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Preface 

Benders decomposition is a well-known and often very effective tool for solving hard 
optimization problems. It is especially advantageous when a problem reduces to a much 
simpler subproblem after certain variables are fixed. It benefits from an ingenious learning 
mechanism based on Benders cuts. 

Despite its success, the classical Benders method has limited applicability, because the 
subproblem must be a linear programming problem. Fortunately, its underlying problem-
solving strategy is much more general than may be evident at first. Benders cuts can be 
viewed as arising from logical inference rather than the specific properties of linear pro-
gramming. This enables a substantial generalization to logic-based Benders decomposition 
(LBBD), in which the subproblem can, in principle, be any optimization problem. This, 
in turn, opens the door to a much broader range of applications. 

This book is intended as a comprehensive guide to the LBBD user. It presents a unified 
account of LBBD theory as it has developed over the last two decades. It provides an in-
depth tutorial on how to develop effective logic-based cuts for a given problem. It explains 
such related ideas as branch-and-check methods and combinatorial Benders cuts, the latter 
being a special case of logic-based cuts. It offers practical suggestions for crafting a 
successful LBBD implementation for a given application. 

LBBD must, in fact, frequently be tailored to the specific application to harness its 
full potential. With this in mind, nearly half the book is devoted to a compendium of 147 
different LBBD applications, ranging from transportation and supply chain management 
to hospital scheduling and disaster preparation. It describes how 226 published articles 
adapt the LBBD framework to these problems. This repository of domain-specific solu-
tions not only demonstrates LBBD’s wide applicability, but it can serve as a source of 
ideas for addressing the problem at hand. 

Pittsburgh, USA 
June 2023 

John Hooker
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1Introduction 

1.1 Generalizing Benders Decomposition 

Benders decomposition, introduced in 1962 by Jacques Benders [ 20], is one of the best known 
and most successful strategies for solving hard optimization problems. It is designed for 
problems that become easier when certain variables are assigned fixed values, thus creating 
a more tractable subproblem. It solves a problem by enumerating various assignments to 
the fixed variables and solving the subproblems that result, with the aim of identifying an 
optimal solution. 

While Benders decomposition has many successful applications, it is restricted by the 
fact that the subproblem must be a linear programming problem—or a convex nonlinear 
programming problem in Geoffrion’s 1972 extension of the method [103]. There are a wide 
range of potential applications in which the subproblem simplifies without yielding a linear 
or nonlinear programming problem, often by decoupling into smaller problems. Benders 
decomposition in its classical form is not suitable for applications of this sort. Nonetheless, 
its underlying problem-solving idea is much more general than may be evident at first, and 
it can be extended to a substantially broader class of problems. 

Logic-based Benders decomposition (LBBD), which dates from the 1990s, carries out this 
extension by allowing the subproblem to be any optimization problem, at least in principle. 
The method is “logic-based” in the sense that logical inference plays a key role in its 
conception, and not because there is any need for the problem statement to consist of logical 
formulas or have any other relation to formal logic. The enhanced generality of LBBD has 
enabled its application to a greatly expanded range of real-world problems. This can result 
in reductions of solution time of several orders of magnitude relative to the previous state 
of the art. 

This book is intended to show how LBBD can be applied to a wide range of optimization 
problems. It begins by laying out the basic theory of LBBD, along with some variations 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
J. Hooker, Logic-Based Benders Decomposition, Synthesis Lectures on Operations 
Research and Applications, https://doi.org/10.1007/978-3-031-45039-6_1 
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2 1 Introduction

and enhancements. Because LBBD can, and often must, be tailored to fit the structure of a 
given application to obtain fast convergence, the book proceeds to illustrate how this may 
be accomplished for a variety of problem structures. 

1.2 The Fundamental Idea 

A Benders method benefits from the fact that subproblems can be solved relatively quickly 
as it searches for an optimal solution. Yet its primary problem-solving power derives from 
Benders cuts that guide the search. These cuts are constraints that bound the quality of 
solutions that would result from fixed variable assignments other than those already tried, 
based on an analysis of previous subproblem solutions. The Benders cuts are accumulated 
in a master problem that is solved to identify the next set of assignments and thereby the next 
subproblem to solve. The process continues until the optimal value of the master problem, 
and the best optimal subproblem value obtained so far, converge to the same value. This 
normally occurs after only a small fraction of the solution space has been explored. 

Classical Benders decomposition obtains cuts by solving the linear programming dual of 
the subproblem. LBBD extends the classical method by observing that the linear program-
ming dual is a special case of an inference dual that can be defined for any optimization 
problem, thus placing no restriction on the form of the subproblem. The inference dual seeks 
the best bound on a problem’s optimal value that can be logically deduced from its constraint 
set. The brilliant maneuver that underlies Benders decomposition is to ask what bound this 
same proof can deduce from the subproblem constraints if the master problem variables are 
fixed to different values. In the classical Benders method, the proof is encoded as a set of 
dual multipliers that give rise to a Benders cut in the form of a linear inequality constraint. 
Logical inference therefore lies at the heart of classical Benders decomposition, and once 
this is recognized, an extension to LBBD becomes possible. One need only replace linear 
programming duality with inference duality and write a Benders cut that is based on logical 
inference. 

Formulating a classical Benders cut is straightforward because it always follows the 
same pattern. By contrast, constructing other types of logic-based cuts typically requires a 
separate analysis (and often some ingenuity) for every problem class. This can be viewed as a 
weakness of LBBD, but it also provides an opportunity to design cuts that exploit a problem’s 
special structure. Indeed, one might argue that solution of hard combinatorial problems 
typically requires problem-specific methods. While we are beginning to see general-purpose 
LBBD solvers that rely on generic logic-based cuts, we can nonetheless expect many problem 
classes to require or benefit from hand-crafted cuts. 

A major objective of this book is to assist cut design by mining the rapidly growing LBBD 
literature for ideas on how to exploit the mathematical structure of a particular application. 
There is a large body of experience to draw from, due to the remarkable number and variety 
of existing applications, covering such diverse areas as supply chain logistics, computer
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processor scheduling, organ transplantation, wind turbine maintenance, search-and-rescue 
operations, and many others. 

1.3 Early Developments 

The logic-based approach of LBBD was foreshadowed in a 1990 paper of Jeroslow and 
Wang [138], who showed that the linear programming dual of a Horn clause system can 
be viewed as an inference problem. A Horn system is a set of specially structured logical 
propositions whose satisfiability can be checked by linear programming, as well as by an 
inference method known as unit resolution. When the system is unsatisfiable, a solution 
of the classical linear programming dual can be read directly from the structure of a unit 
resolution proof of infeasibility. The key implication of this work for future developments 
is that the dual problem can be treated as a logical inference problem. 

Horn clauses in fact comprise the subproblem in what might be interpreted, in retrospect, 
as the first clear application of LBBD. It is described in a 1995 paper of Hooker and Yan 
[127], who solve logic circuit verification problems using a specialized Benders method in 
which the inputs to the circuit are master problem variables, and Horn clauses represent the 
circuit design. The first explicit description of LBBD as a general method appeared in the 
year 2000 [122]. Early computational experiments (for machine assignment and scheduling) 
are reported in a 2001 paper of Jain and Grossmann [136], and LBBD was further developed 
and tested computationally in a 2003 paper of Hooker and Ottosson [126]. 

Two additional developments occurred during the early years. One is branch and check, 
a variation of LBBD that can be used when the master problem is a mixed integer/linear 
programming (MILP) problem solved by a branching method. Branch and check solves the 
master problem only once, rather than repeatedly as in standard LBBD. Integer solutions 
encountered during the branching process are sent to the subproblem to obtain logic-based 
Benders cuts on the fly. These cuts are used alongside traditional cutting planes while 
solving the master problem. They differ from the cutting planes in a traditional branch-
and-cut method, however, partly because they are valid only when one takes into account 
the subproblem constraints. Branch and check was initially described in Section 19.6 of 
[122] and first tested computationally in 2001 by Thorsteinsson [244], who coined the term 
“branch and check.” 

A second development is that of combinatorial Benders cuts, introduced in 2006 by 
Codato and Fischetti [ 60]. These are a type of logic-based cut used in a specialized version 
of branch and check. Codato and Fischetti use the cuts to solve MILP problems with “big-. M” 
constraints, which are very common but notorious for making problems hard to solve. Their 
article shows how to get rid of the big-.M constraints by accounting for them in the way a 
linear programming subproblem is constructed, thus substantially accelerating solution. The 
term “combinatorial Benders cut” is sometimes used to denote logic-based Benders cuts in
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general, but we reserve the term for logic-based cuts derived from a linear programming 
subproblem, as this is how it seems most often to be understood. 

Surveys of the Benders decomposition literature can be found in [125, 210], the latter 
dealing specifically with LBBD. 

1.4 A Motivating Example 

One of the earliest and most frequent applications of LBBD is to assignment and scheduling 
problems, in which the master problem assigns tasks to facilities or agents, and the subprob-
lem schedules the tasks assigned to each agent. A small example of this kind will illustrate 
the basic ideas of LBBD. 

We have four jobs, any of which can be processed in shop 1 or shop 2. Each job . j has a 
processing time.pi j in shop. i , and it must be processed within the time window.[r j , d j ]. We  
wish to assign the jobs to shops and schedule them so as to minimize makespan, which the 
finish time of the last job to finish. The specific problem data appear in Table 1.1. Note that 
shop 1 processes jobs 1 and 3 more slowly than shop 2, while jobs 2 and 4 have the same 
processing time in either shop. 

To write an optimization model for a problem of this form, suppose there are. n jobs, and 
let the binary variable.xi j = 1 when job. j is assigned to shop. i . Then if we let.s j denote the 
start time of job . j , the problem is 

. min
M,x,s

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M

M > s j +
∑

i

pi j xi j ,
∑

i

xi j = 1, s j > r j , all j

s j +
∑

i

pi j xi j < sk or sk +
∑

i

pik xik < s j ,

all j, k with j < k and xi j = xik = 1, all i
x ∈ S; xi j ∈ {0, 1}, all i, j

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where.s = (s1, ..., sn), and. x is the matrix of variables.xi j . The first line of constraints define 
the makespan . M , ensure that every job is assigned to exactly one agent, and require that 
jobs start no earlier than their release time. The second line prevents jobs from overlapping 

Table 1.1 Data for a small example problem 

Job. j .r j .d j .p1 j . p2 j

1 3 6 3 2 

2 3 5 1 1 

3 0 5 3 2 

4 3 6 1 1
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Table 1.2 Benders iterations for a small example problem 

Iteration Master problem 
optimal value 

Job assignments 
. (x11, . . . , x14)

Subproblem 
optimal value. †

Subproblem 
solution 
. (s1, . . . , s4)

1 .(1, 1, 0, 0) . ∞
2 0 .(0, 1, 0, 1)∗ 5 . (3, 4, 0, 3)∗
3 4 .(1, 0, 0, 0) 6 . (3, 3, 0, 4)

4 5 . (0, 0, 1, 1)

. ∗optimal solution 

.†∞ indicates infeasible subproblem 

by requiring, for every pair of jobs in the same shop, that one finish before the other starts. 
The constraint .x ∈ S covers any restrictions on the assignments. 

The problem decomposes naturally into an assignment problem and a scheduling prob-
lem. This is particularly advantageous because the scheduling subproblem decouples into 
a separate problem for each shop once assignments have been made. Thus for a particular 
assignment . x̄, we have the following scheduling problem for each shop . i : 

. min
Mi ,s

⎧

Mi

|
|
|
|
Mi > s j + pi j , s j > r j , all j ∈ Ji

s j + pi j < sk or sk + pik < s j , all j, k ∈ Ji with j < k

⎫

where .Ji = { j | x̄i j = 1} is the set of jobs assigned to shop . i . If  .Mi is the makespan in 
shop . i , then .maxi {Mi } is the overall makespan we wish to minimize. 

We now proceed to solve the problem by LBBD, which enumerates assignments to the 
variables.xi j and observes the smallest makespan that results. The progress of the procedure 
is summarized in Table 1.2. 

Iteration 1. Suppose we begin by assigning jobs 1 and 2 to shop 1, and jobs 3 and 4 to 
shop 2, so that .(x11, x12, x13, x14) = (1, 1, 0, 0), and.(x21, x22, x23, x24) is the complement 
.(0, 0, 1, 1). The resulting minimum makespan problem for each shop is illustrated by Gantt 
charts in Fig. 1.1. The horizontal dimension is time, and the brackets indicate time windows. 
The processing time is shown by a heavy line within each bracket. 

It is clear from Fig. 1.1a that assigning jobs 1 and 2 to shop 1 creates a scheduling 
problem with no feasible solution. We therefore write a simple nogood cut indicating that 
this assignment must be avoided: 

.x11 + x12 < 1 (1.1) 

This cut actually excludes four assignments of jobs to shops, since there are four assignments 
in which shop 1 receives jobs 1 and 2 (possibly among others). All of these assignments are 
infeasible, because assigning jobs 1 and 2 already creates infeasibility.


