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Preface 

With the universal access of cameras in all kinds of devices (e.g., mobile phones, surveil-
lance cameras, in-vehicle cameras), video data has gone through exponential increase 
nowadays. For a lot of video-related applications such as autonomous driving, video edit-
ing and augmented reality, segment target objects is important to help understand video 
content. 

Video object segmentation (VOS) is a fundamental task for video understanding in 
computer vision. VOS can be divided into different settings further, which are slightly 
different in the definition and focus areas. In this book, we will give a thorough intro-
duction of the task of VOS (including different settings). In Chap. 1, we first briefly 
introduce the settings of VOS. Then in Chap. 2, we introduce the VOS task under most 
popular problem settings including semi-supervised VOS, unsupervised VOS, interactive 
VOS,video instance segmentation, video semantic segmentation and video panoptic seg-
mentation. Finally, in Chap. 3, we give introduction to our held LSVOS challenge on 
VOS. 

San Jose, USA 
September 2022 

Ning Xu
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1Introduction 

With universal access to cameras in all kinds of devices (e.g., mobile phones, surveillance 
cameras, in-vehicle cameras), video data has gone through an exponential increase nowa-
days. The ability to understand, track, and segment objects in videos has become a funda-
mental and essential problem in various video-related applications. For example, in the field 
of video and movie editing, it is a very common task to separate the pixels of a foreground 
apart from the pixels of the background in the original video, and then the foreground pixels 
are put onto some new background to create fancy visual effects. Moreover, in the field of 
augmented reality (AR), to attach AR effects to some moving object in the space and to 
make the effect look realistic, we need some algorithms to follow the motion of the target 
object in real-time. 

The technology behind these applications is called video object segmentation, which is 
a fundamental problem for video understanding in computer vision. In a formal definition, 
the task of video object segmentation (VOS) aims at dividing pixels of a video into disjoint 
subsets where each subset usually represents either a target object or the background. Com-
pared to the traditional video object tracking task, VOS provides finer-grained outputs and 
focuses more on the object segmentation quality. Moreover, VOS usually works on short 
video clips, possibly with some amount of manual interaction to guarantee the segmentation 
output is accurate enough. 

In this book, we will give a comprehensive introduction of the VOS task. Specifically, 
in Chap. 2, we introduce the VOS task under most popular problem settings including 
semi-supervised VOS, unsupervised VOS, interactive VOS, video instance segmentation, 
video semantic segmentation, and video panoptic segmentation. For each problem setting 
in VOS, we begin by providing a formal problem definition. Subsequently, we discuss the 
prominent challenges, along with the most widely used datasets and evaluation metrics. Then, 
we provide an overview of the diverse range of methods proposed to tackle the problem. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

Finally, we carefully select two or three most representative and effective methods and 
delve deep into their underlying ideas, detailing their experimental findings. Additionally, 
in Chap. 3, we present the results of the recent influential LSVOS challenge on VOS, which 
allows readers to access the methods and outcomes achieved by the top-performing teams, 
providing valuable insights into the advancements made in the field. 

Before delving into the specifics of each task in the subsequent chapters, we provide 
a comprehensive overview of each task. This enables readers to grasp the objectives and 
distinctions associated with each task. 

• Semi-supervised VOS (SVOS) is a VOS setting where a full segmentation mask of the 
foreground (FG) object is only given in the initial frame, and algorithms need to separate 
the foreground (FG) and background (BG) masks in all the remaining frames. 

• Unsupervised VOS (UVOS) is a VOS setting where the manual annotations of the fore-
ground (FG) object are NOT given in any frame, and algorithms need to separate the FG 
and BG masks in all the frames automatically. 

• Interactive VOS (IVOS) aims to provide a more flexible setting than SVOS where users 
can provide various types of FG and BG annotation (i.e., points, scribbles, boxes) to 
select the objects of interest and gradually refine the segmentation results by providing 
more interactions. 

• Referring VOS (SVOS) aims to perform VOS referred by a given language expression 
describing the FG object instead of a full mask annotation as in SVOS. It thus requires 
multi-modal understanding between vision and language. 

• Video instance segmentation (VIS) aims at simultaneous detection, segmentation and 
tracking of object instances belonging to certain categories in videos. It is different from 
VOS in that it not only requires object classification (i.e., recognize object categories) 
but also requires comprehensive labeling of all instances in the video. 

• Video semantic segmentation (VSS) is a video pixel-level scene parsing task which 
requires the assigning a class label to every pixel in all frames of a video sequence. 

• Video panoptic segmentation (VPS) is similar to VSS in that it also requires unique and 
consistent semantic scene parsing within a video. But it also asks to associate instance 
IDs for the same objects across frames. 

Besides the above differences, we list other attributes that can distinguish these tasks in 
Table 1.1. First, each task involves a different combination of sub-problems. For example, 
some VOS tasks do not need to solve the classification problem (i.e., recognize object 
categories) while VIS, VSS, and VPS need. Second, most tasks need to handle multiple 
instances in the video. In contrast, VSS does not need to distinguish different instance IDs
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Table 1.1 Comparison between VOS tasks on several attributes 

Task Classification Tracking Detection Segmentation Object num Background 

VOS 

SVOS .× .
√

.× .
√

Multiple . ×
UVOS .× .

√
.
√

.
√

Multiple . ×
IVOS .× .

√
.× .

√
Multiple . ×

RVOS .× .
√

.
√

.
√

Multiple . ×
VIS .

√
.
√

.
√

.
√

Multiple . ×
VSS .

√
.× .× .

√
– . 

√
VPS .

√
.
√

.
√

.
√

Multiple . 
√

and SOT only focuses on a single target object. Lastly, the two scene parsing tasks VSS and 
VPS need not only semantic labeling of FG objects but also BG while the other tasks do not 
need semantic understanding of BG.



2VOS 

In this chapter, we elaborate on the task of video object segmentation (VOS), which aims at 
dividing pixels of a video into disjoint subsets where each subset usually represents either a 
target object or the background. The VOS task has different problem settings given different 
input or output requirements. For example, based on the amount of manual annotation used 
for input, the task can be categorized as semi-supervised VOS Sect. 2.1 where a first-frame 
annotation for a target object is provided, unsupervised VOS Sect. 2.2 where no target object 
is indicated and interactive VOS Sect. 2.3 where annotations of the target object can be 
provided at multiple frames or multiple rounds. While based on the output formats, the task 
can be categorized as video instance segmentation Sect. 2.4 where the segmentation outputs 
include all object instances of a predefined list of categories, video semantic segmentation 
where the outputs do not differentiate object instances within the same category and panoptic 
segmentation Sect. 2.5 where the outputs also include stuff-like categories such as sky and 
river. 

2.1 Semi-supervised Video Object Segmentation 

2.1.1 Introduction 

In this section, we introduce a most popular setting of the video object segmentation task, 
called Semi-supervised Video Object Segmentation (SVOS). The term “semi-supervised” 
should not be confused with “semi-supervised learning” which usually represents one area 
of machine learning paradigms which leverage both labeled and unlabeled data in training, 
as compared to other paradigms such as supervised learning and unsupervised learning. 
Instead, in our task the term “semi-supervised” indicates that the manual annotation of the 
foreground (FG) object at the first frame is given as evidence, and algorithms need to rely on 
it to separate the FG and BG masks in all the remaining frames. It is used to distinguish from 
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6 2 VOS

other VOS settings that use different amount of manual annotation such as unsupervised 
VOS which identify FG automatically without any manual annotation and interactive VOS 
where manual annotation is provided in an interactive fashion. It is worthy noting that in 
more recent papers [211] this task is also called “semi-automatic video object segmentation’. 

There are several reasons for the recent popularity of the SVOS setting. First, this setting 
is easy and flexible for many real-world applications. For example, rotoscoping, which aims 
to separate FG from BG in a movie or video, is an essential but a very tedious step for the 
video editing industry. Although people invented green/blue screen to make the problem 
easier, it still requires careful manual annotation on almost every single frame, which could 
take hours or even days. In contrast, in the SVOS setting, users only need to annotate the 
FG mask at the very first frame, which saves a lot of manual effort. Even for the first-frame 
annotation there are many existing image-based interactive segmentation methods [227, 
228] to help ease and facilitate this step, which further make this setting more efficient. 

Second, SVOS has many connections to another important video understanding problems 
video object tracking, which will be detailed later in our book. In fact, SVOS and video object 
tracking share many common problems and challenges and thus it is not surprising that their 
methods resemble to each other. The improvement and novel ideas of one task can also 
usually be applied to another, making them inseparable. In addition, SVOS methods are 
commonly applied to other video applications. For instance, SVOS methods can provide 
intermediate results to video summarization which leverage visual objects across multiple 
videos [ 36] and provide visualization tool to assist video retrieval [168]. In the field of video 
compression, SVOS methods are used in video-coding standards to implement content-based 
features and high coding efficiency [ 92]. 

In the rest of this section, we will first introduce the common challenges of this task 
Sect. 2.1.2, popular benchmarks and evaluation metrics Sect. 2.1.3 as well as overview of 
common and effective methods Sect. 2.1.4. Then we presents three novel SVOS methods in 
detail which belong to image matching methods Sect. 2.1.5, long-range temporal methods 
Sect. 2.1.6 and memory methods Sect. 2.1.7 respectively. 

2.1.2 Challenges 

In this section we discuss a few challenging problems in SVOS. 

• Appearance changes happen commonly when FG object undergoes large lighting-
condition change or reflection. This will pose a challenge to SVOS methods which solely 
rely on matching object appearance between frames. While methods exploiting frame-
dependent motion and connectivity are more robust to this issue. 

• Background changes usually exist in dynamic moving scenes, e.g. running car and camera 
motion. This will cause difficulty for methods which adopt static-background assumption.
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• Fast motion is a common problem for methods exploiting motion cues in their frame-
works. Many methods use optical flows as conditions to predict object locations while 
it is well known that optical flows are inaccurate under fast motion. Potential solutions 
to this issue include either leveraging object appearance similarity to enlarge the search 
area or learn more reliable motion cues on the fast motion videos. 

• Occlusion is one of the long-lasting problems for video segmentation. It can cause both 
drastic appearance change and unreliable motion estimation. Using mask propagation 
history information is one of the effective ways to alleviate this issue. 

From the above discussion, we can see that to have a robust SVOS method, we have to 
comprehensively leverage appearance similarity, short-range and long-range temporal infor-
mation as well as mask propagation information. We will give more detailed explanation in 
the method sections. 

2.1.3 Datasets and Metrics 

This section will talk about popular public dataset as well as common evaluation metrics. 

2.1.3.1 Evaluation Metrics 
The two evaluation metrics that are commonly used in SVOS are region similarity .J and 
the contour accuracy .F [157]. 

region similarity . J . Given an output segmentation.M and the corresponding ground-truth 
mask . G.region similarity .J is defined as the .intersection − over − union of .G and . M . 
.J = |G∩M |

|G∪M | . 

contour accuracy . F . As one can interpret a segmentation .M as a set of closed contours 
.c(M) delimiting the spatial extent of the mask. Given the contours .c(M) and .c(G) for two 
segmentations .M and .G respectively. One can make a bipartite graph matching between 
.c(M) and .c(G) with robustness to small inaccuracies, as proposed in [136]. Based on 
bipartite graph matching, one can compute the contour-based precision and recall .Pc and 
.Rc. The contour accuracy .F is calculated by F1-score. .F = 2PcRc

Pc+Rc
. For efficiency, the 

bipartite matching is approximated via morphology operators. 
Compared to . J , .F are more sensitive to the contour. If a closed object is segmented to 

several isolated part, it may get a decent . F , but the .J must be low. 
Xu et al. [230] further proposed to calculate .J and .F for seen and unseen objects 

separately to get .Jseen , .Junseen , .Fseen and.Funseen . Where ‘seen’ refer to the categories of 
objects which appear both in training and testing dataset and ‘unseen’ refer to the categories 
of objects that only appear in testing dataset. This helps to evaluate the generalization of 
methods on new objects
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Table 2.1 Comparison among existing datasets. “Annotations” denotes the total number of object 
annotations. “Duration” denotes the total duration (in minutes) of the annotated videos 

Scale JC 
[ 51] 

ST 
[104] 

YTO 
[ 81] 

FBMS 
[150] 

DAVIS [157, 159] YouTube-VOS 
[229] 

Videos 22 14 96 59 50 150 3,252 

Categories 14 11 10 16 – – 78 

Objects 22 24 96 139 50 376 6,048 

Annotations 6,331 1,475 1,692 1,465 3,440 26242 133,886 

Duration 3.52 0.59 9.01 7.70 2.88 8.72 217.21 

Beside these two metrics. Perazzi et al. [157] also proposed another metric-Temporal sta-
bility. T to evaluate the temporal consistency of predicted segmentation of different frames. In 
detail, one can transform mask.Mt of frame. t into polygons representing its contours.P(Mt ). 
Then describe each point .pit ∈ P(Mt ) using the Shape Context Descriptor (SCD).Next, we 
pose the matching as a Dynamic Time Warping (DTW) [164] problem, where we look for 
the matching between.pit and.pit+1 that minimizes the SCD distances between the matched 
points while preserving the order in which the points are present in the shapes.The resulting 
mean cost per matched point is used as the measure of temporal stability . T . However, this 
metric is not widely used for method comparison (Table 2.1). 

2.1.3.2 Public Dataset and Challenge 
First, we list and make comparison for all the existing SVOS datasets. Among them, DAVIS 
[157, 159] and YouTube-VOS [229] become the mainstream benchmark datasets in recent 
years. 

DAVIS. The are two version for DAVIS, DAVIS16 [157] and DAVIS17davis2017. 
DAVIS2016 is a single-object dataset in which only one object is annotated for a video. 
It consists of 50 high quality, Full HD video sequences, spanning multiple occurrences of 
common video object segmentation challenges such as occlusions, motion blur and appear-
ance changes. The total 50 videos are subdivided into a training-set (30 videos) and a test-set 
(20 videos) for evaluation. 

DAVIS17 is multi-object dataset in which more than one objects may be annotated in a 
video. Some videos are from DAVIS16 while just provided with multi-object annotation. 
It contain 150 videos totally, and they are subdivided into 4 subset-train, val, test-dev and 
test-challenge, containing 60, 30, 30 and 30 videos respectively. The annotation of train and 
val set is available for training and testing individually. The test-dev set is used for long-term 
evaluation while test-challenge set is used for a timed challenge. DAVIS17 is the first dataset 
with public challenge held.
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Fig. 2.1 The ground truth annotations of sample video clips in YouTube-VOS. Different objects are 
highlighted with different colors 

YouTube-VOS. YouTube-VOS is the only large-scale SVOS dataset. It contains 3,252 
YouTube video clips featuring 78 categories covering common animals, vehicles, acces-
sories and human activities. Each video clip is about 3–6 s long and often contains multiple 
objects, which are manually segmented by professional annotators. Compared to other exist-
ing datasets, YouTube-VOS contains a lot more videos, object categories, object instances 
and annotations, and a much longer duration of total annotated videos. Based on it, a Large-
Scale Video Object Segmentation challenge (LSVOS) is held since 2018. LSVOS is also the 
only existing SVOS challenge as DAVIS stopped holding challenge since 2020. The figure 
below show some video clips with ground truth annotations in YouTube-VOS (Fig. 2.1). 

2.1.4 Overview of Methods 

Based on whether hand-crafted features are used or not, SVOS can be categorized into non-
deep-learning based and deep-learning based methods. Although recent development on 
SVOS mainly focus on deep-learning based methods, we believe it is still valuable to review 
those non-deep-learning based methods as their key ideas are still very useful to understand 
the problem. 

2.1.4.1 Non-deep-Learning Based Methods 
A large body of this type of methods usually leverage spatial-temporal graphs given the 
natural of the SVOS problem. Specifically, in a graph .G with a set of vertices . {di } ∈ D
and edges .{ei j } ∈ E , each vertex could represent a pixel, a supervoxel, a patch or an object 
proposal while each edge could represent the pairwise relation between two given vertices. 
The goal is to partition the graph into disjoint subgraphs and assign a label. li (e.g., foreground, 
background) to each vertex. The label assignment is usually done by minimizing an energy 
function as follows.
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.E =
E

di∈D
U (di ) + λ

E

ei j∈E
wi j · V (di , d j ) (2.1) 

where the first term in the equation expresses how likely a single vertex. di belongs to the label 
. li based on its own characteristics (such as appearance) while the second term represents 
how likely two vertices .di and .d j have their labels . li and . l j given their edge relation (such 
as spatial-temporal smoothness). Finally .wi j and . λ are weighting parameters to balance 
different terms. 

Previous methods mainly vary in different ways to construct the graph, i.e., the rep-
resentation of vertex and spatial-temporal connections. In terms of vertex representation, 
the common ways are pixel, supervoxel, patch and object proposals. For example, Märki 
et al. [135] propose to incorporate pixel feature representation in a spatial-temporal bilateral 
grid, which can approximate long-range connection between pixels while only containing 
tractable number of variables and graph edges. Jain et al. [ 81] propose to use supervoxel 
representation, which is the space-time analog of spatial superpixels. The advantage is that it 
can provide a bottom-up volumetric segmentation that is more sensitive to long-range object 
boundaries along the temporal axis. They also propose a new pairwise potential in the energy 
function to account for the new vertex representation. To make the graph computation more 
efficient, Perazzi et al. [158] propose to construct the graph over a set of object proposals. 
Their method first generates a large number of object proposals for each frame which are 
then pruned to retain the high quality proposals. Finally the label assignment is solved by 
the maximum a posteriori of a conditional random field. 

Another important aspect of graph construction is how the spatial-temporal connection 
between nodes is determined. Fan et al. [ 52] builds connection between frames by nearest 
neighbor fields (NNFs) which are computed by PatchMatch [ 7]. The NNFs can capture the 
patch similarity in both color and texture and also capture large displacements and non-rigid 
motion due to the random search of PatchMatch. Badrinarayanan [ 4] proposes a temporal 
tree structure which denotes the undirected acyclic graphical model. The tree is often a 
forest of sub-trees which links patches in adjacent frames through the video sequence. 
Some methods [158] build up long-range connections using appearance-based methods. 

In addition to the different ways of graph construction, previous methods also differ in 
how they solve the problem. Some methods [ 3, 52, 135] employ a locally greedy strategy 
which only considers two or few consecutive frames at a time, while other methods [158, 
193] try to find globally optimal solutions by considering all available frame information. 
One obvious advantage of the locally greedy strategy is the efficiency. In addition, it is also 
suitable for applications which only send sequential frame data on-the-fly such as video 
surveillance. While the advantage of the globally optimal strategy is that it can potentially 
avoid the limitation of short-range connection and obtain better segmentation results.
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2.1.4.2 Deep-Learning Based Methods 
Recently, deep learning has been applied extensively on the SVOS task and improved the 
performance greatly compared to those non-deep-learning-based methods. Based on the 
temporal information leveraged in the deep learning methods, we can categorize them into 
image-based template-matching methods, short-range temporal methods, long-range tem-
poral methods and memory networks. Next we introduce each of the methods in detail. 

Image-Based Template-Matching Networks 

These methods do not leverage any temporal information (e.g., motion) and only depend on 
appearance similarity between the first-frame annotated object and other frames. One popular 
idea is to leverage transfer learning which adapts a pre-trained image segmentation network 
to a given test video. For example, [ 16] trains their SVOS network in two steps. The first step 
called offline pre-training is to learn an image segmentation network by Fully Convolutional 
Networks (FCN) on large-scale image segmentation datasets. The second step called online 
fine-tuning is to fine tune the pre-trained network on the data augmentation of the first-frame 
object annotation. Later, [201] extends the above work to adapt to large changes in object 
appearance. Their method updates the image segmentation network online using training 
samples selected based on network confidence and spatial configuration. Despite the high 
accuracy achieved by this type of methods, one obvious drawback is their computation 
complexity since the online learning process is required for every new test video and many 
iterations of network update, which can become infeasible for real applications. To solve 
this issue, Yang et al. [234] propose to learn a meta network that can change the parameters 
of the image segmentation network given a single forward pass. 

Another common idea is to treat the SVOS task as a pixel matching problem in the learned 
feature embedding space. Chen et al. [ 30] propose to learn a FCN embedding network by 
a modified triplet loss and the learned network is used to find foreground object by nearest 
neighbor search. Hu et al. [ 77] use the first-frame annotation as a template to extract FG and 
BG features and compare a new frame feature with each of them to obtain a comprehensive 
segmentation. [178] extracts pixel-level features at different layers of their segmentation 
network and compare the features to the first-frame object. 

Short-Range Temporal Networks 

Many methods leverage short-range temporal coherence to propagate the object mask of 
previous frames to subsequent frames. The short-range temporal information can be obtained 
either explicitly such as optical flows or implicitly learned by the network. 

Optical flows represent the motion of pixels between consecutive frames in a video, and 
thus is very important for many video understanding tasks. Many SVOS methods incorporate 
pre-trained optical flows networks [ 44, 78] as part of their network modules. For example, 
MoNet [222] uses optical flows to align frame features through bilinear interpolation and 
proposes a new network layer to separate different motions of FG and BG areas in the 
optical flow field. PReMVOS [131] proposes a SVOS pipeline consisting of object proposal 
generation, refinement and merging steps. Optical flows are leveraged in the merging step
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by warping a predicted object mask at previous frame to current frame. Bao et al. [ 6] follow 
the idea of non-deep-learning-based method to construct graphs over videos. The difference 
is that they use CNN to learn spatial dependencies (e.g. appearance) for the unary term of the 
energy function while establish the temporal connections by optical flows for the pairwise 
term. 

Many other methods instead leverage implicitly learned short-term temporal information 
(usually learned by two consecutive frames). MaskTrack [156] learns a simple ConvNet that 
comprises of two inputs. One is the current input frame while the other one is the previous 
estimated object mask. They train their model solely on augmented image segmentation 
dataset to learn the mask refinement between two near frames. OSMN [234] contains a 
visual network branch and a spatial branch. The visual branch takes in the current frame 
data to learn object appearance similarity while the spatial branch takes in a coarse location 
prior provided by the estimated object mask of previous frame. Oh et al. [151] propose a 
network structure with two encoders with shared parameters while one encoder takes in 
the combination of first-frame image and annotation and the other encoder takes in the 
combination of current-frame image and previous predicted mask. In such way, the mask 
propagation and object detection are performed simultaneously. 

Long-Range Temporal Networks 

Although short-range temporal information is able to handle near-frame motion, many chal-
lenges in SVOS such as heavy occlusion, large-appearance variation, multiple instances 
require better understanding of long-range temporal information. More and more recent 
methods start to pay attention to this point. 

DyeNet [110] consists of two major modules. One is called Re-ID module which aims to 
re-identify occluded objects when they re-appear again. The other one is called Re-MP mod-
ule which mimics the idea of Recurrent Neural Network (RNN) to propagate object masks. 
Xu et al. [229] formulate the SVOS problem as a classical sequence-to-sequence learning 
problem. The input sequence is a video sequence together with an initial first-frame object 
annotation while the output sequence is the desired object segmentation throughout the 
video. They propose a Long Short-Term Memory (LSTM) network to learn the long-range 
temporal information automatically without the help of any existing pre-trained motion net-
work such as FlowNet [ 44]. In addition to the RNN models, Transformers [196] recently 
have shown their strong capability to solve sequence-to-sequence problems in Natural Lan-
guage Processing (NLP) tasks such as machine translation. Some recent SVOS method [ 46] 
also introduces to the Transformer framework to attend over a history of multiple frames 
and learn spatial-temporal correspondence. 

Memory Networks 

Although RNN models theoretically can capture long-range information, Its sequence-to-
sequence formulation is not flexible enough to select the most informative frame information. 
The current top performing methods usually follow the idea of memory networks, which 
was first proposed in [152]. The method is called Space-Time Memory (STM) model which


