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Chapter 1 
Introduction 

Carbon is a many-sided chemical element, as it forms millions of compounds related 
to both biochemical and geochemical processes. Moreover, elemental carbon occurs 
in various polymorphs (or allotropes), such as graphite, diamond, amorphous carbon, 
lonsdaleite, and fullerenes. The physical properties of the different carbon poly-
morphs vary widely due to the different ways in which the atoms in each are bonded. 
Diamond is the most compact, Sp3-bonded, polymorph of carbon, having nearly twice 
the density of graphite. The study of diamond has seen a recent burst of activity in 
geochemistry and astrophysics, in novel methods of synthesis, and in the develop-
ment of useful applications. Diamond is recognized as an extraordinary recorder of 
astrophysical and geodynamic events that extend from the most remote regions of 
space to Earth’s deep interior. As will be specified later, different types of diamonds 
have been recognized based on their size, geological occurrence, morphological char-
acteristics, types of solid or fluid inclusions, etc. The processes of formation of some 
diamond types still raise many contentious questions. The formation of macroscopic 
diamonds is mainly connected with deep-seated igneous rocks, such as kimberlites 
and lamproites, and therein mantle xenoliths. To date, in mineralogy, there is no 
widely accepted definition of a size boundary between kimberlitic microdiamond 
and macrodiamond. It varies from 0.5 to 1 mm (Chapman and Boxer 2004; Pattison 
and Levinson 1995). We have assumed 1 mm as the size limit between the micro-
diamond and macrodiamond. Interestingly, microsized diamonds were also found 
in metamorphic rocks and ophiolite complexes originating in the graphite stability 
field. The formation mechanism of these metamorphic rock-hosted diamonds still 
represents a hotly debated topic. 

Currently, the origin of natural nanocarbon particles is still poorly constrained. 
The family of “nanocarbons” includes the following main components: nanodi-
amonds, nanosized amorphous carbon, fullerenes, diamondoids, graphene, tubes, 
onions, horns, rods, cones, peapods, bells, whiskers, platelets, and foam (Shenderova 
et al. 2002). Diamond structures at the nanoscale (length ~1–100 nm) include pure-
phase diamond films, diamond particles, recently fabricated 1-D diamond nanorods,
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2 1 Introduction

and 2-D diamond nanoplatelets. There is a special class of nanodiamond mate-
rial often called “ultrananocrystalline” diamond with the characteristic size of the 
basic diamond constituents encompassing the range of just a few nanometers that 
distinguishes it from other diamond-based nanostructures with characteristic sizes 
below~10 nm (Schrand et al. 2009). The smallest nanometer-sized diamond particles 
are known mainly in space objects (Tielens et al. 1987; Allamandola et al. 1993). 
Nanodiamonds in terrestrial rocks are rarely found. They are known in serpentinites, 
Younger Dryas Boundary layers, coals, and spinel lherzolites (Dubinchuk et al. 1976; 
Wirth and Rocholl 2003; Tian et al. 2011; Kinzie et al. 2014; Simakov et al. 2015, 
2018). 

Currently, the creation of new methods of nanocarbon synthesis is one of the 
urgent tasks of modern technologies. There are three main methods of diamond 
synthesis: 

1. HPHT synthesis of macroscopic diamonds from metal and melts of solvent 
catalysts at P–T corresponding to the thermodynamic field of diamond stability. 

2. DND syntheses at ultrahigh temperatures and pressures. 
3. CVD synthesis of diamond films, composites, and coatings at high temperatures 

and low pressures, corresponding to the field of graphite stability. 

In addition, there are rare nano- and micron-sized diamond syntheses at low P– 
T parameters. Nakano et al. (2002) synthesized nanodiamond particles of 1 nm in 
size from an interstellar-like organic mixture with water at 150–400 °C at relatively 
low pressure. Ultrananocrystalline diamonds were synthesized at 220 ° C and the 
saturated vapor pressure of water using a simple and available hydrocarbon (glucose) 
(Alzahrani and Alkahtani 2023). Nano- and micron-sized diamonds (up to 1 μm in  
size) were synthesized by heating a mixture of Li2CO3 and nanocarbon particles at 
420–550 °C and ambient pressure (Kamali and Fray 2015). Micron-sized diamonds 
(up to 100 μm) were also synthesized via the interaction between molten aluminum 
and carbide-containing halide melt at 700–750 °C and ambient pressure (Yolshina 
et al. 2015). Ishimaru et al. (2001) detected nanodiamond structures in wood charcoal 
carbonized at 700 °C. In this respect, the book presents the results of theoretical and 
experimental studies in Chaps. 2 and 3 for a new approach that could be developed 
for the synthesis of nanodiamonds at low pressures and temperatures. 

The first detailed studies on synthetic nanodiamonds were carried out in the 1960s 
in Russia. The particles of synthetic nanodiamonds contain many impurities and 
defects; therefore, their density is lower than that of diamond and corresponds to the 
range of 2.8–3.1 g/cm3. Nitrogen and ketone, hydrocarbon, carboxyl, and alcohol 
groups with Sp3 and Sp2 hybridizations are present in the impurities of nanodia-
monds (Fig. 1.1). It is known that synthesized nanodiamonds display surface bonds 
terminated with hydrogen and oxygen atoms (Costa et al. 2014; Schrand et al. 2009).

Badziag et al. (1990) suggested that nanodiamonds could be synthesized at low 
P–T from hydrocarbons with H/C < 0.25. Later, Dahl et al. (2003) showed that it is 
possible to distinguish diamond crystal cages in diamondoids (Sp3-bonded hydrocar-
bons), and in this respect, diamond could be defined as the archetypal “macroscopic 
molecule.” Diamondoids occur in crude oils and in gas condensates in remarkable
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Fig. 1.1 Structures in nanodiamonds in accordance with Schrand et al. (2009) and  Costa et al.  
(2014)

amounts (from 35 to 2,075 ppm, respectively; Nekhaev et al. 2010). They are also 
known in coals and sediments in the middle and final stages of sediment litho-
genesis (Tissot and Welte 1978) with vitrinite reflectances from 1 to 4 R° (Wei 
et al. 2006, 2007). Dahl et al. (2003) extracted diamond molecules from oil diamon-
doids containing diamond lattices within their tetrahedral structures and suggested 
that hydrogen-terminated diamonds and nanometer-sized diamondoid hydrocarbons 
form a continuous structural series that includes small diamondoids (<1 nm), larger 
diamondoids (~1–2 nm), nanocrystalline and CVD diamonds (~2 nm–1 mm), and 
larger macrodiamonds (Dahl et al. 2003). In this respect, E. Osawa (personal commu-
nication) considered nanodiamonds to be a larger version of diamondoids (It is inter-
esting to note that Giardini et al. (1982) previously concluded that the genesis of 
kimberlitic diamonds and oil are connected with each other in the upper mantle). 
Later, Gebbiea et al. (2018) showed that using diamondoid molecules in CVD 
syntheses leads to the formation of postcritical diamond nuclei consisting of 26 
carbon atoms through the formation of metastable, hydrogen-terminated diamon-
doid clusters. In this case, the nucleation barrier is four orders smaller than previous 
estimates.
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On the other hand, Costa et al. (2014) showed that nanodiamonds terminated 
by oxygen functional groups (–COOH) are much more stable in enthalpy than pure 
graphite and diamond. As a result, they concluded that such surface functional groups 
may in fact be necessary for nanodiamond formation and persistence. Their presence 
may explain the occurrence of terminated nanodiamonds under synthetic and natural 
conditions where pure diamonds would not be stable. 

The origin of diamonds in interstellar space has been a topic of intense discussion 
since the discovery of presolar nanodiamonds in chondrites (Bernatowicz and Zinner 
1997). The interstellar nanodiamonds have the highest nitrogen contents from 2,000 
to 20,000 ppm (or 0.2–2 wt%), with the main prominent mode at 8,500 ppm. The 
nitrogen isotopic composition varies from −181 to −350‰ of δ15N. They have the 
lowest carbon isotopic composition, varying from −32 to −38‰ of δ13C (Newton 
et al. 1995; Russell et al. 1996). Meteoritic nanodiamonds provide information on 
the nucleosynthesis of evolved stars and the evolution of the astrophysical environ-
ment that formed the solar system. The questions of when and how nanodiamonds 
originate in the cosmos remain open, although comparative microstructural analysis 
of nanodiamonds extracted from meteorites indicates that the majority of cosmic 
nanodiamonds are formed by low-pressure vapor condensation processes (Daulton 
2006). Several models of their formation have been proposed: 

(1) Shock-induced transformation of C–N-rich organics (Saslaw and Gaustad 1969; 
Blake et al. 1988); 

(2) Formation of nanodiamonds in UV-irradiated ices and/or organics (Nuth and 
Allen 1992); 

(3) The CVD-like process (Lewis et al. 1989; Daulton et al. 1996). 

Astronomers concluded that 3% of all carbon present in ordinary, carbonaceous, 
and enstatite chondrite meteorites exists in the form of diamond and that up to 20% of 
interstellar carbon exists in the form of ultrananocrystalline diamonds (Tielens et al. 
1987). They have an average size of 2 nm, and their concentrations reach 1,600 ppm in 
some cases (Anders and Zinner 1993; Alexander et al. 1998; Zinner 1998). Chondritic 
nanodiamonds are generally associated with diamondoids (Bauschlicher et al. 2007). 
Nanodiamonds were also identified by scientists from NASA in the cold molecular 
clouds formed at low PT. These clouds contain hydroxyl (OH), vapors of water, 
ammonia, formaldehyde, carbon monoxide, methanol (wood alcohol), ethyl alcohol, 
and dozens of other more complex molecules. Sellgren (2001) identified the relation-
ship between the interstellar diamond and water ice. Nakano et al. (2002) synthesized 
nanodiamond particles from a mixture of interstellar-like nitrogen-bearing organics 
with water at 150–400 °C and lower pressure. They related interstellar diamond 
formation with organic matter, which mainly consists of glycolic, eicosanoic, and 
lauric acids, heavy aromatic polycyclic hydrocarbons (phenanthrene) and aromatic 
hydrocarbons (indene), and nitrogen-bearing organic compounds, such as acetomides 
and lactamides. Based on these relationships, Kouchi et al. (2005) identified the 
formation routes of diamonds in the interstellar clouds and parent bodies of carbona-
ceous chondrites as an ice mixture of H2O, CO, NH3, and CH4 (4:2:2:1). They also


