
Synthesis Lectures on
Operations Research and Applications

John Hooker

Logic-Based
Benders
Decomposition
Theory and Applications

Synthesis Lectures on Operations Research
and Applications

This series focuses on the use of advanced analytics in both industry and scientific
research to advance the quality of decisions and processes. Written by international
experts, modern applications and methodologies are utilized to help researchers and
students alike to improve their use of analytics. Classical and cutting-edge topics are pre-
sented and explored with a focus on utilization and application across a range in practical
situations.

John Hooker

Logic-Based Benders
Decomposition
Theory and Applications

John Hooker
Carnegie Mellon University
Pittsburgh, PA, USA

ISSN 2770-6303 ISSN 2770-6311 (electronic)
Synthesis Lectures on Operations Research and Applications
ISBN 978-3-031-45038-9 ISBN 978-3-031-45039-6 (eBook)
https://doi.org/10.1007/978-3-031-45039-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-45039-6

Preface

Benders decomposition is a well-known and often very effective tool for solving hard
optimization problems. It is especially advantageous when a problem reduces to a much
simpler subproblem after certain variables are fixed. It benefits from an ingenious learning
mechanism based on Benders cuts.

Despite its success, the classical Benders method has limited applicability, because the
subproblem must be a linear programming problem. Fortunately, its underlying problem-
solving strategy is much more general than may be evident at first. Benders cuts can be
viewed as arising from logical inference rather than the specific properties of linear pro-
gramming. This enables a substantial generalization to logic-based Benders decomposition
(LBBD), in which the subproblem can, in principle, be any optimization problem. This,
in turn, opens the door to a much broader range of applications.

This book is intended as a comprehensive guide to the LBBD user. It presents a unified
account of LBBD theory as it has developed over the last two decades. It provides an in-
depth tutorial on how to develop effective logic-based cuts for a given problem. It explains
such related ideas as branch-and-check methods and combinatorial Benders cuts, the latter
being a special case of logic-based cuts. It offers practical suggestions for crafting a
successful LBBD implementation for a given application.

LBBD must, in fact, frequently be tailored to the specific application to harness its
full potential. With this in mind, nearly half the book is devoted to a compendium of 147
different LBBD applications, ranging from transportation and supply chain management
to hospital scheduling and disaster preparation. It describes how 226 published articles
adapt the LBBD framework to these problems. This repository of domain-specific solu-
tions not only demonstrates LBBD’s wide applicability, but it can serve as a source of
ideas for addressing the problem at hand.

Pittsburgh, USA
June 2023

John Hooker

v

Contents

1 Introduction . 1
1.1 Generalizing Benders Decomposition . 1
1.2 The Fundamental Idea . 2
1.3 Early Developments . 3
1.4 A Motivating Example . 4
1.5 Plan of the Book . 9

2 Basic Theory . 11
2.1 Introduction . 11
2.2 The Inference Dual . 12
2.3 The LBBD Algorithm . 14
2.4 Classical Benders Decomposition . 17
2.5 Alternative Perspectives on LBBD . 19
2.6 Subproblems That Decouple . 20
2.7 Practical Guidelines . 22

3 Logic-Based Benders Cuts . 25
3.1 Introduction . 25
3.2 Nogood Cuts . 27

3.2.1 Simple Nogood Cuts . 27
3.2.2 Cuts with General Integer Variables . 28
3.2.3 Monotone Nogood Cuts . 29
3.2.4 Strengthened Monotone Cuts . 30
3.2.5 Multivalent Optimality Cuts . 37

3.3 Generic Analytical Cuts . 38
3.4 Analytical Cuts for Scheduling . 40

3.4.1 General Problem Structure . 40
3.4.2 Generic Scheduling Cut . 41
3.4.3 Minimizing Makespan . 42
3.4.4 Minimizing Total Tardiness . 46
3.4.5 Minimizing Number of Late Jobs . 48

vii

viii Contents

3.5 Analytical Cuts for Vehicle Routing . 49
3.5.1 Optimality Cuts for Multiple Vehicle Routing 49
3.5.2 Feasibility Cuts for Routes with Time Windows 51

3.6 Analytical Cuts for Packing Problems . 53
3.7 Symmetry Cuts . 55
3.8 Explanation-Based and Automatic Cut Generation . 56

4 Variations and Special Cases of LBBD . 61
4.1 Introduction . 61
4.2 Branch and Check . 62
4.3 Enumerative LBBD . 65
4.4 Combinatorial Benders Cuts for MILP . 68
4.5 Stochastic and Robust Optimization . 71
4.6 Subproblem Relaxation in the Master Problem . 73

4.6.1 Duplicating Subproblem Constraints . 73
4.6.2 Subproblem Relaxation Without Subproblem Variables 74

4.7 Multilevel LBBD . 76
4.8 Dynamic Variable Partitioning . 77
4.9 Off-the-Shelf LBBD . 78

5 Applications . 81
5.1 Introduction . 81
5.2 Transportation . 82

5.2.1 Vehicle Routing . 82
5.2.2 Rail and Pipeline Transport . 85
5.2.3 Maritime Transport . 86
5.2.4 Passenger Transport . 87
5.2.5 Electric Vehicles . 88

5.3 Production . 90
5.3.1 General Task Assignment and Scheduling . 90
5.3.2 Shop Scheduling . 92
5.3.3 Assembly Line and Work Cell Management 94
5.3.4 Employee Scheduling . 96
5.3.5 Maintenance . 96
5.3.6 Factory Scheduling and Production Planning 97

5.4 Supply Chains . 100
5.4.1 Upstream Logistics . 100
5.4.2 Warehousing and Inventory . 104
5.4.3 Container Port Management . 105
5.4.4 End User Delivery . 106

Contents ix

5.5 Computing and Telecommunications . 108
5.5.1 Processing Task Assignment and Scheduling 108
5.5.2 Telecommunication Network Design . 110

5.6 Medical Applications . 113
5.6.1 Scheduling and Staff Assignment . 113
5.6.2 Therapeutics . 116
5.6.3 Epidemics . 117

5.7 Other Applications . 117
5.7.1 Disaster Management . 117
5.7.2 Packing and Cutting . 119
5.7.3 Scheduling . 120
5.7.4 Miscellaneous . 121

5.8 Abstract Problem Classes . 123

References . 127

1Introduction

1.1 Generalizing Benders Decomposition

Benders decomposition, introduced in 1962 by Jacques Benders [20], is one of the best known
and most successful strategies for solving hard optimization problems. It is designed for
problems that become easier when certain variables are assigned fixed values, thus creating
a more tractable subproblem. It solves a problem by enumerating various assignments to
the fixed variables and solving the subproblems that result, with the aim of identifying an
optimal solution.

While Benders decomposition has many successful applications, it is restricted by the
fact that the subproblem must be a linear programming problem—or a convex nonlinear
programming problem in Geoffrion’s 1972 extension of the method [103]. There are a wide
range of potential applications in which the subproblem simplifies without yielding a linear
or nonlinear programming problem, often by decoupling into smaller problems. Benders
decomposition in its classical form is not suitable for applications of this sort. Nonetheless,
its underlying problem-solving idea is much more general than may be evident at first, and
it can be extended to a substantially broader class of problems.

Logic-based Benders decomposition (LBBD), which dates from the 1990s, carries out this
extension by allowing the subproblem to be any optimization problem, at least in principle.
The method is “logic-based” in the sense that logical inference plays a key role in its
conception, and not because there is any need for the problem statement to consist of logical
formulas or have any other relation to formal logic. The enhanced generality of LBBD has
enabled its application to a greatly expanded range of real-world problems. This can result
in reductions of solution time of several orders of magnitude relative to the previous state
of the art.

This book is intended to show how LBBD can be applied to a wide range of optimization
problems. It begins by laying out the basic theory of LBBD, along with some variations

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Hooker, Logic-Based Benders Decomposition, Synthesis Lectures on Operations
Research and Applications, https://doi.org/10.1007/978-3-031-45039-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45039-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1
https://doi.org/10.1007/978-3-031-45039-6_1

2 1 Introduction

and enhancements. Because LBBD can, and often must, be tailored to fit the structure of a
given application to obtain fast convergence, the book proceeds to illustrate how this may
be accomplished for a variety of problem structures.

1.2 The Fundamental Idea

A Benders method benefits from the fact that subproblems can be solved relatively quickly
as it searches for an optimal solution. Yet its primary problem-solving power derives from
Benders cuts that guide the search. These cuts are constraints that bound the quality of
solutions that would result from fixed variable assignments other than those already tried,
based on an analysis of previous subproblem solutions. The Benders cuts are accumulated
in a master problem that is solved to identify the next set of assignments and thereby the next
subproblem to solve. The process continues until the optimal value of the master problem,
and the best optimal subproblem value obtained so far, converge to the same value. This
normally occurs after only a small fraction of the solution space has been explored.

Classical Benders decomposition obtains cuts by solving the linear programming dual of
the subproblem. LBBD extends the classical method by observing that the linear program-
ming dual is a special case of an inference dual that can be defined for any optimization
problem, thus placing no restriction on the form of the subproblem. The inference dual seeks
the best bound on a problem’s optimal value that can be logically deduced from its constraint
set. The brilliant maneuver that underlies Benders decomposition is to ask what bound this
same proof can deduce from the subproblem constraints if the master problem variables are
fixed to different values. In the classical Benders method, the proof is encoded as a set of
dual multipliers that give rise to a Benders cut in the form of a linear inequality constraint.
Logical inference therefore lies at the heart of classical Benders decomposition, and once
this is recognized, an extension to LBBD becomes possible. One need only replace linear
programming duality with inference duality and write a Benders cut that is based on logical
inference.

Formulating a classical Benders cut is straightforward because it always follows the
same pattern. By contrast, constructing other types of logic-based cuts typically requires a
separate analysis (and often some ingenuity) for every problem class. This can be viewed as a
weakness of LBBD, but it also provides an opportunity to design cuts that exploit a problem’s
special structure. Indeed, one might argue that solution of hard combinatorial problems
typically requires problem-specific methods. While we are beginning to see general-purpose
LBBD solvers that rely on generic logic-based cuts, we can nonetheless expect many problem
classes to require or benefit from hand-crafted cuts.

A major objective of this book is to assist cut design by mining the rapidly growing LBBD
literature for ideas on how to exploit the mathematical structure of a particular application.
There is a large body of experience to draw from, due to the remarkable number and variety
of existing applications, covering such diverse areas as supply chain logistics, computer

1.3 Early Developments 3

processor scheduling, organ transplantation, wind turbine maintenance, search-and-rescue
operations, and many others.

1.3 Early Developments

The logic-based approach of LBBD was foreshadowed in a 1990 paper of Jeroslow and
Wang [138], who showed that the linear programming dual of a Horn clause system can
be viewed as an inference problem. A Horn system is a set of specially structured logical
propositions whose satisfiability can be checked by linear programming, as well as by an
inference method known as unit resolution. When the system is unsatisfiable, a solution
of the classical linear programming dual can be read directly from the structure of a unit
resolution proof of infeasibility. The key implication of this work for future developments
is that the dual problem can be treated as a logical inference problem.

Horn clauses in fact comprise the subproblem in what might be interpreted, in retrospect,
as the first clear application of LBBD. It is described in a 1995 paper of Hooker and Yan
[127], who solve logic circuit verification problems using a specialized Benders method in
which the inputs to the circuit are master problem variables, and Horn clauses represent the
circuit design. The first explicit description of LBBD as a general method appeared in the
year 2000 [122]. Early computational experiments (for machine assignment and scheduling)
are reported in a 2001 paper of Jain and Grossmann [136], and LBBD was further developed
and tested computationally in a 2003 paper of Hooker and Ottosson [126].

Two additional developments occurred during the early years. One is branch and check,
a variation of LBBD that can be used when the master problem is a mixed integer/linear
programming (MILP) problem solved by a branching method. Branch and check solves the
master problem only once, rather than repeatedly as in standard LBBD. Integer solutions
encountered during the branching process are sent to the subproblem to obtain logic-based
Benders cuts on the fly. These cuts are used alongside traditional cutting planes while
solving the master problem. They differ from the cutting planes in a traditional branch-
and-cut method, however, partly because they are valid only when one takes into account
the subproblem constraints. Branch and check was initially described in Section 19.6 of
[122] and first tested computationally in 2001 by Thorsteinsson [244], who coined the term
“branch and check.”

A second development is that of combinatorial Benders cuts, introduced in 2006 by
Codato and Fischetti [60]. These are a type of logic-based cut used in a specialized version
of branch and check. Codato and Fischetti use the cuts to solve MILP problems with “big-. M”
constraints, which are very common but notorious for making problems hard to solve. Their
article shows how to get rid of the big-.M constraints by accounting for them in the way a
linear programming subproblem is constructed, thus substantially accelerating solution. The
term “combinatorial Benders cut” is sometimes used to denote logic-based Benders cuts in

4 1 Introduction

general, but we reserve the term for logic-based cuts derived from a linear programming
subproblem, as this is how it seems most often to be understood.

Surveys of the Benders decomposition literature can be found in [125, 210], the latter
dealing specifically with LBBD.

1.4 A Motivating Example

One of the earliest and most frequent applications of LBBD is to assignment and scheduling
problems, in which the master problem assigns tasks to facilities or agents, and the subprob-
lem schedules the tasks assigned to each agent. A small example of this kind will illustrate
the basic ideas of LBBD.

We have four jobs, any of which can be processed in shop 1 or shop 2. Each job . j has a
processing time.pi j in shop. i , and it must be processed within the time window.[r j , d j]. We
wish to assign the jobs to shops and schedule them so as to minimize makespan, which the
finish time of the last job to finish. The specific problem data appear in Table 1.1. Note that
shop 1 processes jobs 1 and 3 more slowly than shop 2, while jobs 2 and 4 have the same
processing time in either shop.

To write an optimization model for a problem of this form, suppose there are. n jobs, and
let the binary variable.xi j = 1 when job. j is assigned to shop. i . Then if we let.s j denote the
start time of job . j , the problem is

. min
M,x,s

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M

M > s j +
∑

i

pi j xi j ,
∑

i

xi j = 1, s j > r j , all j

s j +
∑

i

pi j xi j < sk or sk +
∑

i

pik xik < s j ,

all j, k with j < k and xi j = xik = 1, all i
x ∈ S; xi j ∈ {0, 1}, all i, j

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where.s = (s1, ..., sn), and. x is the matrix of variables.xi j . The first line of constraints define
the makespan . M , ensure that every job is assigned to exactly one agent, and require that
jobs start no earlier than their release time. The second line prevents jobs from overlapping

Table 1.1 Data for a small example problem

Job. j .r j .d j .p1 j . p2 j

1 3 6 3 2

2 3 5 1 1

3 0 5 3 2

4 3 6 1 1

1.4 A Motivating Example 5

Table 1.2 Benders iterations for a small example problem

Iteration Master problem
optimal value

Job assignments
. (x11, . . . , x14)

Subproblem
optimal value. †

Subproblem
solution
. (s1, . . . , s4)

1 .(1, 1, 0, 0) . ∞
2 0 .(0, 1, 0, 1)∗ 5 . (3, 4, 0, 3)∗
3 4 .(1, 0, 0, 0) 6 . (3, 3, 0, 4)

4 5 . (0, 0, 1, 1)

. ∗optimal solution

.†∞ indicates infeasible subproblem

by requiring, for every pair of jobs in the same shop, that one finish before the other starts.
The constraint .x ∈ S covers any restrictions on the assignments.

The problem decomposes naturally into an assignment problem and a scheduling prob-
lem. This is particularly advantageous because the scheduling subproblem decouples into
a separate problem for each shop once assignments have been made. Thus for a particular
assignment . x̄, we have the following scheduling problem for each shop . i :

. min
Mi ,s

⎧

Mi

|
|
|
|
Mi > s j + pi j , s j > r j , all j ∈ Ji

s j + pi j < sk or sk + pik < s j , all j, k ∈ Ji with j < k

⎫

where .Ji = { j | x̄i j = 1} is the set of jobs assigned to shop . i . If .Mi is the makespan in
shop . i , then .maxi {Mi } is the overall makespan we wish to minimize.

We now proceed to solve the problem by LBBD, which enumerates assignments to the
variables.xi j and observes the smallest makespan that results. The progress of the procedure
is summarized in Table 1.2.

Iteration 1. Suppose we begin by assigning jobs 1 and 2 to shop 1, and jobs 3 and 4 to
shop 2, so that .(x11, x12, x13, x14) = (1, 1, 0, 0), and.(x21, x22, x23, x24) is the complement
.(0, 0, 1, 1). The resulting minimum makespan problem for each shop is illustrated by Gantt
charts in Fig. 1.1. The horizontal dimension is time, and the brackets indicate time windows.
The processing time is shown by a heavy line within each bracket.

It is clear from Fig. 1.1a that assigning jobs 1 and 2 to shop 1 creates a scheduling
problem with no feasible solution. We therefore write a simple nogood cut indicating that
this assignment must be avoided:

.x11 + x12 < 1 (1.1)

This cut actually excludes four assignments of jobs to shops, since there are four assignments
in which shop 1 receives jobs 1 and 2 (possibly among others). All of these assignments are
infeasible, because assigning jobs 1 and 2 already creates infeasibility.

