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Preface 

This book focuses on the theory of Optimal Transport and its applications in solving 
problems in geometric optics. It provides a comprehensive presentation that includes 
a thorough analysis of key problems, namely the Monge problem, the Monge-
Kantorovich problem, the transshipment problem, and the network flow problem. 
It also establishes the interconnections between these problems. Additionally, the 
book dedicates a chapter to Monge-Ampère measures, offering exercises for further 
understanding. 

Furthermore, the book conducts a detailed analysis of the disintegration of 
measures and its application to the Wasserstein metric, showcasing its realization 
using the continuity equation. A chapter on the Sinkhorn algorithm is also included. 

In terms of optics applications, the book covers the essential background 
knowledge on light refraction, addressing both the far-field and near-field refraction 
problems. It also sheds light on current research directions in this area. 

The presentation of the book is self-contained, providing detailed explanations 
and complete proofs of the theorems and results. It is ideal for researchers, 
practitioners, and students interested in utilizing optimal transport principles for the 
design of non-rotationally symmetric lenses. 

To fully grasp the content of this book, readers are expected to have a solid 
understanding of measure theory and integration, as well as a basic knowledge of 
functional analysis.

v
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Chapter 1 
Introduction 

Abstract Three problems motivating the theory of optimal transportation are 
introduced: the distribution problem, the Monge problem and the Kantorovich 
problem. Also, the network flow problem is analyzed, solved in detail and it is 
described how to convert it into an optimal transport problem. 

We begin presenting three problems that are the motivation of the theory of optimal 
transportation. 

1.1 The Transportation or Distribution Problem 

If .X1, · · · , Xm are sources (for example warehouses) and .Y1, · · · , Yn are desti-
nations (for example shops), the transportation problem consists of transporting 
commodities or items from the sources to the destinations assuming the cost of 
transporting one item from . Xi to . Yj is . cij . We are assuming also that . ui is the 
supply at . Xi and . vj is the demand at . Yj . In summary, 

. m = # of sources of goods

n = # of destinations

ui = capacity of source i

vj = need or demand of destination j

cij = unit transportation cost from source i to destination j

xij = quantity shipped from source i to destination j.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
C. E. Gutiérrez, Optimal Transport and Applications to Geometric Optics, 
SpringerBriefs on PDEs and Data Science, 
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2 1 Introduction

A transportation plan is a matrix .X = (xij ) with .1 ≤ i ≤ m, 1 ≤ j ≤ n. Each 
transportation plan gives rise to a cost 

. 

m∑

i=1

n∑

j=1

xij cij = 〈X,C〉.

The objective is then to find a transportation plan X so that the cost is minimum. 
Restrictions/constraints: 

1. the shipments are non negative, i.e., .xij ≥ 0; 
2. capacity constraints: .

∑n
j=1 xij = ui for .1 ≤ i ≤ m; 

3. needs constraints: .
∑m

i=1 xij = vj for .1 ≤ j ≤ n. 

The problem is feasible if the total of sources is at least the total of needs, 
i.e., .

∑m
i=1 ui ≥ ∑n

i=1 vi . One may assume that .
∑m

i=1 ui = ∑n
i=1 vi because 

if .
∑m

i=1 ui >
∑n

i=1 vi we may introduce an imaginary destination .Yn+1 with 
.vn+1 = ∑m

i=1 ui − ∑n
i=1 vi and cost .ci(n+1) = 0 for .1 ≤ i ≤ n. That is, the 

excess is placed at an imaginary destination with cost zero. See [12, pp. 61–62] 
and [19, pp. 3–8] containing illuminating examples of application. [12, pp. 61–62] 
contains also a historical description and evolution of linear programming. 

Let H be the Hilbert space of real matrices with m rows and n columns, . H =
Rm×n, with the inner product 

. 〈A,B〉 = trace
(
ABt

)
.

Let .u ∈ Rm and .v ∈ Rn be vectors with non negative components. Consider the set 
of matrices .A ∈ Rm×n with non negative entries such that the vector sum of their 
rows is . u and the vector sum of their columns is . v, that is, 

.

n∑

j=1

aij = ui, 1 ≤ i ≤ m, and
m∑

i=1

aij = vj , 1 ≤ j ≤ n. (1.1) 

Let us denote this set of matrices by .N(u, v) which is referred as the transportation 
polytope, see [20] for many examples and the simplex method, also [35, 43]; and [8] 
for properties of this set of matrices; .N(u, v) is a compact convex set in .H = Rm×n. 

Therefore each matrix .A ∈ N(u, v) represents a transportation plan which yields 
a cost .〈A,C〉, where .C = cij is the cost matrix. The question is then to find a 
transportation plan that minimizes the total cost, that is, to find 

. min
A∈N(u,v)

〈A,C〉,

and a matrix A attaining this minimum. Since .N(u, v) is compact there must be a 
transportation plan that attains the minimum. However to find the optimal plan can 
be extremely long and computationally costly. Linear programming was invented to
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solve these type of problems efficiently, in particular, a method developed with this 
purpose is the simplex method, see [12, Chapter 5] and [19, Chapter 1]. 

1.2 Monge Problem 

From [24]: “When we have to transport land from one place to another, we usually 
give the name of excavation to the volume of land that we must transport, and the 
name of embankment to the space they must occupy after transport. The cost of 
transporting a molecule being, all other things being equal, proportional to its weight 
and the space it is made to travel, and therefore the product of total transport must 
be proportional to the sum of the products of molecules multiplied by the space 
covered, it follows that the cut and fill being given in figure and position, it is not 
unimportant that such molecule of the cut is transported in such or such other place 
of the fill, but that ’There is a certain distribution of molecules from the first to the 
second, according to which the sum of these products will be the smallest possible, 
and the price of total transport will be a minimum.” 

This problem can be formally described as follows. Suppose .(X,μ) and . (Y, ν)

are given measure spaces with .μ(X) = ν(Y ), and let .c : X × Y → [0,+∞) be 
a function, the cost. A function .T : X → Y preserves the measures . μ and . ν if 
.μ

(
T −1(E)

) = ν(E) for each set .E ⊂ Y ; T is called a transport map. Let . S(μ, ν)

be the class of maps preserving . μ and . ν. Monge question can then be phrased as 
follows: Find .T ∈ S(μ, ν) such that the integral 

. 

∫

X

c (x, T x) dμ

is minimum among all .T ∈ S(μ, ν). In Monge problem, the cost is the Euclidean 
distance .c(x, y) = |x − y|. 

At this point, all this is formal and measurability properties are needed for the 
precise formulation. We introduce the push forward of the measure . μ through T by 
.T#μ(E) = μ

(
T −1(E)

)
for .E ⊂ Y . It will be proved later that .T#μ is a measure and 

the problem above can be precisely formulated and solved under conditions on the 
cost c. 

Notice that for certain measures .μ, ν we might have .S(μ, ν) = ∅, i.e., there 
might not exist any measure preserving map. In fact, this is the case if for example, 

.X = Y = R, .μ = δ0, and .ν = 1

2
(δ−1 + δ1). 

Remark 1.1 Suppose .X, Y are two domains in . Rn, the measures . μ and . ν have 
continuous densities . ρ and . σ respectively with respect to Lebesgue measure, and 
.T : X → Y is a measure preserving map that is a . C1 diffeomorphism. Let . φ ∈
C(Y ). From the formula of change of variables 

.

∫

Y

φ(y) σ (y) dy =
∫

X

φ(T x) σ (T x) | detDT (x)| dx.
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Since T is measure preserving .μ
(
T −1E

) = ν(E) for each Borel set .E ⊂ Y which 
can be rewritten as 

. 

∫

Y

χE(y) σ (y) dy =
∫

X

χT −1E(x) ρ(x) dx =
∫

X

χE(T x) ρ(x) dx.

If . φ is a simple function, .φ(y) = ∑k
j=1 αj χEj

(y), then 

.

∫

Y

φ(y) σ (y) dy =
∫

X

φ(T x) ρ(x) dx, (1.2) 

and since simple functions are dense in .C(Y ) we obtain that (1.2) holds for each 
.φ ∈ C(Y ) (see Lemma 5.4 for a more general result). Therefore we obtain the 
formula 

. 

∫

X

φ(T x) ρ(x) dx =
∫

X

φ(T x) σ (T x) | detDT (x)| dx

for each .φ ∈ C(Y ) which implies that T satisfies the differential equation 

. ρ(x) = σ(T x) | detDT (x)|.

1.3 Kantorovitch Problem 

Let X and Y be metric spaces, .(X,μ) and .(Y, ν) Borel measure spaces with . μ(X) =
ν(Y ) = 1,1 and let .c : X ×Y → R≥0 be a measurable function in the product space 
.(X × Y,μ ⊗ ν). Consider the class .	(μ, ν) of all measures . γ in .X × Y satisfying 
.γ (A × Y ) = μ(A) for all .μ-measurable subsets .A ⊂ X and .γ (X × B) = ν(B) for 
all .ν-measurable subsets .B ⊂ Y (that is, the marginals of . γ are . μ and . ν). Notice that 
this implies that .γ (X × Y ) = 1. The measure . γ is called a transport plan. Notice 
the measure .μ⊗ν ∈ 	(μ, ν) so the class of admissible measures .	(μ, ν) is always 
a non empty convex set. The Kantorovitch problem consists in minimizing 

. 

∫

X×Y

c(x, y) dγ

over all .γ ∈ 	(μ, ν). 

Remark 1.2 We show that when the measures . μ and . ν are discrete Kantorovitch’s 
problem is the transportation problem explained in Sect. 1.1. Indeed, let .μ =

1 If .μ(X) = ν(Y ) not necessarily equal one, we normalize the measures taking .μ̃ = μ/μ(X) and 
.ν̃ = ν/ν(Y ). 
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∑m 
i=1 ui δXi and .ν = ∑n

j=1 vj δYj
with .

∑m
i=1 ui = ∑n

j=1 vj = 1. Take  . γ =∑m
i=1

∑n
j=1 ui vj δ(Xi ,Yj ). Then 

. γ (A × Y ) =
m∑

i=1

n∑

j=1

ui vj δ(Xi ,Yj ) (A × Y ) =
m∑

i=1

n∑

j=1

ui vj δXi (A)

=
n∑

j=1

vj

m∑

i=1

ui δXi (A) = ν(Y )μ(A) = μ(A).

Similarly, .γ (X × B) = ν(B) for .B ⊂ Y . So  .γ ∈ 	(μ, ν). On the other hand, if 
.π ∈ 	(μ, ν), we shall prove that 

. π =
m∑

i=1

n∑

j=1

aij δ(Xi ,Yj )

with .A = (aij ) ∈ N(u, v) where .u = (u1, · · · , um) and .v = (v1, · · · , vn). Indeed, 
first notice that 

. supp(π) = {(x, y) : there is a neighborhood N(x,y) such that π(N(x,y)) = 0}c
= {(Xi, Yj ) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

because if .(x, y) �= (Xi, Yj ) for all . i, j , then .x �= Xi or .y �= Yj so there is a 
neighborhood . Nx such that .Xi /∈ Nx and so .π(Nx × Y ) = μ(Nx) = 0, or there is 
a neighborhood . Ny such that .Yj /∈ Ny and so .π(X × Ny) = ν(Ny) = 0. Hence 
.π = ∑m

i=1
∑n

j=1 aij δ(Xi ,Yj ) with .aij = π
(
(Xi, Yj )

)
. 

Therefore .	(μ, ν) can be identified with .N(u, v) so 

. 

∫

X×Y

c(x, y) dπ =
m∑

i=1

n∑

j=1

aij c(Xi, Yj )

and Kantorovitch’s problem is the transportation problem. 

Remark 1.3 Suppose . μ and . ν are probability Borel measures in X and Y respec-
tively and let .T ∈ S(μ, ν) be a measure preserving map, i.e., .T#μ = ν. We show that 
T gives rise to a measure .γ ∈ 	(μ, ν) as follows. Let .I : X → X be the identity 
map, and let .S : X → X × Y be defined by .Sx = (x, T x). Define .γT = S#μ, that 
is, for .E ⊂ X × Y , .γT (E) = μ

(
S−1(E)

)
. If .A ⊂ X and .B ⊂ Y , then 

.γT (A × Y ) = μ
(
S−1 (A × Y )

)
= μ (A)

γT (X × B) = μ
(
S−1 (X × B)

)
= μ

(
T −1(B)

)
= ν(B),


