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Preface

This short textbook is by no means a complete book on mathematical analysis. It
is basically a concise, informal introduction to differentiation and integration of
real functions of a single variable, supplemented with an elementary discussion of
first-order differential equations, an introduction to differentiation and integration
in higher dimensions, and an introduction to complex analysis. Functional series
(and, in particular, power series) are also discussed. The book may serve as a tutorial
resource in a short-term introductory course of mathematical analysis for beginning
students of physics and engineering who need to use differential and integral calculus
primarily for applications.

Having taught introductory Physics at the Hellenic Naval Academy for over three
decades, I have often experienced situations where my first-year undergraduates
needed reinforcement of their background in advanced calculus in order to properly
follow the Physics course from the outset. This need led to the idea of writing a
short, practical handbook that would be especially useful for self-study “in a hurry”.
The present textbook is a translated and expanded version of the author’s lecture
notes written originally in Greek. Proofs of theoretical statements are limited to
those considered pedagogically useful, while the theory is amply supplemented with
carefully chosen examples. For a deeper study of the subject, the reader is referred
to the bibliography cited at the end of the book.

Despite the essentially practical character of the book, proper attention is given to
conceptual subtleties inherent in the subject. In particular, the concept of the differ-
ential of a function is carefully examined and its relation to the “differential” inside
an integral is explained. For pedagogical purposes, the discussion of the indefinite
integral—as an infinite collection of antiderivatives—precedes that of the definite
integral; it is shown, however, that the latter concept leads in a natural way to the
former by allowing variable limits of integration.



vi Preface

Appendix contains useful mathematical formulas and properties needed for the
exercises, as well as a more detailed discussion of the concept of continuity of
a function and its relationship with differentiability. Finally, answers to selected
exercises are provided.

Piraeus, Greece Costas J. Papachristou
August 2023
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Chapter 1 ®)
Functions Check for

1.1 Real Numbers

There are various sets of numbers in mathematics, such as the set of natural numbers,
N={1,2,3,...}, the setof integers,Z = {0, £ 1, £ 2, £ 3,...}, and the set of rational
numbers, Q = {plq, where p, ¢ are integers and ¢ # 0}. Numbers such as v/2, /3, In
3, etc., which cannot be expressed as quotients p/q of integers, are called irrational.
Rational and irrational numbers together constitute the set of real numbers, R.

In the set R of real numbers one may define various types of intervals:

Open interval: (a,b)={x/x € R, a<x <Db}
Closed interval: [a,b] ={x/x € R, a<x<b}
[a,b) ={x/x € R, a <x < b}
(a,b] ={x/x € R, a<x <b}
Infinite intervals: (—o0, ¢), (¢, +00), (—o0, c], [¢, +0), (—0o0, +00)

Semi-closed intervals:

1.2 Functions

Let D C R be a subset of R. We consider arule f: D — R, such that, to every element
x € D there corresponds a unique element y € R (two or more elements of D may,
however, correspond to the same element of R). We write:

weny ! verory=rw.

The rule f constitutes a real function. We say that the dependent variable y is a
function of the independent variable x. The set D is called the domain of definition
of f, while the set {y = f(x)/x € D} = f(D) is called the range of f.
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2 1 Functions

/- y=rf(x)

Fig. 1.1 Graph of a function y A
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Given a function y = f(x) we can draw the corresponding graph (Fig. 1.1). We
assume that the quantities x and y are dimensionless and, moreover, equal lengths on
the x- and y-axes correspond to equal changes of x and y.

A function y = f(x) is said to be continuous at the point x = x if its value yy =
f(xop) at that point is defined and is equal to the limit of f(x) as x — xp:

lim () = f(x0).

In practical terms we may say that the graph of f(x) is a continuous curve at x =
xo (it does not “break” into two separate curves at this point). If we set x—xg = A
x and f(x)—f(xg) = y—-yo = Ay, then, by the definition of a continuous function it
follows that Ay — 0 when Ax — 0. More on continuous functions can be found in
the Appendix.

Below is a list of some elementary functions:

Constant function: y=f(x)=c (c€R).

Power function: y=f(x)=x% (a €R).
Exponential function: y=f(x)=¢€".

Logarithmic function: y=f(x)=Inx.

Trigonometric functions: y = f(x) =sinux, cosx, tan x, cot x.

) . ) y = f(x) = arcsinx, arccos x,
Inverse trigonometric functions:
arctan x, arccot x.

By combining elementary functions we can construct composite functions. Let
us consider the functions y = g(u) and u = h(x). We write

y =glh(x)] = (g o h)(x).
We thus define the composite function f = g o h, so that
y=fx)=glh(x)] = (g oh)(x).

To simplify our notation we may write y = y(x) instead of the more explicit y =
f(x). Similarly, y = y(«) and u = u(x). Then,



