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Foreword 

The fields of Computational Linguistics and Natural Language Processing (NLP) have 
advanced extraordinarily in recent years. This has been enabled by: (a) improved hard-
ware, in terms of computational power and storage capacity; (b) data availability, in 
terms of variety of corpora; and (c) new algorithms, including recent breakthroughs in 
deep learning and the emergence of large-scale pretrained language models. Unfortu-
nately, human languages have not benefited from these advances equally, as mainstream 
research has focused primarily on English, and to a lesser extent on just a handful of other 
“high-resource” languages. 

Fortunately, over time, as the Internet has become increasingly multilingual, resources 
and tools have been gradually developed for many other languages, both monolingual and 
multilingual. With the emergence of NLP applications that can handle multiple languages, 
there has also been an increasing need for these applications to know the language of 
their input. For example, a system for extracting the text from a scanned document using 
optical character recognition (OCR) needs to know the language of the input document, 
or it would risk generating a non-sense sequence of letters, e.g., just because French and 
Hungarian share the same alphabet, does not mean that one can use a model developed for 
the former to do OCR for the latter. Similarly, a machine translation system needs to know 
the language of its input, or it could choose a wrong translation, e.g., due to false friends: 
for example, ‘gift’ can be an English word, but also a German one meaning ‘poison’, or 
a Norwegian one meaning ‘married’. Practically, any NLP application dealing with text 
needs to know the language of its input so that it can choose appropriate text processing 
components in its NLP pipeline, as even very basic processing such as tokenization is 
done differently for different languages, e.g., Arabic, Chinese, and Vietnamese, typically 
require word segmentation, while for languages like English, Spanish, and Russian, this 
is typically not needed. 

Of course, the system could ask the user to specify the language, but the user might 
select the wrong language or the wrong language variety (e.g., in the case of a long list of 
language choices), or the user might simply not know it for sure (e.g., a random tweet that 
is written using the Arabic script could be in Arabic, but also in Persian; similarly, a doc-
ument using the Cyrillic alphabet could be in Russian, but also in Ukrainian, Bulgarian,
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vi Foreword

and even in Mongolian). Moreover, there are cases where asking the user is not an option, 
e.g., when crawling documents from the Web. Therefore, many real-world systems have 
a built-in language identification component, e.g., Google Translate. 

Yet, it is natural to ask how hard the problem actually is. After all, if the input is 
long enough (e.g., a full article) and if the distinction is between somewhat unrelated 
languages (e.g., between Portuguese and German), language identification can be trivial 
for speakers of the respective language. In such a scenario, the task can also easily be 
solved by automatic systems with almost 100% accuracy, e.g., using a character-level 
language model, or using word and character n-grams as features in a classifier. However, 
this is much harder if the system has only seen a small piece of text as input, but it 
needs to make a decision. For example, even a speaker of the respective languages cannot 
be sure whether the fragment “Alle mennesker er født frie og…” is in Danish or in 
Norwegian. This is because Danish and Norwegian are closely related languages with 
substantial overlap in terms of grammar and vocabulary, and this fragment is perfectly 
fluent in both: indeed, it is the beginning of the Universal Declaration of Human Rights in 
both languages. It is even harder to distinguish between language varieties, e.g., between 
Portuguese from Brazil and Portuguese from Portugal, or between German from Germany 
and German from Austria. Dialects are even trickier as they might not have a universally 
accepted grammar and spelling convention, nor do they have clear boundaries. Finally, 
there is the case of code-switching, where languages, language varieties, and dialects get 
mixed together in the same text, and even in the same sentence. For example, the sentence 
“Pero why do I have to go  a la casa?” mixes Spanish (in italic) and English. It is important 
for a system to recognize such switches, so that it can process each language fragment 
accordingly, e.g., a speech recognition system or a machine translation trying to generate 
an Arabic translation from such an input would suffer badly when presented with such 
code-switched text; yet, asking for user guidance on the language of each fragment is 
not practical in such a scenario, and it is best if the system can perform the automatic 
detection on the fly. 

Traditionally, research on language identification has been done separately in the 
speech and in the NLP communities due to the difference in the input (sound versus 
text). The applications of language identification in speech versus text, as well as the 
approaches, are also quite different, and they have been studied by different communities. 
Thus, it makes sense to focus on one or the other, which is also the approach taken in 
this book. 

“Automatic Language Identification in Texts” offers a thorough survey of recent work 
on language identification, covering a number of important aspects such as closely 
related languages, low-resource and open-class scenarios, short input, code-switching, etc.
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It further discusses a variety of approaches, datasets, shared tasks, and applications to 
various NLP tasks. Overall, the authors have done an excellent job, and the book is a 
must-read for anybody interested in the challenging but important problem of language 
identification. 

Abu Dhabi, United Arab Emirates 
September 2022 

Preslav Nakov
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1Introduction to Language Identification 

Language identification (LI) is the task of predicting the language(s) in a text or speech 
input. The main difference between LI of text and speech is that the characters that make 
up the text are discrete, whereas with speech, the input is usually a continuous signal. This 
means that different styles of mathematical methods are needed to process text and speech, 
traditionally with little methodological overlap between them. In this book, we focus on the 
language identification of digital text, although we do touch on applications to speech in the 
case that the speech signal has been translated into a sequence of (discrete) phones. 

Recognizing the language(s) that a text is written in comes naturally to a human reader 
familiar with the language(s). Table 1.1 presents excerpts from Wikipedia articles in four 
different European languages on the topic of Natural Language Processing (NLP), labeled 
according to the language they are written in. Without referring to the labels, readers of this 
book will certainly recognize at least one language, and many are likely to identify all of 
them, even if they can’t read the content in all cases. 

Research into LI aims to mimic this human ability to recognize specific languages. Over 
the years, several computational approaches have been developed that, through the use of 
specially-designed algorithms and indexing structures, are able to infer the language being 
used without the need for human intervention. In terms of coverage, the capability of such 
systems could be described as super-human: an average person may be able to identify a 
handful of languages, and a trained linguist or translator may be familiar with many dozens, 
but most of us will have, at some point, encountered written texts in languages we cannot 
place. However, LI research aims to develop systems that are able to identify any human 
language, a set which numbers in the thousands (Simons and Fennig 2018). 

Research to date on LI has traditionally focused on monolingual documents (Hughes et al. 
2006) (we discuss LI for multilingual documents in Chap. 5). In monolingual LI, the task is 
to assign a unique label to each document. Some work has reported near-perfect accuracy for 
LI of large documents in a small number of languages, prompting some researchers to label 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction to Language Identification

Table 1.1 Excerpts from Wikipedia articles on NLP in different languages 

Text line Language 

Natural language processing is a field of computer science, artificial 
intelligence, and linguistics concerned with the interactions between computers 
and human (natural) languages. 

English 

L’Elaborazione del linguaggio naturale è il processo di trattamento automatico 
mediante un calcolatore elettronico delle informazioni scritte o parlate nel 
linguaggio umano o naturale. 

Italian 

Luonnollisen kielen prosessointi liittyy ihmisten puhumien kielten ja 
tietokoneiden väliseen vuorovaikutukseen. 

Finnish 

In der Computerlinguistik (CL) oder linguistischen Datenverarbeitung (LDV) 
wird untersucht, wie natürliche Sprache in Form von Text- oder Sprachdaten 
mit Hilfe des Computers algorithmisch verarbeitet werden kann. 

German 

it a “solved task” (McNamee 2005). However, in order to attain such accuracy, simplifying 
assumptions have to be made, such as the aforementioned monolinguality of each document, 
as well as assumptions about the type and quantity of data, and the number of languages 
considered. 

The ability to accurately detect the language that a document is written in is an enabling 
technology that increases accessibility of data and has a wide variety of applications. For 
example, presenting information in a user’s native language has been found to be a critical 
factor in attracting website visitors (Kralisch and Mandl 2006). Text processing techniques 
developed in natural language processing and information retrieval generally presuppose 
that the language of the input text is known, and many techniques assume that all documents 
are in the same language. In order to apply text processing techniques to real-world data, 
automatic LI is used to ensure that only documents in relevant languages are subjected to 
further processing. In information storage and retrieval, it is common to index documents in a 
multilingual collection by the language they are written in, and LI is necessary for document 
collections where the languages of documents are not known a-priori, such as for data 
crawled from the World Wide Web. Another application of LI that predates computational 
methods is the detection of the language of a document for routing to a suitable translator. 
This application has become even more prominent due to the advent of Machine Translation 
(MT) methods: to apply MT to translate a document to a target language, it is generally 
necessary to determine the source language of the document, and this is the task of LI. LI also 
plays a part in providing support for the documentation and use of low-resource languages. 
One area where LI is frequently used in this regard is in linguistic corpus creation, where LI 
is used to process targeted web crawls to collect text resources for low-resource languages. 

It should be noted that in this book, we do not make a distinction between languages, 
language varieties, and dialects. Whatever demarcation is made between languages, varieties 
and dialects, a LI system is trained to identify the associated classes. Of course, the more


