George Moroianu

KW/UKW Draht-Multibeam

Projektierung, Optimierung und Anpassung am Einsatzort

KW/UKW Draht-Multibeam

George Moroianu

KW/UKW Draht-Multibeam

Projektierung, Optimierung und Anpassung am Einsatzort

George Moroianu Eppelheim, Deutschland

ISBN 978-3-662-67991-3 ISBN 978-3-662-67992-0 (eBook) https://doi.org/10.1007/978-3-662-67992-0

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über https://portal.dnb.de abrufbar.

© Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature 2023

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Planung/Lektorat: Michael Kottusch

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Das Papier dieses Produkts ist recyclebar.

Vorwort

Der Ruhestand kann für den immer größer werdenden Personenkreis, der Fachwissen und wertvolle Erfahrung im Berufsleben angehäuft hat, kein idyllisches sinnloses Modus Vivendi sein. Die Fähigkeit und die Möglichkeit, auch im Rentenalter den vorhandenen Schatz in Form von Neuentwicklungen oder Verbesserungen der Gesellschaft zu geben, verleiht das Gefühl, auch weiter nützlich zu sein, was vitalisiert und mobilisiert.

Meinem Hobby aus der Kindheit konnte ich erst im Ruhestand nachgehen. Aber als ich die Lücken im Antennenangebot erkannt habe, wollte ich sofort eine neue effiziente 3 elementige Draht Richtantenne entwickeln. In der Testphase haben mich Sergej, ROAGK aus Podtesovo/Sibirien und Carlos, CE6CGX aus Traiguen/Chile unterstützt, indem sie sich Zeit genommen haben und mir in mehreren Verbindungen zuverlässige Empfangswerte für das Antennenduo Vertikalantenne/3El.Oktobeam gegeben haben.

Danken muss ich auch meiner Frau, die ich nicht immer nach Bedarf unterstützen konnte und meiner Tochter, Radiologin von Beruf mit einer starken Neigung zur Technik, die dieses Buch zensiert hat. Danken will ich auch den Mitarbeitern vom Springer Verlag, die mich unterstützt haben.

Eppelheim, Deutschland Juli 2023 George Glad Moroianu

Inhaltsverzeichnis

1	Einleitung Literatur.		1 3
2	Rick	ntantennen und ihr Rauschen	5
	2.1	Die Antennenphysik kurz und klar	5
	2.2	Typische Aufstellungen für Richtantennen	7
	2.3	Die Nachstellung der Richtantenne am Einsatzort	9
	2.4	Das Antennenrauschen.	11
	Lite	ratur	12
3	Der	abgewinkelte oktogonale $\lambda/2$ Dipol	13
	3.1	Der klassische gestreckte $\lambda/2$ Dipol	13
	3.2	Der 1El.Oktobeam	14
	3.3	Der 1El.Oktobeam versus korrespondenten 2El.Oktobeam	15
	3.4	Der 2El.Oktobeam versus gerader $\lambda/2$ Dipol	18
4	Verf	ahren zur Ermittlung von Umgebungseinflüssen am Einsatzort	19
4	Verf 4.1	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellung	19 20
4	Verf 4.1 4.2	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellungDer Designverkürzungsfaktor Kd	19 20 21
4	Verf 4.1 4.2 4.3	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellungDer Designverkürzungsfaktor KdDer messbare Antennenverkürzungsfaktor Ka	19 20 21 22
4	Verf 4.1 4.2 4.3 4.4	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellungDer Designverkürzungsfaktor KdDer messbare Antennenverkürzungsfaktor KaDer Umgebungskürzungsfaktor Ku	19 20 21 22 23
4	Verf 4.1 4.2 4.3 4.4 4.5	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellungDer Designverkürzungsfaktor KdDer messbare Antennenverkürzungsfaktor Ka.Der Umgebungskürzungsfaktor KuDie äquivalente Resonanzfrequenz	19 20 21 22 23 24
4	Verf 4.1 4.2 4.3 4.4 4.5 4.6	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellungDer Designverkürzungsfaktor KdDer messbare Antennenverkürzungsfaktor Ka.Der Umgebungskürzungsfaktor KuDie äquivalente ResonanzfrequenzDer Test-Dipol	19 20 21 22 23 24 27
4	Veri 4.1 4.2 4.3 4.4 4.5 4.6 Der	Cahren zur Ermittlung von Umgebungseinflüssen am EinsatzortFeststellungDer Designverkürzungsfaktor KdDer messbare Antennenverkürzungsfaktor Ka.Der Umgebungskürzungsfaktor KuDie äquivalente ResonanzfrequenzDer Test-DipolOktoBeam.	19 20 21 22 23 24 27 29
4	Verl 4.1 4.2 4.3 4.4 4.5 4.6 Der 5.1	Cahren zur Ermittlung von Umgebungseinflüssen am Einsatzort Feststellung Der Designverkürzungsfaktor Kd Der messbare Antennenverkürzungsfaktor Ka. Der Umgebungskürzungsfaktor Ku Die äquivalente Resonanzfrequenz Der Test-Dipol OktoBeam. Die theoretischen Grundlagen	19 20 21 22 23 24 27 29 30
4	Verf 4.1 4.2 4.3 4.4 4.5 4.6 Der 5.1 5.2	Cahren zur Ermittlung von Umgebungseinflüssen am Einsatzort Feststellung Der Designverkürzungsfaktor Kd Der messbare Antennenverkürzungsfaktor Ka. Der Umgebungskürzungsfaktor Ku Die äquivalente Resonanzfrequenz Der Test-Dipol OktoBeam. Die theoretischen Grundlagen Die Definitionsdaten der 3El.Oktobeam	19 20 21 22 23 24 27 29 30 32
4	Verf 4.1 4.2 4.3 4.4 4.5 4.6 Der 5.1 5.2	Cahren zur Ermittlung von Umgebungseinflüssen am Einsatzort Feststellung Der Designverkürzungsfaktor Kd Der messbare Antennenverkürzungsfaktor Ka. Der Umgebungskürzungsfaktor Ku Die äquivalente Resonanzfrequenz Der Test-Dipol OktoBeam. Die theoretischen Grundlagen Die Definitionsdaten der 3EI.Oktobeam 5.2.1	19 20 21 22 23 24 27 29 30 32 35
4	Verf 4.1 4.2 4.3 4.4 4.5 4.6 Der 5.1 5.2	Cahren zur Ermittlung von Umgebungseinflüssen am Einsatzort Feststellung Der Designverkürzungsfaktor Kd Der messbare Antennenverkürzungsfaktor Ka. Der Umgebungskürzungsfaktor Ku Die äquivalente Resonanzfrequenz Der Test-Dipol OktoBeam. Die theoretischen Grundlagen Die Definitionsdaten der 3El.Oktobeam 5.2.1 Die Definitionstabelle Reflektor 5.2.2 Die Definitionstabelle Dipol	19 20 21 22 23 24 27 29 30 32 35 36

	5.3	Die Einstellungen.	40
		5.3.1 Die Einstellung des Resonanzfrequenz Soll-Wertes	40
		5.3.2 Die Einstellung der V/R Dämpfungskurve	40
		5.3.3 Die Einstellung der Fußpunktimpedanz und der Breitbandigkeit	41
	5.4	Die Feineinstellung	42
	5.5	Antennenbenennung	42
	5.6	Entwurf eines 3El.Oktobeams für die Resonanzfrequenz 28,5 MHz	43
	5.7	Gewinn und V/R Dämpfung aus einer anderen Perspektive	51
	5.8	Ein Blick über den Tellerrand	56
6	Die	Performanzenblöcke	57
	6.1	Der Performanzenblock für Richtantennen	57
	6.2	Die Breitbandigkeit	58
	6.3	Die Fußpunktimpedanz und die Impedanzanpassung	60
	6.4	Der durchschnittliche Gewinn	61
	6.5	Der Öffnungswinkel.	61
	6.6	Die durchschnittliche V/R Dämpfung	61
	6.7	Die V/S Dämpfung	63
	6.8	Der Drehradius.	63
	6.9	Der Performanzenblock für die 3El-OB10DW-R191-B200-DEMO	63
	6.10	Der Performanzenblock für Multibeams	64
7	Okt	obeam versus Yagi-Uda &Co	65
	7.1	Die Beamsaga	65
	7.2	Das "Kurzwelle Draht Multibeam" Patent DE 102018004783	67
	7.3	Festlegungen	69
	7.4	Abschnitt 2El-Beam vom Typ Reflektor-Dipol	69
	7.5	Abschnitt 2El-Beam vom Typ Dipol-Direktor.	80
	Liter	ratur	91
8	Proj	ektierung des KW 3El.Oktobeams.	93
	8.1	Die Berechnung der optimalen R-Werte	94
	8.2	Die Projektierung	95
		8.2.1 Die 3EI-OB10DW-R177,5-B200-DEMO	95
		8.2.2 Die 3EI-OB10DV-R173-B155-DEMO	98
		8.2.3 Die 3El-Yagi-Uda-DEMO	100
	8.3	Der Performanzenvergleich	103
	8.4	Gewinn und Dämpfung aus einer anderen Perspektive	104
	8.5	Die Kürzungsfaktoren in Überblick	108
	8.6	Die Vorteile der optimierten Projektierung	109
	8.7	Erkenntnisse aus der Praxis	110

9	Zusar	nmenbau des 3El.Oktobeams	111
	9.1	Der Zusammenbau	112
		9.1.1 Die Zusammenbauphase 1	113
		9.1.2 Die Zusammenbauphase 2	115
		9.1.3 Die Zusammenbauphase 3	117
	9.2	Die Nachstellung eines Oktogonal-Multibeam am Einsatzort.	119
10	Der C	Oktogonal-Multibeam	121
	10.1	Festlegung	121
	10.2	Die Multibeamoptimierung	122
	10.3	Der Stapel und die Montagereihenfolge	123
	10.4	Der Abstand zwischen den Antennenebenen	123
	10.5	Die Ausrichtung der Oktobeams	124
	10.6	Der Antennenstapel	127
	10.7	Die Optimierung	127
	10.8	Die Oktogonal-Multibeam Benennung	129
	10.9	Entwurf eines OMB20-15-10R-DEMO mit getrennten Speisungen	130
		10.9.1 Aktivieren Antenne A1	136
		10.9.2 Aktivieren Antenne A2	137
		10.9.3 Aktivieren Antenne A3	138
	10.10	Entwurf OMB20-15-10R-SEU-DEMO mit Stapel Serienspeisung	140
		10.10.1 Aktivieren Antenne A1	145
		10.10.2 Aktivieren Antenne A2	146
		10.10.3 Aktivieren Antenne A3	147
	10.11	Die Stapeloptimierung in Überblick	148
	10.12	Ein Blick auf die Kürzungsfaktoren Ka, Kd und Ku	152
11	Das o	ktogonale Trägergestell	155
	11.1	Die Stapelgeometrie.	156
	11.2	Ein Rechenbeispiel.	158
	11.3	Das zentrale GFK-Rohr	160
12	Getre	ennte Speisung versus Stapel Serienspeisung	163
	12.1	Die getrennte Speisung	164
	12.2	Die Stapel Serienspeisung	164
	12.3	Der Vergleich	165
		12.3.1 Der Performanzenvergleich	165
		12.3.2 Der SWR Diagrammenvergleich	167
	12.4	Vergleich von Oktogonal Multibeams mit 2 Oktobeams im Stapel	170
13	Proje	ktierung des UKW 3El.Oktobeams	173

14	Anon	nalien der Ausbreitungsbedingungen	179
	14.1	Anomalien durch eine Planetenkonfiguration	180
	14.2	Anomalien, die ich nicht erklären kann	181

Abbildungsverzeichnis

Abb. 2.1	Richtantenne aufgestellt auf unbebauten Boden oder auf See	7
Abb. 2.2	Richtantenne aufgestellt in einem Ballungszentrum.	8
Abb. 2.3	Richtantenne aufgestellt in einer Waldlichtung	8
Abb. 2.4	Die drei V/R Dämpfungsdiagramme	10
Abb. 3.1	Das SWR Diagramm	14
Abb. 3.2	Das Azimuthdiagramm	14
Abb. 3.3	Das SWR Diagramm.	15
Abb. 3.4	Das Azimuthdiagramm	15
Abb. 4.1	Die Position der Kürzungsfaktoren Ka, Kd und Ku auf der	
	Frequenzskala	23
Abb. 4.2	Die Repositionierung der Kürzungsfaktoren Kd und Ku auf der Frequenzskala	25
Abb. 4.3	Der Test-Dipol.	27
Abb. 4.4	Die SWR Kurve zentriert auf die Resonanzfrequenz 28,5 MHz	28
Abb. 5.1	Die oktogonalförmige Antennengeometrie	30
Abb. 5.2	Fünf V/R Dämpfungskurven von 2El.Oktobeams mit R von	
	1710 bis 1735 mm	31
Abb. 5.3	Die Antennengeometrie und die Definitionspunkte	33
Abb. 5.4	Das SWR Diagramm	46
Abb. 5.5	Das Azimuthdiagramm	47
Abb. 5.6	Das SWR Diagramm	49
Abb. 5.7	Das Azimuthdiagramm	49
Abb. 5.8	Die zwei V/R Dämpfungskurven	50
Abb. 5.9	Die zwei Gewinnkurven	51
Abb. 5.10	Entnahme Polarkoordinaten 2EI-OB10DW-R191-DEMO	52
Abb. 5.11	Entnahme Polarkoordinaten 3El-OB10DW-R191-B200-DEMO	52
Abb. 5.12	Die Gewinn und die Dämpfungkurven beider Oktobeams	54
Abb. 5.13	Der stabilisierende Effekt des Direktors auf die Fußpunktimpedanz	55

Abb. 6.1	Resonanzfrequenzverschiebung visualisiert durch rote und blaue	
	SWR Kurve	58
Abb. 6.2	Die Einstellung von Resonanzfrequenz Soll-Wert bei Trockenheit	59
Abb. 7.1	Die V/R Dämpfung der 2El-OB10D-R172 für 3 Reflektoren	74
Abb. 7.2	Die V/R Dämpfungskurven der 4 ausgewählten Richtantennen	78
Abb. 7.3	Die Gewinnkurven der ausgewählten Richtantennen	79
Abb. 7.4	Die SWR Kurven für Verhältnisse zwischen 0,96 und 1,01	86
Abb. 7.5	Die Relation Breitbandigkeit, Maß B, Verhältnis Direktor-Dipol	
	von 0,96 bis 1,0	87
Abb. 7.6	Die SWR Kurven für Maß B von 025 bis 200 mm	90
Abb. 7.7	Die Relation zwischen Radius R Maß B und Breitbandigkeit	90
Abb. 8.1	Das SWR Diagramm.	96
Abb. 8.2	Das Azimuthdiagramm	97
Abb. 8.3	Das SWR Diagramm.	99
Abb. 8.4	Das Azimuthdiagramm	100
Abb. 8.5	Das SWR Diagramm.	101
Abb. 8.6	Das Azimuthdiagramm	102
Abb. 8.7	Die V/R Dämpfungskurven.	103
Abb. 8.8	Die Gewinnkurven	103
Abb. 8.9	Entnahme Polarkoordinaten	105
Abb. 8.10	Entnahme Polarkoordinaten	106
Abb. 8.11	Die Gewinn- und Dämpfungsdiagramme in Polarkoordinaten	108
Abb. 9.1	Geometrie und Maße der 3El-OB10DW-R177,7-B200-DEMO	112
Abb. 9.2	Zusammenbau der 3El.Oktobeam.	114
Abb. 9.3	Der 3El.Oktobeam nach Abschluss der Zusammenbauphase 1	115
Abb. 9.4	Der 3El.Oktobeam, nach Abschluss der Zusammenbauphase 2	116
Abb. 9.5	Der 3El.Oktobeam nach Abschluss der Zusammenbauphase 3	118
Abb. 10.1	Das SWR Diagramm.	136
Abb. 10.2	Das Azimuthdiagramm	137
Abb. 10.3	Das SWR Diagramm	137
Abb. 10.4	Das Azimuthdiagramm	138
Abb. 10.5	Das SWR Diagramm	139
Abb. 10.6	Das Azimuthdiagramm	139
Abb. 10.7	Das SWR Diagramm	145
Abb. 10.8	Das Azimuthdiagramm	145
Abb. 10.9	Das SWR Diagramm	146
Abb. 10.10	Das Azimuthdiagramm	146
Abb. 10.11	Das SWR Diagramm	147
Abb. 10.12	Das Azimuthdiagramm	147

Abb. 11.1	Gestell mit GHK-Rohr aus einem Segment 156
Abb. 11.2	Gestell mit GFK-Rohr aus 2 gesteckten Segmenten 156
Abb. 11.3	Gestell mit GFK Rohr aus drei gesteckten Segmenten 157
Abb. 11.4	Das teleskopische GFK-Rohr mit drei steckbare Rohrsegmente 158
Abb. 11.5	Das Zentrale GFK-Rohr
Abb. 12.1	Die V/R Dämpfungsdiagrammen der Antennen A1 166
Abb. 12.2	Die V/R Dämpfungsdiagrammen der Antennen A2 166
Abb. 12.3	Die V/R Dämpfungsdiagrammen der Antennen A3 166
Abb. 12.4	Das SWR Diagramm der OMB20-15-10R-SEU-DEMO 167
Abb. 12.5	OMB20-15-10R-DEMO, SWR Diagramm Antenne
	A1, 14 MHz Band 168
Abb. 12.6	OMB20-15-10R-DEMO, SWR Diagramm Antenne
	A2, 21 MHz Band 169
Abb. 12.7	OMB20-15-10R-DEMO, SWR Diagramm Antenne
	A3, 28 MHz Band 169
Abb. 12.8	Die V/R Dämpfungsdiagramme im Vergleich 171
Abb. 12.9	Die V/R Dämpfungsdiagramme im Vergleich 171
Abb. 13.1	Das SWR Diagramm
Abb. 13.2	Das Azimuthdiagramm
Abb. 13.3	Das SWR Diagramm
Abb. 13.4	Das Azimuthdiagramm

Tabellenverzeichnis

Tab. 3.1	Performanzenvergleich 1El.Oktobeam versus korrespondenten	17
	2EI.Oktobeam	17
Tab. 3.2	Die Länge der Halbwellendipole	18
Tab. 4.1	Die Kd Werte für gestreckte $\lambda/2$ Dipole in Überblick	21
Tab. 4.2	Die äquivalenten Resonanzfrequenzen	26
Tab. 5.1	R und A Werte für 2El.Oktobeams	31
Tab. 5.2	Orientative Maß B Werte	34
Tab. 5.3	Tabellarischer Überblick, die Koordinaten der 17 Definitionspunkten	35
Tab. 5.4	Die Definitionstabelle Reflektor	36
Tab. 5.5	Die Definitionstabelle Dipol	36
Tab. 5.6	Die Definitionstabelle gefalteter Dipol	37
Tab. 5.7	Die Definitionstabelle W-förmiger Direktor	38
Tab. 5.8	Die Definitionstabelle V-förmiger Direktor	39
Tab. 5.9	Die Definitionstabelle Reflektor	44
Tab. 5.10	Die Definitionstabelle Dipol	44
Tab. 5.11	Die Definitionstabelle der 2El.OB10D-R191-DEMO	46
Tab. 5.12	Die Definitionstabelle für den W-förmigen Direktor	48
Tab. 5.13	Die Definitionstabelle der 3El-OB10DW-R191-B200-DEMO	48
Tab. 5.14	Die Polarkoordinaten für das gemeinsame Azimuth- und	
	Gewinndiagramm	53
Tab. 5.15	Einfluss der Montagehöhe auf Fußpunktimpedanz und	
	V/R Dämpfung	55
Tab. 6.1	Werte der minimalen Breitbandigkeit	59
Tab. 6.2	Die berechnete Werte für Gewinn, V/R und V/S Dämpfung	62
Tab. 6.3	Der Performanzenblock für Richtantennen.	63
Tab. 6.4	Der Performanzenblock für Multibeams.	64
Tab. 7.1	Die Antenne-Palette mit neun 2El-RYagi-Uda	70
Tab. 7.2	Die Antennen-Palette mit zehn 2El-OB10D-Rxxx	72

Tab. 7.3	Die Antennen-Palette mit elf 2EL-MOXON09	75
Tab. 7.4	Die Antennen-Palette mit acht 2El-Broadband-Hexbeam-Rxxx	77
Tab. 7.5	Die für Funkdienste relevanten Performanzen der vier Richtantennen	79
Tab. 7.6	Die Antennen-Palette mit neun 2El-DYagi-Uda	81
Tab. 7.7	Die Antennen-Palette mit fünf 2El-OB10DW-R172-B100	83
Tab. 7.8	Die Antennen-Palette mit sechs 2ElOB10DW-R172-B150	84
Tab. 7.9	Die Antennen-Palette mit sechs 2El-OB10DW-R172-B200	85
Tab. 7.10	Die Antennen-Palette mit sechs 2El-OB10DV-R172	88
Tab. 7.11	Die Antennen-Palette mit sieben 2El-OB10DV-R178	89
Tab. 8.1	Die Definitionstabelle der 3El-OB10DW-R177,5-B200-DEMO	96
Tab. 8.2	Der Performanzenblock	98
Tab. 8.3	Die Definitionstabelle der 3El-OB10DV-R173-B155-DEMO	99
Tab. 8.4	Der Performanzenblock	100
Tab. 8.5	Die Definitionstabelle der 3El-Yagi-Uda-DEMO	101
Tab. 8.6	Der Performanzenblock	102
Tab. 8.7	Die tabellarische Performanzenübersicht	104
Tab. 8.8	Gewinn-Dämpfung 3El-Yagi-Uda-DEMO – 3El-OB10DW-R177,	
	5-B200-DEMO	107
Tab. 8.9	Die Kürzungsfaktoren Ka, Kd und Ku	108
Tab. 8.10	Die Performanzen der acht analysierten Richtantennen	109
Tab. 8.11	Die Kürzungsfaktoren Ka, Kd und Ku	110
Tab. 9.1	Die Minimal und Maximallängen	117
Tab. 9.2	Orientative Werte für die Korrektur	119
Tab. 10.1	Verhältnis zwischen den Werten R und 1/R	124
Tab. 10.2	Kosinusfaktor (Kf)	125
Tab. 10.3	Die Definitionstabelle der 3El-OB20DW-R358-B475-DEMO	131
Tab. 10.4	Performanzenblock	131
Tab. 10.5	Die Definitionstabelle der 3El-OB15DW-R240-B275-DEMO	132
Tab. 10.6	Performanzenblock	132
Tab. 10.7	Die Definitionstabelle der OMB20-15-10R-DEMO.	134
Tab. 10.8	Gewinn und V/R Dämpfung	139
Tab. 10.9	Performanzenblock der OMB20-15-10R-DEMO.	140
Tab. 10.10	Die Definitionstabelle der OMB20-15-10R-SEU-DEMO	143
Tab. 10.11	Performanzenblock der OMB20-15-10R-SEU-DEMO	148
Tab. 10.12	Stapel mit 2 Oktobeams: A1 Für 14 MHz und A2 für 21 MHz	149
Tab. 10.13	Stapel mit 3 Oktobems: A1 14 MHz, A2 21 MHz und A3 28 MHz	150
Tab. 10.14	Stapel mit 4 Oktobems: A1 14 MHz, A2 21 MHz, A3 28 MHz	
	und A4 50 MHz	151
Tab. 10.15	Die Kürzungsfaktoren Ka, Kd und Ku	152
Tab. 11.1	Die Werte für R und 1/R ²	157

Tab. 12.1 Tab. 12.2	OMB20-15-10R-DEMO und OMB20-15-10R-SEU-DEMO Fußpunktimpedanz, Breitbandigkeit und V/R Dämpfung	165 170
Tab. 13.1	Die Definitionstabelle	174
Tab. 13.2	Der Performanzenblock	176
Tab. 13.3	Die Definitionstabelle	176
Tab. 13.4	Der Performanzenblock	178
Tab. 13.5	Kürzungsfaktoren, tabellarische Übersicht	178

Einleitung

Basierend auf die Lorentzkraft schrieb der Physiker James Clerk Maxwell zwischen 1861 und 1864 die Maxwell-Differenzialgleichungen und hat somit die Existenz der EM Wellen vorhergesagt. In November 1886 konnte der Physiker Heinrich Herz experimentell deren Existenz nachweisen. Die Physiker recherchierten damals fokussiert auf die drahtlose Energieübertragung und Nicola Tesla erhielt im März 1900 sogar ein Patent diesbezüglich. Aber schon 5 Jahre früher, im Mai 1895, berichtete der Physiker Alexander S. Popov bei einem Treffen der russischen Akademie der Wissenschaft in Petersburg über seine

Erfolge bezüglich der Detektion von elektrischen Schwingungen, die durch Blitze bei Unwetter zustande kommen und präsentierte erstmals ein Detektionsgerät. Das Gerät bestand aus einer Antenne und einem verbesserten Cohörer (in den 1880er-Jahren von Temistocle Calzecchi-Onesti erfunden) und kann als erster dokumentierter Empfänger von EM Wellen bezeichnet werden. Die Früherkennung von Unwetter war die erste gelungene Applikation, mit EM Wellen drahtlos Informationen zu empfangen. Am 24 März 1896 konnte Popov mit seinem Sender-Empfängerset die erste drahtlose Übertragung von Signalen auf eine Entfernung von 250 m realisieren. Wir sollten niemals vergessen, dass die erste Generation der Hobbyentwickler leidenschaftliche Experimentatoren waren, die Popov's Beitrag "Gerät zur Aufspürung und Registrierung elektrischer Schwingungen", veröffentlicht im Januar 1896 im "Journal der Russischen Gesellschaft für Physik und Chemie" oder andere Publikationen, die dessen Inhalt übernommen haben, lesen konnten und begeistert das Sender-Empfängerset nachgebaut und danach verbessert haben.

Mit der von Lee de Forest erfundenen Triode konnten die Hobbyentwickler an der Entwicklung der Empfänger- und Sendetechnik entscheidend beitragen, neue Antennen bauen aber auch immer weiter und besser kommunizieren.

Die erste transatlantische Verbindung auf Kurzwellen konnten Hobbyentwickler im Jahr 1923 melden und zwei Jahre später haben sie die IARU gegründet. Die öffentliche

© Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature 2023 G. Moroianu, *KW/UKW Draht-Multibeam*, https://doi.org/10.1007/978-3-662-67992-0_1

1

Anerkennung der oben erwähnten Pionierleistung hat die Regierungen weltweit so beeindruckt, dass im Jahr 1927 die Weltfunkkonferenz die Hobbyentwickler als Funkamateure bezeichnet, legitimiert und für sie die bekannten AfU Bänder reserviert hat.

In Sinne dieser Tradition konnte der Amateurfunk immer von einem elitären, kantianisch motivierten Kern profitieren, der die Lokomotive ist, nach innovativen Lösungen recherchiert und sich mit der Integration der neuen Telekommunikationstechnik in der Amateurfunk- Ausstattung beschäftigt.

Die Forschung und Entwicklung bzw. die Weiterentwicklung in den Bereichen Elektronik und Telekommunikation kann heute aufgrund der Komplexität und Diversität de facto nur zielorientiert in solid finanzierten Forschungseinrichtungen stattfinden, aber, es existieren trotzdem immer noch Nischen wie die Softwareentwicklung, Entwicklung von neuen Antennen, Konstruktion von spezifischen Geräten usw., in denen auch Hobbyentwickler ihre Beiträge sinnvoll einbringen können. Aber auch diese neuen Entwicklungen sind sehr komplex und können schnell und erfolgreich nur von multidisziplinären Teams durchgeführt werden.

Konfrontiert mit dem Mitgliederschwund konzentrieren sich heute die nationalen Amateurfunkvereine auf die Bedürfnisse der alternden Mitgliedermehrheit und vernachlässigen die Zukunft. Über die Weiterentwicklung wird ab und zu berichtet, aber über die Vorteile der Zusammenarbeit in multidisziplinären Teams wird gar nicht gesprochen.

Das Problem ist nicht die Teambildung, da sich die Mitglieder in der Regel selbst finden, sondern die Art und Weise, wie in den Vereinen, Presse und Medien diesbezüglich Werbung gemacht, die Teambildung gefördert, diese mutigen Menschen behandelt und ihre Arbeit in der Öffentlichkeit präsentiert werden.

Existenziell für die Menschheit ist eine klimafreundliche Umstellung der Wirtschaft, deren Ziele durch eine gute Planung ohne schmerzhafte Verluste erreicht werden können. Die Hoffnung, dass Funken von der aktuellen klimabedingten Umstellung der Wirtschaft und deren Wirkung auf die Gesellschaft verschont bleibt, widerspiegelt sich in unserem konservativen Verhalten auf Runden oder Skeeds auf dem 3,5 MHz Band aber auch reichlich in den Ortsvereinen und in der Vereinspresse und Medien.

Die Konversion bedeutet nicht nur "grüner Strom" oder "grüner Stahl" und trifft nicht nur die Konzerne. Sie trifft weltweit alle Bürger, denn alle Kosten der Konversion werden letztendlich durch die Verkaufspreise an die Verbraucher/Käufer weitergegeben.

Ein Beispiel diesbezüglich, der mit Koks produzierte Stahl, wird aktuell mit ca. 3,5 €/ Kg verkauft, der mit Wasserstoff produzierte Stahl, der bald kommen muss, wird doppelt oder dreimal mehr kosten, aber auch eine viel bessere Qualität haben.

Nicht das Produzieren von Wasserstoff ist das Problem, sondern die aufwändige Wartung und die teure Infrastruktur, die für dessen Transport und Lagerung nötig sind, bestimmen den höheren Kaufpreis.

Die benötigten Rationalisierungen der Ressourcen und die Energieeinsparungen werden mit Sicherheit unsere Gewohnheiten in der gesamten Bandbreite verändern.

Aber es muss sein und es wird alle Menschen treffen. Wir sollen aber nicht warten, bis diese Realität uns hart und unerwartet trifft bzw. bis wir aus unserem "dolce fa niente"

Schlaf aufwachen müssen. Deshalb die Warnung, falls wir unsere Funkgewohnheiten und Kommunikationsfreiheiten ohne Einschränkungen beibehalten wollen, müssen wir innovative Lösungen suchen, Energie einsparen und Ressourcen schonen.

Konkret, statt mit der aktuellen SSB Modulation mit 1000 W Sendeleistung, einem 1000 Kg Antennenmast und einem 100 Kg schweren Multibeam in Zukunft mit der DVfree Modulation mit 100 W Sendeleistung, einem 100 Kg schweren teleskopisch ausfahrbaren Antennenmast (der bei Unwetter automatisch in eine sichere Parkposition eingefahren wird) und einem 18 Kg schweren aber effizienten kompakten KW Draht Multibeam kommunizieren. Dadurch können wir unseren Beitrag an die Konversion leisten und sogar vom Wandel profitieren.

Die Antennentechnik, von der Ressourcenknappheit und Energieeinsparungen geprägt, wird sich auf leichte aber hocheffiziente Konstruktionen konzentrieren müssen. Somit wird heute schon im Bereich der Draht Richtantennen recherchiert, die bekannten Produkte so gut wie möglich verbessert und neue hochwertige Draht Multibeams entwickelt.

In diesem Buch wird der Oktogonal-Multibeam präsentiert, der auf eine neue, dreielementige Draht Richtantenne basiert, die aufgrund der oktogonalförmigen Antennenebene Oktobeam genannt wird. Alle Berechnungen wurden mit der Software EZNEC Pro/2 + v.7.0 durchgeführt, dessen "Calculated Engine" auf EZCalcD(NEC-2D) eingestellt war. Mit der MMANA-GALpro wurden nur Werte für den tabellarischen Vergleich berechnet und ein buntes 3D Bild von einem 3El.Oktobeam Antennendiagramm erstellt. Ab Herbst 2022 kann jeder Leser die Software EZNEC Pro/2+v.7.0 von der Seite [1] frei herunterladen. Somit können die im Buch tabellarisch definierte Beispiele reproduziert/ rekonstruiert werden und der Leser kann sich die Projektierung von Oktobeams mit der Software EZNEC problemlos aneignen. Falls die Berechnungen mit der Version EZNEC+ v.6.0 durchgeführt werden, muss auf der Menüleiste zu erst auf Menü "Option" und danach auf Untermenü "Calculated Engine" geklickt werden. Im geöffneten Fenster EZ-CalcD(NEC-2D) auswählen und abschlissend diese Einstellung speichern.

Literatur

1. http://www.eznec.com

Richtantennen und ihr Rauschen

Zwischen Ende der 1950er- und Anfang der 1960er-Jahre, als die Sonnenaktivität eine Grand Maxima hatte, wurden die Funkdienste von sehr guten Ausbreitungsbedingungen verwöhnt. Aber Ende des XX-ten Jahrhunderts hat sich die Sonnenaktivität normalisiert und die Ausbreitungsbedingungen auf einem niedrigeren Niveau stabilisiert. Eine baldige Rückkehr zu einer neuen Grand Maxima ist sehr unwahrscheinlich, somit müssen jetzt die Antennen entsprechend verbessert werden. Die im [1] schon in der Einführung enthaltene Definition "Antennen … dienen als Anpassungstransformator zwischen leitungsgeführten und sich frei im Raum ausbreitenden elektromagnetischen Wellen" aber auch die Weisheit, dass auch der beste Transceiver ohne eine gute Antenne nicht die ersehnten DX ermöglichen kann, bekräftigt die Suche nach effizienten kompakten Richtantennen mit guten Performanzen, die auch in Ballungszentren auf Wohnblocks, Reihenhäusern oder in kleinen Hinterhöfen aufgestellt werden können. Somit erklärt sich der Bedarf nach einem Remember bezüglich der Problematik Richtantennen und dessen Rauschen. Der Überblick soll wichtige Kenntnisse auffrischen und an relevante Einflüsse, die den Funkbetrieb prägen, erinnern.

2.1 Die Antennenphysik kurz und klar

Die Physik lehrt uns, dass die EM-Welle eine nicht ionisierende Strahlung ist, aus gekoppelten EM-Feldern besteht, pure Energie durch den Raum mit Lichtgeschwindigkeit transportiert und sich nur im Medium Äther verlustlos ausbreiten kann. Dass mit zunehmendem Abstand zur Antenne das EM-Feld abschwächt, kann durch die zunehmende, immer größer werdende kugelförmige Propagationsfront, die das EM-Feld (seitlich) ausdehnt und somit kontinuierlich schwächt, erklärt werden. Der universelle Äther ist ein

2