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Chapter 1 
Introduction 

Modeling natural phenomena using mathematical language is the basis for under-
standing nature. Now, many natural features and phenomena within spacetime are 
not by any means as smooth as could be defined mathematically in a way suitable to 
be used in a physical model. Cosmology as a dynamic and flourishing science could 
not exist without smearing out all non-smooth structures like planets, stars, galaxies 
and so on. This, however, is the beginning of a long journey called the science of 
cosmology, its dynamics, and astrophysics, including all different structures, using 
a wide spectrum of mathematics, details of which are the aim of this study. 

Manifolds and the simplified geometries on them used in cosmology give us a 
vast possibility to grasp notions like Branes, walls, domain walls, solitonic objects, 
D-branes, p-branes, phase transitions in the early universe, and the formation of 
topological defects, just to name some of our needs in physics. Early attempts to 
model such phenomena go back to the dawn of relativity [ 59, 135, 136, 187]. Since 
then, understanding localized matter distributions in astrophysics and cosmology has 
always been of interest. Realizing the difficulty of handling thick shells mathemat-
ically, it was too natural to consider the idealization of a singular hypersurface as a 
thin shell and try to formulate its dynamics within general relativity, though Einstein 
and Straus made the first attempt to implicitly use the concept of a thick shell [ 75] 
to embed a spherical star within a FRW universe (see also [119]). It was then too 
natural to continue studying singular hypersurfaces, started first by Sen [187], Lanc-
zos [135, 136], and Darmois [ 59], a development which then was summed up by 
Israel [112]. The next era of intense interest in thin shells began with ideas related to 
phase transitions in the early universe and the formation of topological defects [126]. 
Strings and domain walls were assumed to be infinitesimally thin [ 55] (see [206] for  
a review), mainly due to technical difficulties. In most of the above examples, the 
way to make a reasonable model is to glue two separate spacetime manifolds, usually 
submanifolds of existing solutions to Einstein equations, at a common boundary. We 
may differentiate two distinct cases of boundaries: hypersurfaces without or with 
supporting energy-momentum. The first case is simply called a boundary surface, 
and the second one being a singular hypersurface is coined a thin shell or a surface 
layer. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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2 1 Introduction

Thin shell formalism has been used to play an important role in various dynam-
ical contexts ranging from microscopic to astrophysical scales [ 91]. For instance, 
by applying a charged shell as an electron model, one may avoid the appearance 
of negative gravitational mass caused by the concentration of charge at the center 
[141, 202]. Macroscopically stable quark-gluon matter can also be studied with a 
toy model in which relativistic thin shells and the MIT bag model are combined 
[211]. Accordingly, the quantization of systems comprising thin shells is shown to 
be tractable [ 29, 53, 69]. On the other side, this formalism is also suitable to describe 
cosmic bubble dynamics and interior structures of black holes (see Chap. 10 and ref-
erences therein), gravitationally-induced decoherence [ 98], exotic objects such as 
gravastars [150] and wormholes (see Chap. 10 and references therein). Moreover, 
gluing spacetime domains have also been considered to analyze cosmological phase 
transitions in the early universe, to describe cosmological voids, to construct semi-
classical creation models avoiding the initial singularity of the Big Bang scenario by 
quantum tunneling (see Chap. 10 and references therein), etcetera. 

Now, gluing spacetime manifolds in a mathematically consistent way needs geo-
metrical assumptions and leads to dynamical conditions on the gravitational and 
matter fields related to the gluing hypersurface. These assumptions and conditions 
are usually summed up under terms such as junction- or matching conditions, orig-
inally studied by Darmois [ 59] and Lichnerowiz [140], and much later for non-null 
thin shells derived by Israel [112], and later extended to null thin shells by Barrabes 
and Israel [ 23]. Although the geometrical part of these so-called conditions is just 
requirements inherent to the definition of a manifold, the dynamical gluing condi-
tions depend on the gravitational field theory and in each case have to be derived 
independently. 

Today, the technology of gluing manifolds in order to model localized phenomena, 
being space-, time-, or light-like, shells, has grown into a standard research tool to 
be used widely. Having this in mind, we elaborate on this technology with the aim 
of having a sound foundation to be used for further research on any area of physics 
in which N-dimensional manifolds and their geometry, being a configuration- or 
momentum-space, play a role. This monograph is organized as follows: 

Chapter 2 is devoted to relevant concepts and definitions needed to set up the 
necessary ingredients for gluing spacetimes, including a brief historical survey of 
different junction conditions differentiating geometrical requirements from dynam-
ical conditions. 

Depending on the way we choose the coordinates on manifolds at each side of 
the timelike/spacelike hypersurface to be glued, different approaches may be used to 
obtain basic equations governing the dynamics of thin shells. In the case of arbitrary 
coordinates, the pill-box integration of Gauss–Codazzi equations over the singular 
hypersurface leads us to the desired junction conditions [112]. This approach is 
elaborated on in Chap. 3. It is, however, possible and sometimes more feasible to use 
a unique coordinate system and metric on the manifolds supposed to be glued. This 
gives us the opportunity to use distribution-valued tensors on the glued manifold 
including the boundary surface, leading to a simple and aesthetic form of the gluing 
conditions similar to the Einstein equations [145]. This approach is introduced in
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Chap. 4. Both chapters are limited to timelike/spacelike boundary surfaces due to the 
intricate behavior of lightlike hypersurfaces. 

The case of null hypersurfaces is studied in Chap. 5. We will  see there that  in  
this case there is no other way than to start with continuous coordinates and use a 
distributional approach. As the induced metric on the null hypersurface is degenerate, 
its normal vector is at the same time tangent to it. Therefore, the extrinsic curvature is 
not defined uniquely. Addressing this subtle point, the necessary prescription similar 
to Chap. 4 is given, while highlighting some peculiar features of null shells, such as 
a related impulsive gravitational wave absent in timelike/spacelike shells, and the 
gluing freedom for a null shell placed at the horizon of static black holes. 

To have a deeper insight into the dynamics of boundary hypersurfaces, we use the 
variational principle to derive the junction conditions for gluing spacetimes through 
a timelike or spacelike hypersurface in Chap. 6. 

Gravity theories other than general relativity (GR) have always been of interest for 
different reasons. In Chaps. 7–9, we study the gluing technology in widely discussed 
alternatives to GR. Chapter 7 is devoted to the gluing conditions in Einstein–Cartan 
theory of gravity, taking into account the spacetime torsion. Our review covers both 
non-null and null hypersurfaces. 

In Chap. 8, we study higher-order gravity theories being motivated due to dif-
ficulties of general relativity in providing well-accepted explanations to problems 
such as singularities, the nature of dark matter, understanding the accelerated expan-
sion of the universe, or quantum gravity. We constrain ourselves to the simplest 
proposal, the so-called . f (R) theories, where higher powers of the Ricci scalar are 
added to the standard Einstein–Hilbert action. The study requires special attention 
due to the unavoidable products of singular distributions to be handled for a consis-
tent mathematical framework needed to derive the gluing conditions. Among several 
contributions, the work of Senovilla is the first to show the presence of a dipole-type 
term in the energy-momentum content supported on the shell. 

Chapter 9 is then confined to the most general quadratic theory, which is defined 
by the addition of terms quadratic in curvature to the standard general relativity 
action. 

Finally, in Chap. 10, we give various examples covering timelike/spacelike and 
null shells to illustrate the methods presented, highlighting the significance of gluing 
spacetimes. 

This monograph is not the beginning of an end! Many topics have been omitted, 
such as intersecting thin shells [107, 138], signature change on thin shells and its 
controversy [ 70, 80, 81, 105, 146], general hypersurfaces whose timelike, spacelike 
or null character can change from point to point [149, 190], thick shells and their 
thin shell limit [ 72, 90, 121], and deriving gluing conditions in more complicated 
higher-order gravitational theories such as . f (T ) [204] . f (R, T ) [ 25, 180], Palatini 
. f (R) theory [161], Palatini. f (R, T ) theory [181], and last but not least, the Penrose 
junction conditions corresponding to metrics with a delta distribution representing 
an impulsive gravitational wave [170].



4 1 Introduction

Conventions and Definitions: 
We use the signature .(− + ++), and adopt the curvature conventions of Misner, 
Thorn, and Wheeler (MTW) [151], with a Riemann tensor defined by . Rσ

μρν =
[σ

μν,ρ + · · · , and a Ricci tensor defined by .Rμν = Rσ
μσν . Greek indices run from 

. 0 to . 3 and Latin indices from . 1 to . 3. A semicolon indicates the covariant derivative 
with respect to either the four-metric of whole spacetime or to the three-metric of 
shell. There will, however, be no confusion because the kind of indices used makes 
the difference transparent. Symbol .∇± denotes the covariant derivative with respect 
to either of the metrics of partial manifolds .M± which are to be glued together. 

The square brackets.[F] are used to indicate the jump of any quantity. F at the layer, 
and bars .F is the arithmetic mean of it. As we are going to work with distribution-
valued tensors, there may be terms in a tensor quantity .F proportional to some 
.δ-function. These terms are indicated by . F̆ .


