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Preface

Topological crystallography, which was pioneered byMotoko Kotani and Toshikazu
Sunada in 2000, describes crystal structures using graph theory and variational prin-
ciples. One of the conventional tools describing crystal structures is space groups,
which denote the symmetry of placements of atoms. But space groups do not consider
the atomic bonds of crystals. Since crystal structure includes placements of atoms
and chemical bonds between atoms, graph theory is a natural tool to describe them.
On the other hand, one of the important notions to describe physical phenomena
is the principle of least action, which corresponds to the variational principle in
mathematics.

Although the description of crystal structures using space groups is not directly
related to the least action principle, topological crystallography provides a rela-
tionship between the symmetry of crystal structures and the variational principle.
Precisely, for a given graph structure which describes a crystal, we define the energy
of realizations of the graph, i.e., placements of vertices of the graph in a Euclidean
space of suitable dimension, and obtain a nice structure as a minimizer of the energy.
Moreover, such structures give us the most symmetric among all placements of the
graph, which is proved by using the random walk theory on graphs.

On the other hand, we can regard some molecular structures, for example,
fullerenes and carbon nanotubes, as surfaces, especially as discrete surfaces.
Recently, sp2-carbon structures (including fullerenes and nanotubes) have received
much attention in science and technology, since they have richπ-electrons and hence
rich physical properties. From a mathematical viewpoint, sp2-carbon structures can
be regarded as trivalent graphs in R

3, and hence trivalent discrete surfaces. There
are many discrete surface theories in mathematics. For example, the theory of trian-
gular surfaces is useful for computer graphics. But this is based on discretizations or
discrete analogues of continuous or smooth objects. In the case of the theory of trian-
gular surfaces, it is a discretization of smooth real objects. In other words, conven-
tional discrete surface theories are "from continuous to discrete". In contrast, discrete
surfaces, which describe crystal/molecular structures, are essentially discrete. Even
in the case of trivalent discrete surfaces, it is not easy to define the curvatures of them.
In this monograph, we also discuss a theory of trivalent discrete surfaces modeled on
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crystal/molecule structures in R
3, and subdivisions/convergence of them. The aim

of subdivision and convergence theory is to find an underlying continuous object
in crystals/molecules. It is difficult to calculate the physical properties of a crystal
structure with a huge number of atoms using current computer resources; however,
it is possible to treat such systems by calculating underlying continuous objects. By
considering the above, our discrete surface theory is “from discrete to continuous”.

I would like to thank Prof. Motoko Kotani for encouraging me to write this
monograph, and Prof. Toshikazu Sunada for leading me to the study of discrete
geometric analysis. I would also like to thank Profs. Tatsuya Tate, Makoto Tagami,
Yoshiyuki Kawazoe, andHiroyuki Isobe, Dr. Toshiaki Omori, Dr. Shintaro Akamine,
and members of the research project “Discrete Geometric Analysis for Material
Design” for helpful discussions and comments on my research. I am grateful to Dr.
Tomoya Naito for his valuable comments and suggestions. Lastly, I would like to
thank the members of the Japanese girls group “Nogizaka46” for encouraging my
research.

Enjoy a discrete world!

Nagoya, Japan
May 2021

Hisashi Naito
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Chapter 1
Overview of This Monograph

Let us start with a question here. Which figure in Fig. 1.1 is the most symmetric?
Obviously, figure (c) in Fig. 1.1 has less symmetry than (a) and (b); however, it

is difficult to compare symmetries of (a) and (b).
One of the basic tools for describing symmetries of crystal structures is space

groups, which describe symmetry of atoms (vertices/points) in a crystal structure.
For example, the symmetry of a regular hexagonal tiling of R2 is described by the
group P6m, and the space groupof the symmetry of a regular three-coloredhexagonal
tiling (see Fig. 1.2b) is P3m1. Similarly, the group P6m describes the symmetry of
a regular hexagonal lattice. The groups describing the symmetry of (a) and (b) of
Fig. 1.1 are P4mm and P6m, respectively, and one is never included in the other.

Topological crystallography, which was pionnered by Kotani and Sunada [28–30,
54], describes symmetries of both of vertices and of edges (atomic bonds of crystal
structure). Why does nature select (b) among (a)–(c) in Fig. 1.3? Note that these
lattices are created by the same graph. Topological crystallography answers this
question. In mathematics, a structure consisting of vertices and edges (connectivity
of vertices) is called a graph, and graph theory is one of the basic tools of topo-
logical crystallography (Chap. 2). However, graphs describe only vertices and their
connectivities, as in Fig. 2.2; placements of vertices and edges in Rn are not defined
in the notion of graphs. Therefore, we should define placements of a given graph
structure, which describes crystal structure, and should consider how to define nice
placement of the graph. By defining the energy of placements of a graph, we may
find a nice placement, which is called a standard realization, by using variational
principles. A standard realization gives us one of the most symmetric objects among
all placements of the graph (Chap. 3). In the first few sections, we discuss topological
crystallography including graph theory and geometry. The most important reference
of this part is Sunada’s lecture note [53]. The author discusses an introduction to
topological crystallography along with it.
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