.” Ada uses “task” where we use “thread.” The Mach operating system uses “task” where we
use “process.” And some systems introduce additional words—e.g., “activation,” “fiber,” “filament,”
or “hart.”

8 1 Introduction

1.4 Safety and Liveness

Whether based on spinning or blocking, a correct implementation of synchronization
requires both safety and liveness. Informally, safety means that bad things never happen:
we never have two threads in a critical section for the same lock at the same time; we never
have all of the threads in the system blocked. Liveness means that good things eventually
happen: if lock L is free and at least one thread is waiting for it, some thread eventually
acquires it; if queue Q is nonempty and at least one thread is waiting to remove an element,
some thread eventually does.

A bit more formally, for a given program and input, running on a given system, safety
properties can always be expressed as predicates P on reachable system states S—that is,
∀S[P(S)]. Liveness properties require at least one extra level of quantification: ∀S[P(S) →
∃T [Q(T)]], where T is a subsequent state in the same execution as S, and Q is some other
predicate on states. From a practical perspective, liveness properties tend to be harder than
safety to ensure—or even to define; from a formal perspective, they tend to be harder to
prove.

Livelock freedom is one of the simplest liveness properties. It insists that threads not
execute forever without making forward progress. In the context of locking, this means that
if L is free and thread T has called L.acquire(), there must exist some bound on the number
of instructions T can execute before some thread acquires L . Starvation freedom is stronger.
Again in the context of locks, it insists that if every thread that acquires L eventually releases
it, and if T has called L.acquire(), there must exist some bound on the number of instructions
T can execute before acquiring L itself. Still stronger notions of fairness among threads can
also be defined; we consider these briefly in Sec. 3.2.2.

Multiple Meanings of “Blocking”

“Blocking” is another word with more than one meaning. In this chapter, we are using it in an imple-
mentation-oriented sense, as a synonym for “de-scheduling” (giving the underlying kernel thread or
hardware core to another user or kernel thread). In a similar vein, it is sometimes used in a “systems”
context to refer to an operation (e.g., a “blocking” I/O request) that waits for a response from some
other system component. In Chapter 3, wewill use it in amore formal sense, as a synonym for “unable
to make forward progress on its own.” To a theoretician, a thread that is spinning on a condition that
must be made true by some other thread is just as “blocked” as one that has given up its kernel thread
or hardware core, and will not run again until some other thread tells the scheduler to resume it.
Which definition we have in mind should usually be clear from context.

1.4 Safety and Liveness 9

Most of our discussions of correctness will focus on safety properties. Interestingly,
deadlock freedom, which one might initially imagine to be a matter of liveness, is actually
one of safety: because deadlock can be described as a predicate that takes the current system
state as input, deadlock freedom simply insists that the predicate be false in all reachable
states.

2Architectural Background

The correctness and performance of synchronization algorithms depend crucially on archi-
tectural details ofmulticore andmultiprocessormachines. This chapter provides an overview
of these details. It can be skimmed by those already familiar with the subject, but should
probably not be skipped in its entirety: the implications of store buffers and directory-based
coherence on synchronization algorithms, for example, may not be immediately obvious,
and the semantics of synchronizing instructions (ordered accesses, memory fences, and
read-modify-write instructions) may not be universally familiar.

The chapter is divided into three main sections. In the first, we consider the implica-
tions for parallel programs of caching and coherence protocols. In the second, we consider
consistency—the degree to which accesses to different memory locations can or cannot be
assumed to occur in any particular order. In the third, we survey the various read-modify-
write instructions—test_and_set and its cousins—that underlie most implementations of
atomicity.

2.1 Cores and Caches: Basic Shared-Memory Architecture

Figures 2.1 and 2.2 depict two of the many possible configurations of processors, cores,
caches, and memories in a modern parallel machine. In a so-called symmetric machine,
all memory banks are equally distant from every processor core. Symmetric machines are
sometimes said to have a uniform memory access (UMA) architecture. More common today
are nonuniform memory access (NUMA) machines, in which each memory bank is associ-
ated with a processor (or in some cases with a multi-processor node), and can be accessed
by cores of the local processor more quickly than by cores of other processors.

As feature sizes continue to shrink, the number of cores per processor can be expected
to increase. As of this writing, the typical desk-side machine has 1–4 processors with 2–16

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. L. Scott and T. Brown, Shared-Memory Synchronization, Synthesis Lectures
on Computer Architecture, https://doi.org/10.1007/978-3-031-38684-8_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38684-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-38684-8_2

12 2 Architectural Background

...

...

... ...

...

... ...

...
L1

L2

L3

 rossecorP1 rossecorP n
Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank m

Figure 2.1 Typical symmetric (uniform memory access—UMA) machine. Numbers of components
of various kinds, and degree of sharing at various levels, differs across manufacturers and models.

...

...

... ...

...

... ...

...
L1

L2

L3

 rossecorP1 rossecorP n
Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank n

Figure 2.2 Typical nonuniform memory access (NUMA) machine. Again, numbers of components
of various kinds, and degree of sharing at various levels, differs across manufacturers and models.

