
The Traveling
Salesman Problem

Synthesis Lectures on
Operations Research and Applications

Optimization with the Attractor-Based
Search System

Weiqi Li

Synthesis Lectures on Operations Research
and Applications

This series focuses on the use of advanced analytics in both industry and scientific
research to advance the quality of decisions and processes. Written by international
experts, modern applications and methodologies are utilized to help researchers and
students alike to improve their use of analytics. Classical and cutting-edge topics are pre-
sented and explored with a focus on utilization and application across a range in practical
situations.

Weiqi Li

The Traveling Salesman
Problem
Optimization with the Attractor-Based
Search System

Weiqi Li
School of Management
University of Michigan
Flint, MI, USA

ISSN 2770-6303 ISSN 2770-6311 (electronic)
Synthesis Lectures on Operations Research and Applications
ISBN 978-3-031-35718-3 ISBN 978-3-031-35719-0 (eBook)
https://doi.org/10.1007/978-3-031-35719-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-35719-0

To Sophia and Yachen
for their love and support

Preface

The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial
optimization problems. Its popularity and importance can be attributed to its simple
definition but high complexity to solve it, making it an ideal research problem for
design of new algorithms, development of complexity theory, and analysis of search
space [3–5]. The intrinsic difficulty of the TSP is associated with the combinatorial explo-
sion of potential solutions in the solution space. There is no practically efficient algorithms
to solve the TSP exactly. It can be exactly solved by only one algorithm—the brute-force
(i.e., exhausted search) algorithm. Exhausted search is a trivial algorithm entailing the
sequential scanning of all possibilities in the solution space. However, the time required
to scan all possible solutions in the solution space increases rapidly as the size of the
problem grows. Can we avoid the exhausted search? Maybe not, because we need the
exhausted search to make sure the found solution is the optimal one. Then the next ques-
tion is, if the exhausted search is unavoidable, can we reduce the search space to make
the exhausted search feasible? If it is possible, how can we do that? This book attempts
to answer these questions. The focus of this book is trying to answer the fundamental
question for the TSP: “Do we ever need to explore all the solutions in the solution space
to find the optimal one?” Without completely searching the solution space, how can we
find the optimal solution quickly and make sure it is optimal?

Due to the intractability of the TSP, people often have to use heuristic algorithms to
find reasonably good solutions to the problem. Heuristic algorithms are very efficient to
find suboptimal solutions, which are very close to the optimal solution. There are many
heuristic algorithms for the TSP and extensive research literature on these algorithms.
This book studies the heuristic local search algorithms on the TSP from the perspective
of dynamical systems. Essentially, heuristic local search algorithms for the TSP are also
in the domain of dynamical systems. A dynamical system is a model of describing the
temporal evolution of a system in its state space [1, 2]. Dynamical systems are called
dissipative if their dynamics converge to attractors. The dynamics of dissipative systems
can be thought as computation: either the initial state or parameter values can be con-
sidered the input to a computational problem, the evolution along the trajectory is the
computation process, and attractor describes the solution. The goal of dynamical systems

ix

x Preface

analysis is to capture the distinctive properties of certain points in the state space of the
dynamical system. The dynamical systems theory has discovered that many dynamical
systems exhibit attracting behavior. That is, in such a system, all initial states tend to
evolve towards a single final state or a set of states. This type of single point or a set of
points in the state space is called attractor. The attractor theory of dynamical systems is
natural paradigm that provides the necessary and sufficient theoretical foundation to study
the convergent behavior of a heuristic local search system. A heuristic local search system
for the TSP is a discrete dynamical system and has an attracting property that drives the
search trajectories to converge to a small region in the solution space, which contains
the most promising solutions to the problem. This small region is called the attractor of
the local search system for the problem instance. If we can identify the attractor quickly
and the attractor can be searched by an exhausted algorithm quickly, the computational
complexity of the TSP can be dramatically reduced or may not exist.

The novel perspective of attractor in a local search system gives us great insights
into the computational complexity of the TSP. The attractor shows us where the opti-
mal solution can be found in the solution space. Instead of searching the entire solution
space, we concentrate the exhausted search effort on this much smaller region, in
which the number of possibilities is no longer prohibitive. This book presents a novel
search system—the attractor-based search system (ABSS)—that can solve the TSP effi-
ciently with optimality guarantee. The ABSS consists of two search phases: local search
phase and exhausted search phase. The local search phase is to construct the attractor
in which the optimal solution is located. The attractor is exponentially smaller than the
solution space, and thus makes the exhausted search feasible. The exhausted search phase
is to search the attractor completely to identify the optimal solution. The ABSS combines
local search and exhaustes search to find the exact optimal solution quickly. Therefore,
this new search paradigm is called optimizing with attractor.

The ABSS is designed for the TSP, not only because the TSP is an essentially impor-
tant optimization problem in computational mathematics and computer science, but also
because it has an exploitable data structure—the edge matrix E—that allows us to deal
with the problem more naturally and thus provides us with a tool to significantly reduce
the computational complexity of the TSP. The edge matrix E helps us jump the gap
from local search to global search and from stochastic search to deterministic search.
In the ABSS, a local search process is for efficiency, an exhausted search process for
accuracy, and the data structure matrix E is the mechanism to combine them. All three
elements work together to achieve the goal of the efficient and effective computation for
optimization.

In fact, a heuristic local search system can work in mysterious ways. It does not have
to work along the lines we think it should. The central idea of using local search process
is the search space reduction, that is, the local search process can be used to reduce the
number of combinatorial branching at each node. The search space reduction process
removes a large number of unnecessary solutions from the search space, and guarantees

Preface xi

that the reduction actually remain representing the original instance but with much smaller
space for the exhausted search. This book describes in detail how an attractor in a local
search system drives the search trajectories into an attractor in the solution space and
how the convergence of local search trajectories make the local search system become a
global and deterministic system. This book also describes how to use the ABSS to solve
the TSP and its variants including multi-objective TSP, probabilistic TSP, dynamic TSP,
and dynamic multi-objective TSP.

This book is for general readers who are interested in optimization and/or dynamical
systems. It also helps knowledgeable readers in the optimization field to deepen their
understanding and initiate brainstorming. This book does not prepare to give a formal
theory about the attractor of search system. Therefore, in this book, we do not intend
to produce any strong mathematical proof of any theorem about the attractor and other
related properties. We keep mathematics to a minimum. Instead, we describe the concepts
informally based on intuition and some experimental results.

The study of new search algorithms for the TSP continues to be a vibrant, excit-
ing and fruitful endeavor in combinatorial optimization, computational mathematics, and
computer science. Numerous experts have made huge advance, but the TSP remains essen-
tially open. A new point of view could be just what is needed to dramatically alter our
ability to tackle the problem. This book proposes a new idea for improving the exhausted
search. The ultimate goal of this book is to encourage readers to take up their own pursuit
of interesting problem-by-problem methods for attacking diverse optimization problems.
It is hoped that this book serves as a pioneer in this field and brings more and better
works from other researchers and practitioners.

Flint, USA Weiqi Li

References

1. Brin, M., Stuck, G. (2016). Introduction to dynamical systems. Cambridge University Press:
Cambridge, UK.

2. Brown, R. J. (2018). A modern introduction to dynamical systems. Oxford University Press:
Oxford, UK.

3. Garey, M. R., Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-
completeness. Freemen and Company: New York.

4. Lawler, E. L., Lenstra, J. K., Rinnooy-Kan, A., Shmoys, D. (1985). The traveling salesman
problems: A guided tour of combinatorial optimization. John Wiley & Sons: New York.

5. Papadimitriou, C. H., Steiglitz, K. (1998). Combinatorial optimization: algorithms and complex-
ity. Dover Publications: New York.

Contents

1 Introduction . 1
References . 6

2 Traveling Salesman Problem . 9
2.1 Defining the TSP . 9
2.2 Computational Complexity of the TSP . 13
2.3 The Edge Matrix E . 19
2.4 Experiment Settings . 21
References . 23

3 The Attractor-Based Search System . 27
3.1 The Attractor-Based Search System Algorithm . 27
3.2 An Experiment Result . 33

4 Analysis of the Attractor-Based Search System . 37
4.1 Nature of Heuristic Local Search Process . 37

4.1.1 Dynamical Systems . 38
4.1.2 Heuristic Local Search System . 39

4.2 Analysis of Local Search Trajectories . 44
4.2.1 Dynamics of a Local Search Trajectory . 44
4.2.2 Convergence of Local Search Trajectories . 55
4.2.3 Properties of K Local Search Trajectories . 64
4.2.4 Properties of the Attractor . 68

4.3 Computational Complexity of the ABSS . 73
References . 78

5 Solving Multi-objective Traveling Salesman Problem . 83
5.1 Multi-objective Optimization Problem . 83
5.2 Attractor-Based Search System for Multi-objective TSP 86
5.3 Experimental Examples . 88
References . 94

xiii

xiv Contents

6 Solving Probabilistic Traveling Salesman Problem . 97
6.1 Stochastic Combinatorial Optimization Problems . 97
6.2 Probabilistic TSP . 98
6.3 Simulation-Based ABSS for the PTSP . 102
6.4 Experimental Example . 105
References . 110

7 Solving Dynamic Traveling Salesman Problem . 115
7.1 Dynamic TSP . 115
7.2 Parallel ABSS for Dynamic TSP . 116
References . 122

8 Solving Dynamic Multi-objective Traveling Salesman Problem 125
8.1 Dynamic Multi-objective TSP . 125
8.2 Parallel ABSS for Dynamic Multi-objective TSP . 128

8.2.1 Experiment Setting . 128
8.2.2 The Master-Worker ABSS Implementation . 129
8.2.3 The Pipeline ABSS Implementation . 134

References . 140

1Introduction

Optimization problems exist everywhere in our life. Optimization has become a critical
tool in science, engineering and business. The goal of optimization is to find the best set
of the admissible conditions to achieve some objectives in our decision-making process
[13]. One of fundamental requirements for an optimization algorithm is to find all optimal
solutions within a reasonable amount of computing time. Combinatorial optimization prob-
lems are a subset of optimization problems, which attempts to find optimal solutions from
a finite set of solutions, where the set of feasible solutions is discrete or can be reduced to
a discrete set. The TSP is one of the most intensively investigated combinatorial optimiza-
tion problems and often treated as the prototypical combinatorial optimization problem
that has provided so much motivation for design of new search algorithms, development
of complexity theory, and analysis of solution space and search space [3, 19].

People have designed a variety of algorithms to solve the combinatorial optimiza-
tion problems, from which two main categories can be identified: exact algorithms (i.e.
the algorithms that are guaranteed to always find an optimal solution) and approximate
algorithms (i.e. the algorithms that are guaranteed to find a solution that is within a cer-
tain constant factor of optimality) [3, 14, 22]. Exact search algorithms such as exhausted
search, cutting-plane, branch-and-bound, and linear programming are explicitly or implic-
itly based on enumeration of all feasible solutions in the solution space and hence can
find the exact optimal solutions, but they are very expensive from the computational per-
spective because they require in the worst-case an exponential number of steps. Many
combinatorial optimization problems are known to be NP-complete, which means that so
far there is no known asymptotically efficient algorithm that can be solve every instance
of the problem in a time growing less than a power of problem size, even the seemly “lim-
itless” increase of computer power will not help to resolve their genuine intractability [9,
12, 19]. From a computational complexity stance, intractable problems are problems for
which there exist no efficient algorithms to solve them. Most intractable problems have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W. Li, The Traveling Salesman Problem, Synthesis Lectures on Operations Research
and Applications, https://doi.org/10.1007/978-3-031-35719-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35719-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-35719-0_1

2 1 Introduction

an algorithm—the same algorithm—that provides an exact solution, and that algorithm is
the exhausted search (also commonly called brute-force search), which is the process of
examining all possible solutions in the solution space to identify the best one [8].

Due to the NP-completeness and intractability of combinatorial optimization prob-
lems, approximate approaches, based on heuristics, have become a popular means to find
reasonably good solutions to these hard problem [5, 6, 20, 21, 24, 25]. Heuristics are
functions that help us decide which one of a set of possible solutions is to be selected
next [18]. The approximate algorithms trade in guaranteed correctness of the optimal
solutions for a shorter computing time. In such an algorithm, deterministic guarantee that
the optimal solution can be found is relaxed into a confidence measurement. They do
not guarantee that the optimal solution will be found, instead they provide suboptimal
solutions that can be very close to the optimal solution. Most heuristic search algorithms
have been based on or derived from a general search technique known as heuristic local
search algorithm, simply called local search [1].

A local search starts with an initial solution and then iteratively explores the neigh-
borhoods of solutions trying to improve the current solution by a local change. Local
search is simple to implement and quick to execute, but its search scope is limited by the
neighborhood definition. As a result, it outputs a final solution that may deviate from the
optimal solution. This type of final solutions is called a locally optimal solution, denoted
by s' in this book. To distinguish from a locally optimal solution, the optimal solution
in the solution space is called a globally optimal solution, denoted by s∗. In order to
overcome local optimality, local search usually requires some type of diversification to
avoid a large region of the solution space remaining completely unexplored. The simplest
way to achieve this diversification is to restart the search process from anew initial point
once a solution region has been explored. The multi-start search helps explore new areas
in the solution space, and therefore generates a wide sample of locally optimal points
[15–17]. Multi-start algorithms can be characterized as iterative procedure consisting of
two phases: (1) generating a set of random initial points and performing the local search,
thus generating a set of locally optimal points, and (2) constructing adaptive starting
points derived from the best locally optimal solution found so far. The entire procedure
is repeated a number of iterations or certain amount of time, and the best solution is then
reported. The heuristics rarely solve the problem, but they give good enough solutions
based on a practical criterion.

Numerous approaches to solving the TSP have been developed. Even though the TSP
is believed to be NP-complete and presumable difficult to solve exactly, with today’s
fast computers, we can perform an exhausted search through all the possible solutions of
moderately seized instances. Modern approximate algorithms can find the solutions that
get very close to the optimal solution within a few percent of optimum in a reasonable
amount of time for large TSP instances with millions of nodes [4, 7, 10–12, 18, 22,
23, 26]. There are some local search algorithms for many real-world TSP instances, the
empirical average-case complexity (i.e. time versus problem size) of such algorithm can

