Basiswissen

für Softwarearchitekten

Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional for Software Architecture Foundation Level

Mahbouba Gharbi ist Geschäftsführerin und Chef-Architektin bei ITech Progress GmbH und iSAQB-Vorstandsvorsitzende, ist bekennender Softwarearchitektur-Fan, Autorin zahlreicher Fachartikel und häufige Sprecherin auf internationalen Konferenzen.

Prof. Dr. Arne Koschel ist Dozent an der Hochschule Hannover mit dem Schwerpunkt verteilte (Informations-)Systeme. Er hat langjährige industrielle Praxis in Entwicklung und Architektur verteilter Informationssysteme. Nebenberuflich berät und referiert er zu Themen wie SOA, Integration, Middleware, EDA und Cloud Computing. Er ist Active Board Member im iSAQB.

Prof. Dr. Andreas Rausch leitet den Lehrstuhl für Software Systems Engineering an der Technischen Universität Clausthal. Er war und ist in der industriellen Praxis als Berater und leitender Softwarearchitekt bei einer Reihe von großen verteilten Softwaresystemen tätig.

Dr. Gernot Starke, innoQ Fellow, arbeitet als Berater für methodische Softwarearchitektur, Technologiemanagement und Projektorganisation. Seit mehr als 15 Jahren gestaltet er die Architektur von Softwaresystemen unterschiedlicher Größe.

Coypright und Urheberrechte:

Die durch die dpunkt.verlag GmbH vertriebenen digitalen Inhalte sind urheberrechtlich geschützt. Der Nutzer verpflichtet sich, die Urheberrechte anzuerkennen und einzuhalten. Es werden keine Urheber-, Nutzungs- und sonstigen Schutzrechte an den Inhalten auf den Nutzer übertragen. Der Nutzer ist nur berechtigt, den abgerufenen Inhalt zu eigenen Zwecken zu nutzen. Er ist nicht berechtigt, den Inhalt im Internet, in Intranets, in Extranets oder sonst wie Dritten zur Verwertung zur Verfügung zu stellen. Eine öffentliche Wiedergabe oder sonstige Weiterveröffentlichung und eine gewerbliche Vervielfältigung der Inhalte wird ausdrücklich ausgeschlossen. Der Nutzer darf Urheberrechtsvermerke, Markenzeichen und andere Rechtsvorbehalte im abgerufenen Inhalt nicht entfernen.

Basiswissen für Softwarearchitekten

Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional for Software Architecture – Foundation Level

5., überarbeitete und aktualisierte Auflage

Mahbouba Gharbi *m.qharbi@itech-progress.com*

Arne Koschel akoschel@acm.org
Andreas Rausch

andreas.rausch@tu-clausthal.de

Gernot Starke gs@gernotstarke.de

Lektorat: Christa Preisendanz Lektoratsassistenz: Julia Griebel

Copy-Editing: Ursula Zimpfer, Herrenberg

Satz: Birgit Bäuerlein

Herstellung: Stefanie Weidner

Umschlaggestaltung: Helmut Kraus, www.exclam.de

Druck und Bindung: BELTZ Grafische Betriebe GmbH, Bad Langensalza

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN:

Print 978-3-86490-984-9 PDF 978-3-98890-072-2 ePub 978-3-98890-073-9 mobi 978-3-98890-074-6

5., überarbeitete und aktualisierte Auflage 2023 Copyright © 2023 dpunkt.verlag GmbH Wieblinger Weg 17 69123 Heidelberg

Hinweis:

Dieses Buch wurde mit mineralölfreien Farben auf FSC®-zertifiziertem Papier aus nachhaltiger Waldwirtschaft gedruckt. Der Umwelt zuliebe verzichten wir zusätzlich auf die Einschweißfolie. Hergestellt in Deutschland.

Schreiben Sie uns:

Falls Sie Anregungen, Wünsche und Kommentare haben, lassen Sie es uns wissen: hallo@dpunkt.de.

Die vorliegende Publikation ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Die Verwendung der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche Zustimmung des Verlags urheberrechtswidrig und daher strafbar. Dies gilt insbesondere für die Vervielfältigung, Übersetzung oder die Verwendung in elektronischen Systemen.

Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und Hardware-Bezeichnungen sowie Markennamen und Produktbezeichnungen der jeweiligen Firmen im Allgemeinen warenzeichen-, marken- oder patentrechtlichem Schutz unterliegen.

Alle Angaben und Programme in diesem Buch wurden mit größter Sorgfalt kontrolliert. Weder Autor*innen noch Verlag können jedoch für Schäden haftbar gemacht werden, die in Zusammenhang mit der Verwendung dieses Buches stehen.

Vorwort zur 5. Auflage

Softwarearchitektur bildet – neben motivierten Teams und gutem Management – einen wichtigen Erfolgsfaktor von Softwareprojekten. Sie stellt im Sinne einer systematischen Konstruktion sicher, dass Qualitätsanforderungen wie beispielsweise Erweiterbarkeit, Flexibilität, Performance oder Time-to-Market erfüllt werden können.

Softwarearchitektinnen und Softwarearchitekten bringen die Kundenwünsche in Einklang mit den technischen Möglichkeiten und Randbedingungen. Sie sorgen für eine passende Struktur und das Zusammenspiel aller Systemkomponenten. Als Teamplayer arbeiten sie eng mit der Entwicklung sowie anderen Projektbeteiligten zusammen.

Unser Buch »Basiswissen für Softwarearchitekten« orientiert sich am Lehrplan zum »Certified Professional for Software Architecture – Foundation Level« (CPSA-F) des International Software Architecture Qualification Board (iSAQB). Der iSAQB e.V. legt als internationales und offenes Gremium Standards für die Ausbildung, Prüfung und Zertifizierung von Softwarearchitektinnen und Softwarearchitekten fest.

Die 5. Auflage unseres Buches bietet eine Aktualisierung auf Basis des neuen CPSA-F-Lehrplans in der Version 2023.1RC-2 vom April 2023. Mit dem neuen Lehrplan wird diese Auflage insbesondere im Bereich der Prinzipien und Heuristiken verstärkt und Themen wie Randbedingungen und Einflussfaktoren in der Softwarearchitektur werden vertieft. Auch die »Architecture Decision Records« erhalten als etablierter Standard einen eigenen Platz.

Bei der Überarbeitung des iSAQB-Lehrplans wurden einige Themen auf weitere Ausbildungsstufen verschoben und sind somit nicht mehr Bestandteil des »Foundation Level«-Lehrplans. Diese Inhalte sind zwar weiterhin in unserem Buch zu finden, sie sind jedoch als »Exkurs« hervorgehoben. Interessierte Leserinnen und Leser¹ können sich also abseits vom Lehrplan über eine Erweiterung in Form von Exkursen freuen, die parallel zum Lehrplan praxisrelevante und verwandte Themen

^{1.} Im weiteren Verlauf des Buches wird abwechselnd pro Kapitel die weibliche und die männliche Form verwendet. Wir hoffen, dass sich dadurch alle Leser:innen angesprochen fühlen. In Zitaten wird die Schreibweise wie angegeben übernommen.

aufzeigen, Inhalte vertiefen oder moderne Ansätze aufzeigen. Wer das Buch nur zur Prüfungsvorbereitung nutzt, der kann diese Exkurse ignorieren. Des Weiteren wurde das Glossar aktualisiert.

Mit der Zertifizierung zum CPSA-F weisen Softwarearchitektinnen und Softwarearchitekten einen fundierten Wissens- und Kenntnisstand für die Konstruktion kleiner und mittlerer Systeme nach. Ausgehend von einer hinreichend detailliert beschriebenen Anforderungsspezifikation können sie eine angemessene Softwarearchitektur entwerfen und dokumentieren. CPSA-F-Absolventinnen und -Absolventen besitzen damit das Rüstzeug, um problembezogene Entwurfsentscheidungen auf der Basis ihrer vorab erworbenen Praxiserfahrung zu treffen.

Das Selbststudium des vorliegenden Buches ermöglicht die Vorbereitung auf diese Zertifizierungsprüfung – praktische Erfahrung in Entwurf und Entwicklung von Softwaresystemen, das Beherrschen einer höheren Programmiersprache sowie der Grundlagen von UML vorausgesetzt. Darüber hinaus ist grundsätzlich der Besuch entsprechender Präsenzveranstaltungen zu empfehlen, weil der Erfahrungsaustausch mit anderen Fachleuten nicht durch Lektüre zu ersetzen ist.

Wir im Autorenteam arbeiten, lehren und forschen seit vielen Jahren im Bereich des Software & Systems Engineering sowie zur Konstruktion mittlerer und großer IT-Systeme. Wir hoffen, einen Teil unserer Erfahrungen in diesem Buch für Sie als Leserin oder Leser angemessen aufbereitet zu haben.

Wir wünschen Ihnen viel Spaß beim Lesen sowie viel Erfolg bei Ihrer Schulungsmaßnahme und Prüfung zum CPSA-F.

Mahbouba Gharbi, Arne Koschel, Andreas Rausch, Gernot Starke Ludwigshafen, Hannover, Clausthal-Zellerfeld, Köln, im April 2023

Inhaltsübersicht

1	Einleitung	1
1.1	Softwarearchitektur als Disziplin im Software Engineering	2
1.2	iSAQB – International Software Architecture Qualification Board	4
1.3	Certified Professional for Software Architecture - Foundation	
	und Advanced Level	
1.4	Zielsetzung des Buches	7
1.5	Voraussetzungen	8
1.6	Leitfaden für den Leser	9
1.7	Zielpublikum	10
1.8	Danksagungen	10
2	Grundlagen von Softwarearchitekturen	11
2.1	Einbettung in den iSAQB-Lehrplan	12
2.2	Softwareintensive Systeme und Softwarearchitekturen	13
2.3	Grundlegende Konzepte von Softwarearchitekturen	20
2.4	Der Softwarearchitekturentwurf aus der Vogelperspektive	38
2.5	Lernkontrolle	48
3	Entwurf von Softwarearchitekturen	51
3.1	Einbettung in den iSAQB-Lehrplan	52
3.2	Überblick über das Vorgehen beim Architekturentwurf	52
3.3	Arbeit mit Randbedingungen und äußeren Einflussfaktoren	59
3.4	Entwurfsprinzipien und Heuristiken	61
3.5	Architekturzentrierte Entwicklungsansätze	68
3.6	Techniken für einen guten Entwurf	78
3.7	Architekturmuster	86
3.8	EXKURS: Entwurfsmuster	98
3.9	Deployment und Betrieb 1	06
3.10	Lernkontrolle 1	10

viii Inhaltsübersicht

4	Beschreibung und Kommunikation von Softwarearchitekturen	115
4.1	Einbettung in den iSAQB-Lehrplan	. 115
4.2	Das CoCoME-Beispiel	. 116
4.3	Sichten und Schablonen	. 119
4.4	Technische oder querschnittliche Konzepte in	
	Softwarearchitekturen	
4.5	Architektur und Implementierung	
4.6	Übliche Dokumenttypen für Softwarearchitekturen	
4.7	Praxisregeln zur Dokumentation	
4.8	Beispiele weiterer Architektur-Frameworks	. 160
4.9	Lernkontrolle	. 162
5	Softwarearchitekturen und Qualität	165
5.1	Einbettung in den iSAQB-Lehrplan	. 166
5.2	Bewertung von Softwarearchitekturen	. 167
5.3	EXKURS: Prototyp und technischer Durchstich	. 176
5.4	Architekturanalyse	. 178
5.5	Lernkontrolle	. 185
6	EXKURS: Werkzeuge für Softwarearchitektinnen	187
6.1	Allgemeine Hinweise zu Werkzeugen	. 187
6.2	Werkzeuge zum Anforderungsmanagement	. 188
6.3	Werkzeuge zur Modellierung	
6.4	Werkzeuge zur statischen Codeanalyse	. 191
6.5	Werkzeuge zur dynamischen Analyse	. 193
6.6	Werkzeuge zum Konfigurations- und Versionsmanagement	. 194
6.7	Werkzeuge zum Codemanagement	. 195
6.8	Werkzeuge zum Test	. 196
6.9	Werkzeuge zur Dokumentation	. 197
Anha	ang	199
A	Beispielfragen	201
A.1	Auszüge aus der Prüfungsordnung	. 201
A.2	Beispielfragen	. 203
В	Abkürzungsverzeichnis	207
C	Glossar	209
D	Literaturverzeichnis	221
	Index	227

Inhaltsverzeichnis

1	Einleitung					
1.1	Softwarearchitektur als Disziplin im Software Engineering					
1.2	iSAQB	iSAQB – International Software Architecture Qualification Board 4				
1.3		Certified Professional for Software Architecture – Foundation und Advanced Level				
1.4	Zielset	zung des Buches	. 7			
1.5	Voraus	ssetzungen	. 8			
1.6	Leitfad	en für den Leser	. 9			
1.7	Zielpu	blikum	10			
1.8	Danksa	agungen	10			
2	Grundlagen von Softwarearchitekturen 1					
2.1	Einbett	Einbettung in den iSAQB-Lehrplan				
	2.1.1	Lernziele	12			
2.2	Softwa	Softwareintensive Systeme und Softwarearchitekturen				
	2.2.1	Was ist ein softwareintensives System?	13			
	2.2.2	EXKURS: Ausprägungen von softwareintensiven				
		Systemen	15			
	2.2.3	Bedeutung der Softwarearchitektur für ein				
		softwareintensives System	19			
2.3	Grundlegende Konzepte von Softwarearchitekturen					
	2.3.1	Was ist eine Softwarearchitektur?	21			
	2.3.2	Bausteine, Schnittstellen und Konfigurationen	22			
	2.3.3	Konzepte der Beschreibung von Softwarearchitekturen	29			
	2.3.4	Architekturbeschreibung und Architekturebenen	33			
	2.3.5	Wechselwirkungen zwischen Softwarearchitektur				
		und Umgebung	35			
	2.3.6	Qualität und Nutzen der Softwarearchitektur	37			

x Inhaltsverzeichnis

2.4	Der Softwarearchitekturentwurf aus der Vogelperspektive 3						
	2.4.1	Ziele und Aufgaben des Softwarearchitekturentwurfs 39					
	2.4.2	Der Softwarearchitekturentwurf im Überblick 41					
	2.4.3	Wechselspiel der Tätigkeiten und Abstraktionsstufen					
	2.4.4	im Entwurf					
	2.4.4	zu anderen Rollen					
2.5	Lernko	ontrolle					
3		f von Softwarearchitekturen 51					
3.1	Einbett	rung in den iSAQB-Lehrplan					
	3.1.1	Lernziele					
3.2		ick über das Vorgehen beim Architekturentwurf 52					
3.3		mit Randbedingungen und äußeren Einflussfaktoren					
J.J	3.3.1	Arten von Einflussfaktoren					
3.4		rfsprinzipien und Heuristiken					
J. T							
	3.4.1	Top-down und bottom-up					
	3.4.2						
		3.4.2.1 Divide et impera					
		3.4.2.3 So-einfach-wie-möglich-Prinzip					
		3.4.2.4 Trennung von Verantwortlichkeiten 64					
	3.4.3	Konzeptionelle Integrität					
	3.4.4	Erwarte Fehler					
		3.4.4.1 Postels' Law					
	3.4.5	Schmale Schnittstellen und Information Hiding 66					
		3.4.5.1 Information Hiding					
	2.4.6	3.4.5.2 Verwendung von Schnittstellen					
	3.4.6	Regelmäßiges Refactoring und Redesign					
3.5	Architekturzentrierte Entwicklungsansätze						
	3.5.1	EXKURS: Domain-Driven Design					
		3.5.1.1 Fachmodelle als Basis					
		3.5.1.2 Systematische Verwaltung der Domänenobjekte . 69 3.5.1.3 Strukturierung der Fachdomäne					
		3.5.1.4 Arten von Domänen					
		3.5.1.5 Integration von Domänen					
	3.5.2	EXKURS: Globale Analyse					
	3.5.3	EXKURS: Evolutionäre Architektur					
		3.5.3.1 Prinzipien					
		3.5.3.2 Fitnessfunktionen					

Inhaltsverzeichnis xi

	3.5.4	EXKURS: Modellgetriebene Architektur 7	4				
	3.5.5	Referenzarchitekturen 7	6				
		3.5.5.2 Aspektorientierung	'6 '6 '7 '8				
3.6	Technil		78				
	3.6.1	Ausgangssituation und Motivation: degeneriertes Design	79				
	3.6.2		80				
	3.6.3		31				
	3.6.4		32				
	3.6.5		32				
	3.6.6		3				
	3.6.7		34				
	3.6.8		34				
	3.6.9		35				
3.7	Archite	Architekturmuster					
	3.7.1	Adaptierbare Systeme 8	6				
		1	6				
	3.7.2		37				
		3.7.2.1 Model View Controller 8	37				
			8				
	2 = 2		9				
	3.7.3		0				
			0 1				
		1	2				
	3.7.4		- 93				
		•	3				
		3.7.4.2 Broker	95				
		· ·	6				
		O .	7				
3.8	EVVIIDO		97 98				
3.0							
	3.8.1	•	8 9				
	3.8.2		יי 19				
	3.8.3						
	3.8.4	Proxy					
	3.8.5	Fassade	11				

xii Inhaltsverzeichnis

	3.8.6	Brücke				
	3.8.7	State 103				
	3.8.8	Mediator 103				
	3.8.9	Fabrik				
	3.8.10	Interpreter				
	3.8.11	Plug-in				
	3.8.12	Kombinator				
3.9	Deploy	ment und Betrieb				
	3.9.1	Deployment				
	3.9.2	Betrieb				
	3.9.3	EXKURS: DevOps				
3.10	Lernko	ntrolle				
4	Beschre	eibung und Kommunikation von Softwarearchitekturen 115				
4.1	Einbett	ung in den iSAQB-Lehrplan				
	4.1.1	Lernziele				
4.2	Das CoCoME-Beispiel					
	4.2.1	Anwendungsfälle im CoCoME-System				
	4.2.2	Übersicht über den strukturellen Aufbau des				
		CoCoME-Systems				
4.3	Sichten	und Schablonen				
	4.3.1	Bewährte Sichten nach iSAQB				
	4.3.2	UML-Diagramme als Notationsmittel in				
		Sichtenbeschreibungen				
	4.3.3	Sichtenbeschreibung – Grobaufbau und				
		Einführungsbeispiel				
		4.3.3.1 Grobaufbau – schablonenartige Sichtenbeschreibung				
		4.3.3.2 Beispiel: Auszug aus einer Sichtenbeschreibung				
		für eine Bausteinsicht				
	4.3.4	Kontextsicht oder Kontextabgrenzung				
	4.3.5	Bausteinsicht				
	4.3.6	Laufzeitsicht				
	4.3.7	Verteilungssicht bzw. Infrastruktursicht				
	4.3.8	Wechselwirkungen zwischen Architektursichten 144				
	4.3.9	Hierarchische Verfeinerung von Architektursichten 145				

Inhaltsverzeichnis xiii

4.4	Technische oder querschnittliche Konzepte in						
		rearchitekturen	148				
	4.4.1	Technische bzw. querschnittliche Konzepte:					
		Beispieldimensionen	149				
	4.4.2	Beispiel: Fehlerbehandlung	149				
	4.4.3	Beispiel: Sicherheit	150				
4.5	Archite	ektur und Implementierung	151				
	4.5.1	Beispiel: Implementierung	152				
4.6	Übliche	Übliche Dokumenttypen für Softwarearchitekturen					
	4.6.1	Zentrale Architekturbeschreibung	153				
	4.6.2	Architekturüberblick	154				
	4.6.3	Dokumentübersicht	154				
	4.6.4	Übersichtspräsentation	154				
	4.6.5	»Architekturtapete«	154				
	4.6.6	Handbuch zur Dokumentation	155				
	4.6.7	Architecture Decision Record	155				
	4.6.8	Technische Informationen	156				
	4.6.9	Dokumentation von externen Schnittstellen	156				
	4.6.10	Template	156				
4.7	Praxisr	egeln zur Dokumentation	157				
	4.7.1	Regel 1: »Schreiben aus der Sicht der Leserin«	157				
	4.7.2	Regel 2: »Unnötige Wiederholung vermeiden«	157				
	4.7.3	Regel 3: »Mehrdeutigkeit vermeiden«	157				
	4.7.4	Regel 4: »Standardisierte Organisationsstruktur					
		bzw. Schablonen«	158				
	4.7.5	Regel 5: »Begründen Sie wesentliche Entscheidungen					
		schriftlich«	158				
	4.7.6	Regel 6: »Überprüfung auf Gebrauchstauglichkeit«	159				
	4.7.7	Regel 7: »Übersichtliche Diagramme«	159				
	4.7.8	Regel 8: »Regelmäßige Aktualisierungen«	159				
	4.7.9	EXKURS: Regel 9: »Passen Sie die Änderbarkeit der	4.60				
		Dokumentation an die Architektur an«	160				
4.8	Beispie	le weiterer Architektur-Frameworks	160				
	4.8.1	4+1-Framework	161				
	4.8.2	SAGA	161				
4.9	Lernko	ontrolle	162				

xiv Inhaltsverzeichnis

5	Softwa	rarearchitekturen und Qualität 10				
5.1	Einbettung in den iSAQB-Lehrplan					
	5.1.1	Lernziele	66			
5.2	Bewert	ung von Softwarearchitekturen 10	67			
	5.2.1	Qualitative Bewertung	67			
		5.2.1.1 DIN ISO/IEC 25010	67			
		5.2.1.2 Qualitätsmerkmale				
		5.2.1.3 Weitere Qualitätsmerkmale				
		5.2.1.4 Auswirkungen bestimmter Qualitätsmerkmale 17 5.2.1.5 Taktiken und Praktiken				
	5.2.2	Quantitative Bewertung				
	3 .2.2	5.2.2.1 Überprüfung von Architekturregeln 1				
		5.2.2.2 Metriken				
		5.2.2.3 Zyklomatische Komplexität				
		5.2.2.4 Goodharts Gesetz				
5.3	EXKURS	5: Prototyp und technischer Durchstich				
	5.3.1	Technischer Durchstich	76			
	5.3.2	Prototyp				
		5.3.2.1 Einsatz von Softwareprototypen				
		5.3.2.2 Arten von Softwareprototypen				
5.4	Architekturanalyse					
	5.4.1	EXKURS: ATAM-Methode				
		5.4.1.1 Vorgehen bei der Bewertung				
5.5	Lernko	ntrolle	85			
6	EXKURS	: Werkzeuge für Softwarearchitektinnen 18				
6.1	Allgemeine Hinweise zu Werkzeugen					
	6.1.1	Kosten von Werkzeugen	87			
	6.1.2	Lizenzen und Lizenzbedingungen	88			
6.2	Werkzeuge zum Anforderungsmanagement					
	6.2.1	Anforderungen und Entscheidungskriterien 18	89			
	6.2.2	Herausforderungen von Werkzeugen für das				
		Anforderungsmanagement 18	89			
	6.2.3	Beispielhafte Vertreter				
6.3	Werkzeuge zur Modellierung					
	6.3.1	Anforderungen und Entscheidungskriterien 19	90			
	6.3.2	Herausforderungen von Werkzeugen für die				
		Modellierung 19	91			
	6.3.3	Beispielhafte Vertreter 19				

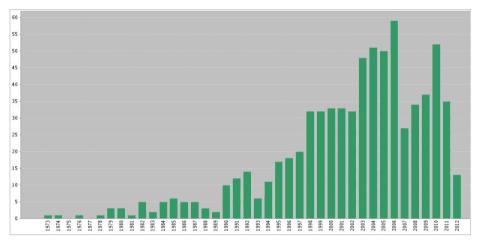
Inhaltsverzeichnis xv

6.4	Werkz	euge zur statischen Codeanalyse	191		
	6.4.1	Anforderungen und Entscheidungskriterien	192		
	6.4.2	Herausforderungen von Werkzeugen zur statischen			
		Codeanalyse	192		
	6.4.3	Beispielhafte Vertreter	192		
6.5	Werkz	euge zur dynamischen Analyse	193		
	6.5.1	Anforderungen und Entscheidungskriterien	193		
	6.5.2	Herausforderungen von Werkzeugen zur dynamischen			
		Analyse	193		
	6.5.3	Beispielhafte Vertreter	193		
6.6	Werkz	euge zum Konfigurations- und Versionsmanagement	194		
	6.6.1	Anforderungen und Entscheidungskriterien	194		
	6.6.2	Herausforderungen von Werkzeugen zum			
		Konfigurations- und Versionsmanagement	194		
	6.6.3	Beispielhafte Vertreter	195		
6.7	Werkz	euge zum Codemanagement	195		
	6.7.1	Herausforderungen von Werkzeugen zum			
		Codemanagement	195		
	6.7.2	Beispielhafte Vertreter	196		
6.8	Werkzeuge zum Test				
	6.8.1	Anforderungen und Entscheidungskriterien	196		
	6.8.2	Herausforderungen von Testwerkzeugen	197		
	6.8.3	Beispielhafte Vertreter	197		
6.9	Werkzeuge zur Dokumentation				
	6.9.1	Anforderungen und Entscheidungskriterien	197		
	6.9.2	Herausforderungen von Dokumentationswerkzeugen	198		
	6.9.3	Beispielhafte Vertreter	198		
Anha	ang		199		
A	Beispie	elfragen	201		
A.1 Auszüge aus der Prüfungsordnung		ge aus der Prüfungsordnung	201		
A.2 Beispielfragen					
В	Abkürzungsverzeichnis Glossar				
c					
D	Literat	urverzeichnis	221		
	Index		227		

1 Einleitung

Software ist allgegenwärtig. Dies gilt sowohl für kommerzielle Unternehmenssoftware als auch für nahezu alle anderen Bereiche des beruflichen, öffentlichen und privaten Alltags: Fliegen, Telefonieren, Überweisen, Autofahren – all das wäre ohne Software kaum noch möglich. In jedem Haushalt und in vielen Alltagsgegenständen, von der Waschmaschine bis zum Auto, werden softwaregesteuerte Bestandteile verwendet [BJ++06]. Software steht in der Regel nicht autark für sich, sondern ist in Geräte mit Hardware und Elektronik oder in Geschäftsprozesse, mit denen Unternehmen ihre Wertschöpfung erzielen, eingebettet [TTL00].

Der Nutzen und wirtschaftliche Erfolg von Unternehmen und Produkten wird zunehmend von Software und deren Qualität bestimmt (siehe [BM++96], [SV99], [TTL00]). Als Folge stehen Softwareingenieure und damit die Disziplin Software Engineering vor der Herausforderung, immer komplexere Anforderungen immer schneller und kostengünstiger bei gleichzeitig hoher Softwarequalität umzusetzen.


Die kontinuierliche Steigerung der Größe und Komplexität von softwareintensiven Systemen hat inzwischen dazu geführt, dass sie zu den komplexesten von Menschen geschaffenen künstlichen Systemen überhaupt zählen. Bestes Beispiel ist das Internet: ein auf Software basierendes weltumspannendes System. Inzwischen ist das Internet sogar auf der internationalen Raumstation ISS verfügbar und hat damit die Grenzen der Erde überschritten.

Nur ein strukturiertes und systematisches Herangehen kann dabei gesichert zum Erfolg führen. Trotz Anwendung etablierter Softwareentwicklungsmethoden bleibt die Anzahl der fehlgeschlagenen Softwareprojekte seit Jahren erschreckend hoch. Um dem entgegenzuwirken, versucht man in den frühen Phasen des Software Engineering bereits möglichst viele Fehler zu vermeiden bzw. dort zu identifizieren und auszumerzen. Zu diesen Phasen zählen insbesondere das Requirements Engineering sowie die Softwarearchitektur. Getreu den Worten von Ernst Denert, einem der Väter der methodischen Softwareentwicklung, wollen wir uns hier mit Softwarearchitektur beschäftigen, der »Königsdisziplin des Software Engineering« (zitiert aus dem Geleitwort von Ernst Denert in [Sie04]).

2 1 Einleitung

1.1 Softwarearchitektur als Disziplin im Software Engineering

Bereits in den 60er-Jahren wurden die Probleme mit Softwareprojekten unter dem Stichwort Softwarekrise bekannt. 1968 fand in Garmisch eine NATO-Konferenz hochrangiger Forscher und Praktiker statt, um unter dem Titel »Software Engineering« über die Zukunft der Softwareentwicklung nachzudenken. Heute gilt diese Konferenz als Geburtsstunde des Software Engineering [Dij72].

Abb. 1–1 Veröffentlichungen zu Softwarearchitektur seit 1973 [Reu12]

Im Vergleich zu traditionellen Ingenieurdisziplinen wie beispielsweise dem Bauwesen, das auf mehrere Tausend Jahre Erfahrung zurückblicken kann, ist Software Engineering mit dem Geburtsjahr 1968 noch sehr jung. So erscheint es auch nicht verwunderlich, dass dessen Teildisziplin Softwarearchitektur noch deutlich jünger ist. Abbildung 1–1 demonstriert dies deutlich: Das Web of Knowledge, eine der großen und renommierten Publikationsdatenbanken, verzeichnet erst ab den 90er-Jahren eine wachsende Anzahl von Publikationen zum Thema Softwarearchitektur [Reu12].

Betrachten wir hingegen die klassische Architektur im Bauwesen, so können wir auf eine bereits Jahrtausende währende Tradition zurückblicken. Ein wichtiger Vordenker war hier Marcus Vitruvius Pollio, ein römischer Architekt aus dem ersten Jahrhundert vor Christus. Er ist Autor des Werkes »De architectura«, das heute unter dem Titel »Ten Books on Architecture« bekannt ist [Vit60]. Vitruvius vertrat die These, dass gute Architektur durch eine kunstvolle Kombination der folgenden Elemente zu erreichen sei:

utilitas (Nützlichkeit):

Das Gebäude erfüllt seine Funktion.

firmitas (Festigkeit):

Das Gebäude ist stabil und langlebig.

venustas (Schönheit):

Das Gebäude ist ästhetisch gestaltet.

Abb. 1–2 Architektur im alten Rom

Diese These lässt sich direkt auf die Disziplin Softwarearchitektur übertragen. Ziel der Softwarearchitektur und damit Aufgabe eines Softwarearchitekten ist es, ein System zu konstruieren, das in einem kunstvoll ausgewogenen Dreiklang die drei folgenden Eigenschaften vereint:

utilitas (Nützlichkeit):

Die Software erfüllt die funktionalen und nicht funktionalen Anforderungen der Nutzer und Kunden.

firmitas (Festigkeit):

Die Software ist stabil im Hinblick auf die geforderten Qualitätseigenschaften, z.B. die Anzahl der gleichzeitig zu bedienenden Nutzer, und langlebig, da zukünftige Weiterentwicklungen möglich sind, ohne das System komplett neu bauen zu müssen.

venustas (Schönheit):

Die Software ist sowohl außen (gegenüber dem Nutzer) wohlstrukturiert, sodass sie intuitiv nutzbar ist, als auch innen (gegenüber demjenigen, der die Software pflegen und weiterentwickeln soll) wohlstrukturiert, sodass dieser die internen Strukturen der Software leicht verstehen und damit gut seinen Aufgaben nachkommen kann.

4 1 Einleitung

1.2 iSAQB – International Software Architecture Qualification Board

Softwarearchitektur ist eine junge Disziplin, über deren Umfang und Ausgestaltung in der Informatik trotz vieler Publikationen immer noch unterschiedliche Meinungen kursieren. Aufgaben und Verantwortungsbereiche von Softwarearchitekten werden unterschiedlich definiert und in Softwareprojekten ständig neu verhandelt.

Für andere Disziplinen im Software Engineering hingegen, wie z.B. beim Projektmanagement, Requirements Engineering oder Testen, gibt es inzwischen einen deutlich ausgereifteren Wissenskanon. Dafür bieten unabhängige Organisationen Lehrpläne an, die klar beschreiben, welche Kenntnisse und Fähigkeiten eine entsprechende Ausbildung vermitteln soll (Testen: www.istqb.org, Requirements Engineering: www.istqb.org, Projektmanagement: www.pmi.org).

Vor diesem Hintergrund haben Anfang 2008 verschiedene Softwarearchitekturexperten aus Wirtschaft und Wissenschaft das »International Software Architecture Qualification Board« als eingetragenen Verein (iSAQB e.V., www.isaqb.org) gegründet. Dessen Ziel ist es, Standards für die Ausbildung und Zertifizierung von Softwarearchitekten zu definieren. Bewusst wird im iSAQB jegliche Hersteller- oder Produktorientierung vermieden. Zertifizierungen auf den unterschiedlichen Stufen Foundation Level, Advanced Level und Expert Level ermöglichen es Softwarearchitekten, sich den Stand ihrer Kenntnisse und Fähigkeiten durch ein anerkanntes Verfahren bescheinigen zu lassen (siehe Abb. 1–3).

Expert Level (geplant)

Der Expert Level richtet sich an erfahrene, professionelle Softwarearchitekten und besteht aus einer Reihe von Modulen zu unterschiedlichen Spezialthemen. Es wird an einem »Certified Professional for Software Architecture Expert Level«-Block gearbeitet. Als Voraussetzung muss man jedoch den Foundation Level und Advanced Level absolviert haben.

Advanced Level

Der Advanced Level vertieft den Stoff des Foundation Level. Das Advanced-Level-Programm ist modular aufgebaut.

Der Lehrplan des Programms besteht aus einzelnen Modulen, die sich jeweils einem bestimmten Schwerpunkt der Kompetenz von Professionals für Softwarearchitektur widmen (Beispiele: Architekturdokumentation, SOA, Soft Skills für Softwarearchitekten).

Foundation Level

Thematisch enthält die Ausbildung alles, was ein Spezialist für Softwarearchitektur wissen muss.

Die Trainingsbausteine befassen sich mit Aufgaben, Methoden und Techniken für die Entwicklung von Softwarearchitekturen. Die Teilnehmer lernen alle Aspekte kennen, die für Softwarearchitekturen wesentlich sind.

Dabei werden neben technologischen auch organisatorische und soziale Faktoren behandelt.

Die Aufgaben eines Spezialisten für Softwarearchitektur werden somit umfassend vermittelt.

Von diesem standardisierten Lehr- und Ausbildungsplan profitieren sowohl etablierte als auch angehende Softwarearchitekten und ebenso Unternehmen oder auch entsprechende Aus- und Weiterbildungseinrichtungen, da er die eingangs geschilderte begriffliche Unsicherheit beseitigt. Nur auf Basis von präzisen Lehr- und Ausbildungsplänen kann eine Prüfung und Zertifizierung angehender Softwarearchitekten stattfinden und so letztlich ein qualitätsgesicherter Ausbildungsstand von Softwarearchitekten mit einem entsprechend akzeptierten Wissenskanon etabliert werden.

Die Zertifizierung zum Certified Professional for Software Architecture (CPSA) wird von unabhängigen Zertifizierungsstellen durchgeführt. Basis für die Zertifizierung zum CPSA (Foundation Level) ist ein anspruchsvoller, vom iSAQB in Einklang mit dem Lehrplan entwickelter, nicht öffentlicher Fragenkatalog, aus dem eine Teilmenge als Prüfungsfragen ausgewählt wird. Für die Zertifizierung zum Advanced Level werden neben der Erfordernis des Besuches von lizenzierten Schulungen bzw. der Anerkennung eines anderen, nicht durch den iSAQB definierten Zertifikats praktische Aufgaben gestellt. Der Expert Level befindet sich derzeit noch in Entwicklung.

Auf Basis dieses Lehrplans bieten verschiedene lizenzierte Schulungsveranstalter mehrtägige Kurse an, die Wissen in diesen Themengebieten auffrischen und vielfach deutlich vertiefen. Die Teilnahme an einem Kurs wird zwar nachdrücklich empfohlen, ist jedoch nicht Bedingung für die Prüfungsanmeldung zur Zertifizierung.

1.3 Certified Professional for Software Architecture – Foundation und Advanced Level

Der iSAQB hat inzwischen nicht nur die Zertifizierungsrichtlinien für den CPSA Foundation Level, sondern auch für den Advanced Level definiert.

Der Advanced Level ist modular aufgebaut und besteht aus einzelnen Schulungen, die sich jeweils einem bestimmten Schwerpunkt der Kompetenz eines IT-Professionals widmen:

Methodische Kompetenz:

Wissen und Fähigkeiten im Bereich des systematischen Vorgehens bei IT-Projekten, unabhängig von Technologien

■ Technische Kompetenz:

Wissen und Fähigkeiten im Bereich des Einsatzes von Technologien zur Lösung von Entwurfsaufgaben

■ Kommunikative Kompetenz:

Wissen und Fähigkeiten im Bereich der Kommunikation, Präsentation, Rhetorik und Moderation zur effektiven Wahrnehmung der Rolle im Softwareentwicklungsprozess

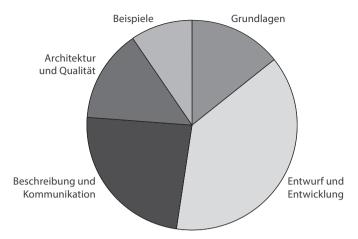
6 1 Einleitung

Voraussetzungen für den Advanced Level sind:

- Ausbildung und Zertifizierung zum CPSA-F (Foundation Level)
- Mindestens 3 Jahre Berufserfahrung in der IT-Branche
- Mitarbeit an Entwurf und Entwicklung von mindestens zwei verschiedenen IT-Systemen
- Für die Prüfung: mindestens 70 Credit Points aus allen drei Kompetenzbereichen (jeweils mindestens 10 Credit Points)

Die Prüfung besteht aus der Bearbeitung einer Prüfungsaufgabe in Eigenregie und der anschließenden Besprechung der Lösung mit zwei unabhängigen Prüfern in einem Interview.

Für den Foundation Level wurden die Bereiche, in denen ein Softwarearchitekt über fundiertes Wissen und Fähigkeiten verfügen sollte, im Rahmen eines öffentlich zugänglichen Lehrplans beschrieben [isaqb-lehrplan]. Danach soll angehenden Softwarearchitekten folgendes Spektrum an Inhalten vermittelt werden:


- der Begriff und die Bedeutung von Softwarearchitektur,
- die Aufgaben und Verantwortungsbereiche von Softwarearchitekten,
- die Rolle des Softwarearchitekten in Projekten,
- State-of-the-Art-Methoden und -Techniken zur Entwicklung von Softwarearchitekturen.

Im Mittelpunkt steht der Erwerb folgender Fähigkeiten:

- mit anderen Projektbeteiligten aus den Bereichen Anforderungsmanagement, Projektmanagement, Test und Entwicklung wesentliche Softwarearchitekturentscheidungen abzustimmen,
- Softwarearchitekturen auf Basis von Sichten, Architekturmustern und technischen Konzepten zu dokumentieren und kommunizieren,
- die wesentlichen Schritte beim Entwurf von Softwarearchitekturen zu verstehen und für kleine und mittlere Systeme selbstständig durchzuführen.

Die Schulung zum Foundation Level vermittelt das notwendige Wissen, um für kleine und mittlere Systeme ausgehend von einer hinreichend detailliert beschriebenen Anforderungsspezifikation eine dem Problem angemessene Softwarearchitektur zu entwerfen und zu dokumentieren. Diese kann dann als Implementierungsgrundlage bzw. -vorlage genutzt werden. Teilnehmer erhalten das Rüstzeug, um problembezogene Entwurfsentscheidungen auf der Basis ihrer vorab erworbenen Praxiserfahrung zu treffen.

Abbildung 1–4 zeigt die inhaltliche Struktur und die Gewichtung der einzelnen Bereiche des Lehrplans für den iSAQB Certified Professional for Software Architecture (CPSA), Foundation Level.

Abb. 1–4 Struktur des iSAQB-Lehrplans für CPSA, Foundation Level

Sie haben die Möglichkeit, sich bei verschiedenen unabhängigen Anbietern durch eine Prüfung gemäß dem iSAQB-Lehrplan zertifizieren zu lassen. Für die Zertifizierung setzen die Prüfungsanbieter standardisierte Prüfungsfragen ein, die der iSAQB erarbeitet hat.

Für die Prüfungen wird ein Multiple-Choice-Verfahren verwendet. Entsprechend objektiv ist das Prüfungsergebnis messbar.

Mit der Prüfung können Sie somit Ihr notwendiges Grundlagenwissen als Softwarearchitekt nachweisen. Natürlich müssen Sie dann später in der Anwendung zeigen, dass Sie Ihr Wissen auch praktisch und erfolgreich in konkreten Architekturen einzusetzen wissen.

1.4 Zielsetzung des Buches

Wir, das Autorenteam des Buches, haben gemeinsam mit anderen iSAQB-Mitgliedern am iSAQB-Lehrplan für den Certified Professional for Software Architecture, Foundation Level, gearbeitet. Im Rahmen dieser Zusammenarbeit ist auch die Idee zu diesem Buch entstanden. Dementsprechend verfolgen wir darin die zentrale Zielsetzung, kompakt und prägnant das notwendige Wissen für die CPSA-Prüfung, Foundation Level, und somit das Fundament für den Wissenskanon in der Disziplin Softwarearchitektur bereitzustellen. Das Buch ist demzufolge die ideale Referenz für eine entsprechende Prüfungsvorbereitung. Wir empfehlen Ihnen ergänzend den Besuch entsprechender Schulungen, da dort das Lehrmaterial durch über dieses Buch hinausgehende praktische Beispiele von Softwarearchitekturen und persönliche Erfahrungen der jeweils Lehrenden abgerundet wird.

Da der iSAQB und somit auch das Buch primär auf methodische Fähigkeiten und Wissen fokussiert, gehören konkrete Implementierungstechnologien oder spezielle Werkzeuge explizit nicht zum standardisierten Lehrinhalt. Deshalb haben wir 8 1 Einleitung

dieses Buch bewusst technologieneutral verfasst. Auch die von uns verwendeten Notationen, wie z.B. die UML, sind nur exemplarisch zu verstehen. Ebenso ist es nicht Ziel des Buches, ein einzelnes konkretes Vorgehensmodell oder einen spezifischen Entwicklungsprozess darzustellen. Vielmehr werden von uns an vielen Stellen mehrere Beispiele etwa für Notationen oder Vorgehensmodelle kurz vorgestellt.

In diesem Buch erklären wir vor allem wichtige Begriffe und Konzepte der Softwarearchitektur und stellen deren Bezug zu anderen Disziplinen dar. Darauf aufbauend führen wir die grundlegenden Techniken und Methoden für den Entwurf und die Entwicklung, die Beschreibung und Kommunikation sowie die Qualitätssicherung von Softwarearchitekturen ein. Schließlich betrachten wir die Rolle, die Aufgaben, das Umfeld und die Arbeitsumgebung von Softwarearchitekten und deren Einbettung in die umfassende Organisations- und Projektstruktur.

1.5 Voraussetzungen

Entsprechend der oben genannten Zielsetzung setzt das vorliegende Buch – wie auch der iSAQB-Lehrplan – Erfahrung in der Softwareentwicklung voraus. Insbesondere gehören folgende Inhalte nicht zum Lehrplan und sind damit auch nicht Thema des Buches, obgleich sie zu den notwendigen Kompetenzen von Softwarearchitekten zählen:

- typischerweise mehrjährige praktische Erfahrung in der Softwareentwicklung, erworben durch Programmierung unterschiedlicher Systeme,
- vertiefte Kenntnisse und praktische Erfahrung mit mindestens einer höheren Programmiersprache,
- Grundlagen der Modellierung und Abstraktion sowie der Modellierungssprache UML, insbesondere der Klassen-, Paket-, Komponenten- und Sequenzdiagramme sowie deren Bezug zum Quellcode,
- praktische Erfahrung in technischer Dokumentation, insbesondere in der Dokumentation von Quellcode, Systementwürfen oder technischen Konzepten,
- Kenntnisse über die Methodik beim Testen von Software in den verschiedenen Teststufen.

Darüber hinaus sind Kenntnisse und Erfahrung mit der Objektorientierung für das Verständnis einiger Konzepte hilfreich. Ebenfalls wünschenswert ist Erfahrung in der Konzeption und Implementierung verteilt ablaufender Anwendungen wie etwa Client-Server-Systeme oder Webanwendungen.