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Preface 

In this book, we review various modifications of the Einstein gravity, First, we 
consider theories where only the purely geometric sector is changed. Second, we 
review scalar-tensor gravities. Third, we examine vector-tensor gravity models and 
the problem of Lorentz symmetry breaking in a curved space-time. Fourth, we present 
some results for the Horava-Lifshitz gravity. Fifth, we consider nonlocal extensions 
for gravity. Also, we give some comments on non-Riemannian gravity theories. We 
close the book with the discussion of perspectives of modified gravity. 

The authors are grateful to Profs. B. Altschul, M. Gomes, T. Mariz, G. Olmo, 
E. Passos, M. Rebouças, A. F. Santos, A. J. da Silva, and J. B. Fonseca-Neto (in 
memoriam), for fruitful collaboration and interesting discussions. The work has been 
partially supported by CNPq. 

João Pessoa, Brazil Albert Petrov 
Jose Roberto Nascimento 

Paulo Porfirio
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Chapter 1 
Einstein Gravity and the Need for Its 
Modification 

General relativity (GR) is clearly one of the most successful physical theories. Being 
formulated as a natural development of special relativity, it has made a number of 
fundamental physical predictions which have been confirmed experimentally with a 
very high degree of precision. Among these predictions, a special role is played by 
expansion of the Universe and precession of Mercure perihelion, which have been 
proved many years ago, while other important claims of GR, such as gravitational 
waves and black holes, have been confirmed through direct observations only recently 
(an excellent review of various experimental tests of gravity can be found in [ 1]). 

By its concept, GR is an essentially geometric theory. Its key idea consists in the 
fact that the gravitational field manifests itself through modifications of the space-
time geometry. Thus, one can develop a general theory of gravity where the fields 
characterizing geometry, that is, metric and connection, become dynamical vari-
ables so that a nontrivial space can be described in terms of curvature, torsion and 
non-metricity. It has been argued in [ 2] that there are eight types of geometry char-
acterized by possibilities of zero or non-zero curvature tensor, torsion and so-called 
homothetic curvature tensor, with all these objects constructed on the base of metric 
and connection. Nevertheless, the most used formulation of gravity is based on the 
(pseudo-)Riemannian approach where the connection is symmetric and completely 
characterized by the metric. Within this book, we concentrate namely on the (pseudo-
)Riemannian description of gravity where the action is characterized by functions of 
geometric invariants constructed on the basis of the metric (i.e. various contractions 
of Riemann curvature tensor, its covariant derivatives and a metric), and possibly 
some extra fields, scalar or vector ones, and only in Chap. 7 we discuss theories 
of gravity defined on a non-Riemannian manifold. So, let us introduce some basic 
definitions of quantities used within the Riemannian approach. 

By definition, the infinitesimal line element in curved spaces is defined as 
.ds2 = gμν(x)dxμdxν . The metric tensor .gμν(x) is considered as the only indepen-
dent dynamical variable in our theory. As usual, the action must be a (Riemannian) 
scalar, and for the first step, it is assumed to involve no more than the second deriva-
tives of the metric tensor, in the whole analogy with other field theory models where 
the action involves only up to the second derivatives. The unique scalar involving 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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2 1 Einstein Gravity and the Need for Its Modification

only second derivatives is a scalar curvature . R (throughout the book, we follow the 
definitions and conventions from the book [ 3] except for special cases): 

. R = gμνRμν; Rμν = Rα
μαν;

Rκ
λμν = ∂μF

κ
λν − ∂μF

κ
λν + Fκ

ρμF
ρ
λν − Fκ

ρνF
ρ
λμ, (1.1) 

where.F
μ
νλ are the Christoffel symbols, that is, affine connections expressed in terms 

of the metric tensor as 

.F
μ
νλ = 1

2
gμρ(∂νgρλ + ∂λgρν − ∂ρgνλ). (1.2) 

The Einstein–Hilbert action is obtained as an integral from the scalar curvature over 
the .D-dimensional space-time: 

.S =
)

dDx
V|g|( 1

2κ2
R + Lm), (1.3) 

where . g is the determinant of the metric. We assume the signature to be .(+ − −−). 
The .κ2 = 8πG is the gravitational constant (it is important to note that its mass 
dimension in .D-dimensional space-time is equal to .2 − D, but within this book we 
concentrate on the usual case .D = 4); nevertheless, in some cases we will define it 
to be equal to 1. The .Lm is the matter Lagrangian. 

Varying the action with respect to the metric tensor, we obtain the Einstein equa-
tions: 

.Gμν ≡ Rμν − 1

2
Rgμν = κ2Tμν, (1.4) 

where .Tμν is the energy-momentum tensor of the matter. The conservation of the 
energy-momentum tensor presented by the condition.∇μT μν = 0 is clearly consistent 
with the Bianchi identities .∇μGμν = 0. 

One should emphasize several most important solutions of these equations for the 
four-dimensional space-time. The first one is the Schwarzschild metric, which solves 
the vacuum Einstein equations, .Tμν = 0, and describes the simplest black hole with 
mass . M . The corresponding space-time line element looks like 

.ds2 = (1 − 2M

r
)c2dt2 − (1 − 2M

r
)−1dr2 − r2(dθ2 + sin2 θdφ2). (1.5) 

Actually, this metric is a particular case of the more generic static spherically sym-
metric metric (SSSM). 

The second one is the Friedmann-Robertson-Walker (FRW) metric describing the 
simplest (homogeneous and isotropic) cosmological solution whose line element is


