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Preface

Fluid mechanics encompasses such a wide variety of subjects that nowadays it is almost
impossible for anyone to write a book and do justice to all the topics. Tomes of hundreds
of pages have been written on just one major sub-topic, such as compressible flow, turbu-
lence, computational fluid dynamics, and experimental methods. Even then, it is difficult
to proclaim the presentation as complete.

Thus, it is essential to state the aim, the limitations, and the philosophy of the present
work at the outset.

e Aim: To present essential fluid mechanics to students and researchers, just enough to
do independent analytical work.

e Limitations: Only include the analytical (not numerical, experimental, or empirical)
methods and solutions of the constant property Navier-Stokes equation and their
closely related applications.

e Philosophy: To achieve the goal as directly as possible, leaving some non-essential
details to the references.

There are different levels in presenting fluid mechanics. The introductory level considers
statics, control volume, etc. The advanced level uses tensors, theorems about existence,
etc. The present book is in the intermediate level for the early career researcher or the
first-year graduate student. For best results, the reader should have had undergraduate
differential equations, some fluid mechanics exposure, and know how to use simple com-
puter software and the Science Citation Index (forwards and backwards) for additional
references.

Suggested flowchart for this book is as follows: Chap. 1 “The Navier-Stokes Equation”,
Chap. 2 “Exact Solutions” (perhaps supplemented by Appendix A on similarity meth-
ods), Chap. 3 “Non-dimensionalization, Scaling and Approximations”, Chap. 4 “Boundary
Layers” (perhaps supplemented by Appendix B Perturbation Theory and Appendix C
Potential Flow). Then the reader is free to choose from among the special topics in
Chaps. 5-9.



vi Preface

In comparison to other viscous flow texts, the present work differs in the following
respects:

This book is short and concise.

Topics and exercises are presented to the verge of original research.
It is simple enough for self-study.

The method is illustrated in the examples.

The use of stream function is emphasized.

I have done teaching and research in various aspects of fluid mechanics for the past 50+
years, and this book would no doubt reflect some of my personal preferences.
Reporting any mistakes or inadequacies would be appreciated.

East Lansing, USA C. Y. Wang
2023
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The Navier-Stokes Equation

The governing equation of viscous flow is the Navier—Stokes (N-S) equation. In this
chapter we shall derive the N-S equation with the least effort possible.

The assumptions are that the fluid is a continuum (can be differentiated), isotropic
(no preferred direction), Newtonian (stress proportional to strain rate) and its properties
(density, viscosity) are constant.

We shall derive the N-S equation in two-dimensional Cartesian coordinates, extend to
three dimensions, and finally to general orthogonal curvilinear coordinates. The choice
of a proper coordinate system is important since it is necessary for analytically solving
specific problems.

1.1 Deriving the N-S Equation

Consider first the continuity equation. Let (u, v) be two-dimensional velocities in the
Cartesian (x, y) directions respectively.

Figure 1.1a shows an elemental area AxAy where u(x, y) enters and when it leaves
on the other side becomes u(x + Ax, y), similarly for the v velocity component. Since
the density is constant, the net fluid loss is zero.

[u(x + Ax,y) —u(x, Y)IAy + [v(x,y + Ay) —v(x, y)]Ax =0 (1.1)

Expanding in Taylor series

ou
M(X+Ax,y)=M(x,y)+Ax£(x,y)+-~- (1.2)
Equation (1.1) simplifies to
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
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2 1 The Navier-Stokes Equation

Av(e,y+4y) WEVTDR L eyt ay)
fy Ty (X +.AX,))
u(x,y) o u(x+4x,y) L
> > fe |7+ axy)
Ax Ax
Avix,p) Ty (6p)
(a) (b)

Fig.1.1 An elemental area a velocities through the boundary b stresses and forces

du Jdv
— 4+ —=0 (1.3)
dx  dy

Extending to three dimensions and in vector form the continuity equation is
V-u=0 (1.4)

where u is the velocity vector. Equation (1.4) is also valid when the flow is unsteady
(time dependent).
Let u(x, ) be the velocity vector, ¢ be the time and x be the spatial (Eulerian) position.
x is function of some original position & and ¢. Thus, the acceleration following the mass
(Lagrangian) is
d ou ou dx; ou v Ls
a_au[x(g,t),t]—g—k 8_x,~ﬁ_§+(u' u (1.5)
The forces on an elemental volume of fluid consist of body forces which act on the
whole mass and surface forces which act on the bonding surface. Figure 1.1b shows a
two-dimensional elemental area subjected to body forces per area (fy, fy) and stresses
(Txx» Txy, Tyx, Tyy). Similar to Eq. (1.1) the net force in the x direction is

szarﬂ

0Tyx

5 AyAx + frAxAy (1.6)
y

Since Newton’s momentum law holds, the mass times acceleration is equal to the net
force. Using the x component of Newton’s law gives

ou
prAy[E + (u - V)u:| = Fy (1.7)

or
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du
[at + - V)uj| ==+ ay + fu (1.8)

Similarly in the y direction

v ot ot
i .V — 2y, Ty 1.9
p[at +(u )u} e T (1.9)

A moment balance of the elemental area shows the stress (tensor) is symmetric.
Txy = Tyx (1.10)
Define a strain rate tensor
dij=%<%+%> (1.11)
For an isotropic Newtonian fluid (most fluids) the stress is proportional to strain rate
T;j = —pdij + 2ud;; (1.12)

Here §;; is the Kronecker delta, p is the pressure and w is the viscosity. In two dimensions

ou ou dv adu
Txx = —P +2/Las Txy = M 5 + a s Tyy=—p+ 2“@ (1.13)
Upon substituting into Eq. (1.8) and using Eq. (1.3), we obtain
M w-v) U AT (1.14)
J— u . u = —— .
Plor ox ax? gy ) T
Extending to three dimensions yields the N-S equation
ou 1 2
— 4 @w-Vu=—Vp+vWVu+f (1.15)
at 0
where f is the body force per mass and v = w/p is the kinematic viscosity. Equa-

tion (1.15) is supplemented by continuity Eq. (1.4), initial condition and boundary
conditions.

The three-dimensional form of the N-S equation is seldom used in analytic work. Here
we present the two-dimensional form in Cartesian coordinates.

8u+ 8u+ du 18p+ 82u+82u ny (L16)
v—=——4+V|—+— .
ot ox dy p 0x axz  9y? *

au+ au+ v 18p+ 9%v +a2u 4 (L17)
—t+tu—+tv—=—-——— :
ot ax ay pdy ax2 | 9y2 Y



4 1 The Navier-Stokes Equation

From Eq. (1.3) a stream function i can be defined

uz%, v:—% (1.18)
ay dx

Then eliminating pressure, the N-S equation becomes

awa oy, . 0fy  fy
w+ V2 axavw_var(ay Bx) (1.19)

In two dimensions, the vorticity is
{=Vy (1.20)

Notice, if the body forces fy, fy are conservative (such as gravity), then they can be
absorbed into the pressure term and the last parenthesis in Eq. (1.19) can be set to zero.
In terms of a Jacobian, the N-S equation without body forces is

2
Dy 4 M)

4
o ) WY (1.21)

Equation (1.21) is a partial differential equation to be solved with an initial condition,
four boundary conditions in x, and four boundary conditions in y. On solid boundaries we
assume the no-slip condition, unless partial slip occurs (see Chap. 7).

1.2 N-S Equation in Other Coordinates

A coordinate system that fits (or closely fits), the boundary is necessary for obtaining an
analytic solution.

For non-orthogonal coordinate systems, tensors and Christoffel symbols are necessary.
An example is the flow in a helical tube with non-zero pitch.

For orthogonal curvilinear coordinate systems, let x (&) denote the relationship between
the new system & and the Cartesian system x. Construct the elemental distance squared

3
ds* =dx -dx =Y hjdg} (1.22)
i=1

where h; are scale factors, and let a; be the unit vectors in the directions & of the
curvilinear system. Equation (1.22) also ascertains the curvilinear system is orthogonal.
Vector calculus shows

i 9
Ve = ZZ a; (1.23)
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1 30 (hiy1higo 09
V2 = _(—’+ ! _) 1.24
¢ hihah3 Zl 0&; hi 0§ (124

where the index i is mod[3], i.e. k4 = h1, h5 = hy. Any vector can be decomposed

3
F = Zl F.a; (1.25)
then
1 309
F=— —(hjs1hijn F; 1.26
h]h2h3 Zl ai'_i( i+11i42 l) ( )

hiay hay hsas

- | 2 2 3
VxF = AR 1.27)
hiFy haFy h3F3
F; ah; ah;
, |G- V)Fi+h,;l—fl(ci 75, O al;)
(G -V)F = Z a; ifi41 i+1 i (1.28)
1 Fip (G- ohi Zahi+2>
hihia\ &2 0%
Notice for Eq. (1.15) the cross product should be used
Vu=V(V-u)—V x(Vxu) =-Vx(Vxu) (1.29)
where Eq. (1.4) has been applied. Typical strain rate tensors are
1 du uy oh uz oh
d11=——1+ 2 _l_|_ 3 90 (1.30)
hy d§1  hihy 9§ hihs 983
hy 0 (u hy 0 [(u
dip= - (2) ¢ 2L (X (1.31)
2hy 351 \ h2 2hy 985 \ hy

1.2.1 Cylindrical Coordinates

Let (u, v, w) be velocities in the directions of the cylindrical coordinates (r, 9, z). Since
x =rcos(@), y =rsin@), z =z, Eq. (1.22) gives hy = 1,h» = r,hz = 1. For
two dimensional flow independent of the z direction, the N-S equation (without the body
force terms) is

ou du vou U2 1dp (V2 u 2 BU)
v

M T Y T T T pr

(1.32)



