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Preface 

Go to the roots of calculations! Group the operations. Classify 
them according to their complexities rather than their 
appearances! This, I believe, is the mission of future 
mathematicians. 

–Evariste Galois 

Understanding the power and weakness of algorithmic paradigms for solving 
decision or optimization problems in rigorous mathematical terms is an important 
long-term goal. Along with greedy and linear programming, dynamic programming 
(DP) is one of THE algorithmic paradigms for solving combinatorial optimization 
problems. Dynamic programming algorithms turned out to be quite powerful in 
many practical applications, so that we know what these algorithms can do. But 
what can DP algorithms not do (efficiently)? Answering this question is the subject 
of this book. 

Roughly speaking, the idea of DP is to break up a given optimization problem 
into smaller subproblems in a divide-and-conquer manner and solve these subprob-
lems recursively. Optimal solutions of smaller instances are found and retained for 
use in solving larger instances (smaller instances are never solved again). Many 
classical DP algorithms are pure in that they only apply the basic operations 
.(min,+) or .(max,+) in their recursion equations. 

A rigorous mathematical model for pure DP algorithms is that of tropical 
circuits. These are conventional combinational circuits using .(min,+) or . (max,+) 
operations as gates. Pure DP algorithms are special (recursively constructed) 
tropical circuits. So, if one can prove that any tropical circuit solving a given 
optimization problem must use at least t gates, then we know that no pure DP 
algorithm can solve this problem by performing fewer than t .(min,+) or . (max,+) 
operations, be the designer of an algorithm even omnipotent. Thanks to the rigorous 
combinatorial nature of tropical circuits, ideas and arguments from the Boolean and 
arithmetic circuit complexity can be exploited to obtain lower bounds for topical 
circuits and, hence, also for pure DP algorithms. 

For example, the classical Bellman–Held–Karp DP algorithm gives a tropical 
.(min,+) circuit with about .n22n gates solving the travelling salesman problem on 
n-vertex graphs, while a trivial brute force algorithm results in about .n! ≈  (n/e)n 
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vi Preface 

gates. On the other hand, Jerrum and Snir in 1982 have shown that at least about 
.n22n gates are also necessary in any .(min,+) circuit solving this problem. This 
shows that the Bellman–Held–Karp DP algorithm is optimal among all pure DP 
algorithms for this problem. The tropical .(min,+) circuit corresponding to the (also 
classical) Floyd–Warshall–Roy pure DP algorithm for the all-pairs shortest paths 
problem on n-vertex graphs uses about . n3 gates. On the other hand, already in 1970, 
Kerr has shown that at least about . n3 gates are also necessary for this problem. So, 
the Floyd–Warshall–Roy pure DP algorithm is also optimal in the class of all pure 
DP algorithms. 

After these and several other impressing lower bounds where obtained, a long 
break followed. Only in recent years, and mainly due to recognized connection with 
dynamic programming, tropical circuits have attracted growing attention again. The 
goal of this book is to survey the lower-bound ideas and methods that emerged 
during these last years. 

We focus on presenting the lower-bound arguments themselves, rather than 
on quantitative bounds achieved using them. That is, the focus is on the proof 
arguments, on the ideas behind them. Because of a very pragmatic motivation of 
tropical circuits—their intimate relation to dynamic programming—the primary 
goal is to create as large as possible “toolbox” for proving lower bounds on the 
size of tropical circuits, not relying on unproven complexity assumptions like P . /= 
NP. 

The difficulty in proving that a given optimization problem requires large tropical 
circuits lies in the nature of our adversary: the circuit. Small circuits may work in a 
counterintuitive fashion, using deep, devious, and fiendishly clever ideas. How can 
one prove that there is no clever way to quickly solve the problem? In this book, we 
will learn some tools to defeat this adversary. 

Tropical algebra and geometry—where “adding” numbers means to take their 
minimum or maximum, and “multiplying” them means to add them—are now 
actively studied topics in mathematics. Tropical circuit complexity adds a computa-
tional complexity aspect to this topic. 

The book is self-contained and is meant to be approachable already by graduate 
students in mathematics and computer science. The text assumes certain math-
ematical maturity (minor knowledge of basic concepts in graph theory, discrete 
probability, and linear algebra) but no special knowledge in the theory of computing 
or dynamic programming. 

Supplementary material to the book can be found on my home page. 

Vilnius, Lithuania/Frankfurt, Germany Stasys Jukna 
June 2023 
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Notation 

We will use more or less standard concepts and notation. For ease of reference, let 
us collect some of most often used ones right now: 

Nonnegative real numbers . R+ = {x ∈ R : x > 0} 
Nonnegative integers .N = {0, 1, 2, . . .} and . [n] = {1, . . . , n} 
.Kn The complete graph on . [n] 
.Kn,n A complete bipartite .n × n graph 
. 2X for a set X Family of all subsets of X 
. |X| for a finite set X Number of elements in X 
Family .F ⊆ 2X is uniform All sets in . F have the same cardinality 

Characteristic vector of .S ⊆ [n] Vector .a ∈ {0, 1}n with .ai = 1 iff . i ∈ S 
Unit vector .-ei .-ei = (0, . . . ,  0, 1, 0, . . . ,  0) with 1 in the ith position 
.a < b for .a, b ∈ Rn .ai < bi for all . i = 1, . . . , n  
.A ⊆ Rn is an antichain .a /< b for all . a /= b ∈ A 
Upward closure . A↑ of .A ⊆ Nn . A↑ = {b ∈ Nn : b > a for some a ∈ A} 
Downward closure . A↓ of .A ⊆ Nn . A↓ = {b ∈ Nn : b < a for some a ∈ A} 
.B ⊆ Rn lies above .A ⊆ Rn .B ⊆ A↑, i.e., . ∀b ∈ B ∃a ∈ A : b > a 
.B ⊆ Rn lies below .A ⊆ Rn .B ⊆ A↓, i.e., . ∀b ∈ B ∃a ∈ A : b < a 
Support of .a ∈ Rn . sup(a) = {i : ai /= 0} 
Degree of .a ∈ Nn . |a| =  a1 + · · · +  an 
Lower envelope of .A ⊆ Nn . LAJ = {a ∈ A : |a| is minimal} 
Higher envelope of .A ⊆ Nn . LAJ = {a ∈ A : |a| is maximal} 
.A ⊆ Nn is homogeneous . LAJ = LAJ
Sum of .a, b ∈ Rn . a + b = (a1 + b1, . . . , an + bn) 
Minkowski sum of .A, B ⊆ Rn . A + B = {a + b : a ∈ A, b ∈ B} 
Scalar product of .a, b ∈ Rn . <a, b> =  a1b1 + · · · +  anbn 
Tropical .(min, +) polynomial .f (x)  = min 

a∈A
{<a, x> +  ca}; .A ⊆ Nn, .ca ∈ R+ 
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Chapter 1 
Basics 

Abstract In this chapter, we recall the models of arithmetic .(+,×), Boolean 
.(∨,∧), and tropical .(min,+) and .(max,+) circuits, introduce Minkowski . (∪,+)

circuits as a model taking all of them “under one hat,” establish the basic structural 
properties of tropical polynomials, and relate the corresponding circuit complexity 
measures. The main message of this chapter is that: lower bounds on the tropical 
circuit complexity of optimization problems can be obtained by proving lower 
bounds on the monotone arithmetic circuit complexity of particular polynomials. 

1.1 What Is This Book About? 

We are interested in solving discrete optimization problems1 
.f : Rn

+ → R+ on given 
sets .A ⊆ Nn of feasible solutions: 

.f (x) = min
a∈A

n∑

i=1

aixi or f (x) = max
a∈A

n∑

i=1

aixi . (1.1) 

If .A ⊆ {0, 1}n, then f is usually called a combinatorial optimization or . 0/1
optimization problem. The set .A ⊆ Nn of feasible solutions can be described either 
explicitly (as a particular set of vectors), or as the set .A = {a ∈ Nn : Ma � b} of 
nonnegative integer or .0/1 solutions of a given system of linear inequalities (as in 
linear programming), or by other means. It is only important that the set A does not 
depend on the input weightings .x ∈ Rn

+. 
For example, in the .0/1 optimization problem, known as the shortest s-t path 

problem on a given graph G, the set  A of feasible solutions consists of characteristic 
0-1 vectors2 of all paths in G between two vertices s and t , the paths being viewed as 
sets of their edges. In the minimum weight spanning tree problem, feasible solutions 

1 In what follows, .N = {0, 1, 2, . . .} stands for the set of all nonnegative integers, . [n] = {1, . . . , n}
for the set of the first n positive integers, and .R+ for the set of all nonnegative real numbers. 
2 The characteristic 0-1 vector of a set .S ⊆ [n] is the vector .a ∈ {0, 1}n such that .ai = 1 iff .i ∈ S. 
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2 1 Basics

are (characteristic 0-1 vectors of) spanning trees of a given graph, and the problem 
is to compute the minimum weight of such a tree. In the assignment problem, we 
deal with perfect matchings in a complete bipartite graph, etc. 

Note that .min, .max, and . + are the only operations used to formulate the problems 
(1.1) themselves. It is easy to see that the optimization problem on every set 
.A ⊆ {0, 1}n of feasible solutions can be solved using at most .n|A| .(min,+) or 
.(max,+) operations: compute all .|A| sums .

∑n
i=1 aixi for .a ∈ A, and take their 

minimum or maximum using additional .|A| − 1 .min or .max operations. But, as 
Examples 1.6 to 1.8 in Sect. 1.4 show, this trivial upper bound can be very far from 
the truth. For example, if .A ⊆ {0, 1}n consists of all .|A| = (

n
n/2

)
vectors with 

exactly .n/2 ones, then the minimization problem on A is, given an input weighting 
.x ∈ Rn

+, to compute the sum of lightest .n/2 weights. Although there are . |A| � 2n/2

feasible solutions, the problem can be solved by using at most .O(n2) . (min,+)

operations (Example 1.6). The main goal of this book is to learn how to prove 
lower bounds: 

.(∗) At least how many .(min,+) or .(max,+) operations do we need to solve 
or to approximate a given discrete optimization problem? 

For example, in the lightest triangle problem, inputs are assignments of nonneg-
ative real weights to the edges of the complete graph .Kn on .{1, . . . , n} and the goal 
is to compute the minimum weight of a triangle. How many .(min,+) operations 
do we need to solve this problem (for all possible input weightings)? Since there 
are only .

(
n
3

)
triangles, the problem can be trivially solved using a cubic number 

.O(n3) of .(min,+) operations. More interesting, however, is the question: does a 
cubic number .�(n3) of operations is also necessary to solve this problem? (Yes, 
Corollary 2.4.) 

With a wish to make the question .(∗) mathematically precise, we arrive to the 
classical model of circuits (also called combinational circuits). We will mainly 
be interested in tropical circuits, that is, in circuits over tropical3 semirings 
.(R+, min,+) and .(R+, max,+). But, as we will see, the power of tropical circuits is 
related to that of circuits over the Boolean semiring .({0, 1},∨,∧) as well as over the 
arithmetic semiring .(R+,+,×). So, let us first recall what “circuits” over a semiring 
actually are.

3 The adjective “tropical” is not to contrast with “polar geometry.” It was coined by French 
mathematicians in honor of Imre Simon who lived in Sao Paulo (south tropic). Tropical algebra 
and tropical geometry are now intensively studied topics in mathematics. 
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1.2 Circuits 

A (commutative) semiring .(R,⊕,
) consists of a set R closed under two associa-
tive and commutative binary operations “addition” .x⊕y and “multiplication” .x
y, 
where multiplication distributes over addition: .x
(y⊕z) = (x
y)⊕(x
z). That is, 
in a semiring, we can “add” and “multiply” elements, but neither “subtraction” nor 
“division” is necessarily possible. A semiring is additively idempotent if . x ⊕ x = x

holds and is multiplicatively idempotent if .x 
 x = x holds for all elements .x ∈ R. 
A semiring may (or may not) contain an additive neutral element .𝟘 ∈ R satisfying 
.𝟘⊕x = x⊕𝟘 = x. We will only assume that the semiring contains a multiplicative 
neutral element .𝟙 ∈ R such that .𝟙
 x = x 
 𝟙 = x. 

A circuit . � (also known as a combinational circuit) over a semiring .(R,⊕,
) is 
a directed acyclic graph; parallel edges joining the same pair of nodes are allowed. 
Each indegree-zero node (a source node) holds either one of the variables . x1, . . . , xn

or a semiring element .c ∈ R; if there are no semiring elements .c ∈ R other than 
.c = 𝟙 as inputs, then the circuit is called constant-free. Every other node, a gate, 
has indegree two and performs one of the semiring operations . ⊕ or . 
 on the values 
computed at the two gates entering this gate. Usually (but not always), one of the 
gates is declared as the output gate. The size of a circuit . �, denoted . size(�), is  
the total number of gates in it. A circuit . � computes a function .f : Rn → R if 
.�(x) = f (x) holds for all .x ∈ Rn. 

Proposition 1.1 Over any semiring, there are at most .2s(2s + n + 1)2s distinct 
constant-free circuits .�(x1, . . . , xn) with at most s gates. 

Proof Each gate in such a circuit is assigned a semiring operation (two choices) and 
acts on some two previous nodes. Each previous node can be either a previous gate 
(at most s choices) or an input variable (n choices) or the “constant” . 𝟙. Thus, each 
single gate has at most .N = 2(2s + n+ 1)2 choices, and the number of choices for 
a circuit is at most . Ns . ��

In this book, we will consider circuits over the following four semirings 
.(R,⊕,
): the arithmetic semiring .(R+,+,×) with usual (arithmetic) addition and 
multiplication, the tropical .(min,+) semiring .(R+, min,+), the tropical . (max,+)

semiring .(R+, max,+), and the Boolean .(∨,∧) semiring .({0, 1},∨,∧). That is, we 
will consider the following types of circuits:


