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Preface 

The Traveling Salesman Problem (TSP) is one of the most well-known combinatorial 
optimization problems. Its popularity and importance can be attributed to its simple 
definition but high complexity to solve it, making it an ideal research problem for 
design of new algorithms, development of complexity theory, and analysis of search 
space [3–5]. The intrinsic difficulty of the TSP is associated with the combinatorial explo-
sion of potential solutions in the solution space. There is no practically efficient algorithms 
to solve the TSP exactly. It can be exactly solved by only one algorithm—the brute-force 
(i.e., exhausted search) algorithm. Exhausted search is a trivial algorithm entailing the 
sequential scanning of all possibilities in the solution space. However, the time required 
to scan all possible solutions in the solution space increases rapidly as the size of the 
problem grows. Can we avoid the exhausted search? Maybe not, because we need the 
exhausted search to make sure the found solution is the optimal one. Then the next ques-
tion is, if the exhausted search is unavoidable, can we reduce the search space to make 
the exhausted search feasible? If it is possible, how can we do that? This book attempts 
to answer these questions. The focus of this book is trying to answer the fundamental 
question for the TSP: “Do we ever need to explore all the solutions in the solution space 
to find the optimal one?” Without completely searching the solution space, how can we 
find the optimal solution quickly and make sure it is optimal? 

Due to the intractability of the TSP, people often have to use heuristic algorithms to 
find reasonably good solutions to the problem. Heuristic algorithms are very efficient to 
find suboptimal solutions, which are very close to the optimal solution. There are many 
heuristic algorithms for the TSP and extensive research literature on these algorithms. 
This book studies the heuristic local search algorithms on the TSP from the perspective 
of dynamical systems. Essentially, heuristic local search algorithms for the TSP are also 
in the domain of dynamical systems. A dynamical system is a model of describing the 
temporal evolution of a system in its state space [1, 2]. Dynamical systems are called 
dissipative if their dynamics converge to attractors. The dynamics of dissipative systems 
can be thought as computation: either the initial state or parameter values can be con-
sidered the input to a computational problem, the evolution along the trajectory is the 
computation process, and attractor describes the solution. The goal of dynamical systems
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analysis is to capture the distinctive properties of certain points in the state space of the 
dynamical system. The dynamical systems theory has discovered that many dynamical 
systems exhibit attracting behavior. That is, in such a system, all initial states tend to 
evolve towards a single final state or a set of states. This type of single point or a set of 
points in the state space is called attractor. The attractor theory of dynamical systems is 
natural paradigm that provides the necessary and sufficient theoretical foundation to study 
the convergent behavior of a heuristic local search system. A heuristic local search system 
for the TSP is a discrete dynamical system and has an attracting property that drives the 
search trajectories to converge to a small region in the solution space, which contains 
the most promising solutions to the problem. This small region is called the attractor of 
the local search system for the problem instance. If we can identify the attractor quickly 
and the attractor can be searched by an exhausted algorithm quickly, the computational 
complexity of the TSP can be dramatically reduced or may not exist. 

The novel perspective of attractor in a local search system gives us great insights 
into the computational complexity of the TSP. The attractor shows us where the opti-
mal solution can be found in the solution space. Instead of searching the entire solution 
space, we concentrate the exhausted search effort on this much smaller region, in 
which the number of possibilities is no longer prohibitive. This book presents a novel 
search system—the attractor-based search system (ABSS)—that can solve the TSP effi-
ciently with optimality guarantee. The ABSS consists of two search phases: local search 
phase and exhausted search phase. The local search phase is to construct the attractor 
in which the optimal solution is located. The attractor is exponentially smaller than the 
solution space, and thus makes the exhausted search feasible. The exhausted search phase 
is to search the attractor completely to identify the optimal solution. The ABSS combines 
local search and exhaustes search to find the exact optimal solution quickly. Therefore, 
this new search paradigm is called optimizing with attractor. 

The ABSS is designed for the TSP, not only because the TSP is an essentially impor-
tant optimization problem in computational mathematics and computer science, but also 
because it has an exploitable data structure—the edge matrix E—that allows us to deal 
with the problem more naturally and thus provides us with a tool to significantly reduce 
the computational complexity of the TSP. The edge matrix E helps us jump the gap 
from local search to global search and from stochastic search to deterministic search. 
In the ABSS, a local search process is for efficiency, an exhausted search process for 
accuracy, and the data structure matrix E is the mechanism to combine them. All three 
elements work together to achieve the goal of the efficient and effective computation for 
optimization. 

In fact, a heuristic local search system can work in mysterious ways. It does not have 
to work along the lines we think it should. The central idea of using local search process 
is the search space reduction, that is, the local search process can be used to reduce the 
number of combinatorial branching at each node. The search space reduction process 
removes a large number of unnecessary solutions from the search space, and guarantees
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that the reduction actually remain representing the original instance but with much smaller 
space for the exhausted search. This book describes in detail how an attractor in a local 
search system drives the search trajectories into an attractor in the solution space and 
how the convergence of local search trajectories make the local search system become a 
global and deterministic system. This book also describes how to use the ABSS to solve 
the TSP and its variants including multi-objective TSP, probabilistic TSP, dynamic TSP, 
and dynamic multi-objective TSP. 

This book is for general readers who are interested in optimization and/or dynamical 
systems. It also helps knowledgeable readers in the optimization field to deepen their 
understanding and initiate brainstorming. This book does not prepare to give a formal 
theory about the attractor of search system. Therefore, in this book, we do not intend 
to produce any strong mathematical proof of any theorem about the attractor and other 
related properties. We keep mathematics to a minimum. Instead, we describe the concepts 
informally based on intuition and some experimental results. 

The study of new search algorithms for the TSP continues to be a vibrant, excit-
ing and fruitful endeavor in combinatorial optimization, computational mathematics, and 
computer science. Numerous experts have made huge advance, but the TSP remains essen-
tially open. A new point of view could be just what is needed to dramatically alter our 
ability to tackle the problem. This book proposes a new idea for improving the exhausted 
search. The ultimate goal of this book is to encourage readers to take up their own pursuit 
of interesting problem-by-problem methods for attacking diverse optimization problems. 
It is hoped that this book serves as a pioneer in this field and brings more and better 
works from other researchers and practitioners. 

Flint, USA Weiqi Li 
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1Introduction 

Optimization problems exist everywhere in our life. Optimization has become a critical 
tool in science, engineering and business. The goal of optimization is to find the best set 
of the admissible conditions to achieve some objectives in our decision-making process 
[13]. One of fundamental requirements for an optimization algorithm is to find all optimal 
solutions within a reasonable amount of computing time. Combinatorial optimization prob-
lems are a subset of optimization problems, which attempts to find optimal solutions from 
a finite set of solutions, where the set of feasible solutions is discrete or can be reduced to 
a discrete set. The TSP is one of the most intensively investigated combinatorial optimiza-
tion problems and often treated as the prototypical combinatorial optimization problem 
that has provided so much motivation for design of new search algorithms, development 
of complexity theory, and analysis of solution space and search space [3, 19]. 

People have designed a variety of algorithms to solve the combinatorial optimiza-
tion problems, from which two main categories can be identified: exact algorithms (i.e. 
the algorithms that are guaranteed to always find an optimal solution) and approximate 
algorithms (i.e. the algorithms that are guaranteed to find a solution that is within a cer-
tain constant factor of optimality) [3, 14, 22]. Exact search algorithms such as exhausted 
search, cutting-plane, branch-and-bound, and linear programming are explicitly or implic-
itly based on enumeration of all feasible solutions in the solution space and hence can 
find the exact optimal solutions, but they are very expensive from the computational per-
spective because they require in the worst-case an exponential number of steps. Many 
combinatorial optimization problems are known to be NP-complete, which means that so 
far there is no known asymptotically efficient algorithm that can be solve every instance 
of the problem in a time growing less than a power of problem size, even the seemly “lim-
itless” increase of computer power will not help to resolve their genuine intractability [9, 
12, 19]. From a computational complexity stance, intractable problems are problems for 
which there exist no efficient algorithms to solve them. Most intractable problems have
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2 1 Introduction

an algorithm—the same algorithm—that provides an exact solution, and that algorithm is 
the exhausted search (also commonly called brute-force search), which is the process of 
examining all possible solutions in the solution space to identify the best one [8]. 

Due to the NP-completeness and intractability of combinatorial optimization prob-
lems, approximate approaches, based on heuristics, have become a popular means to find 
reasonably good solutions to these hard problem [5, 6, 20, 21, 24, 25]. Heuristics are 
functions that help us decide which one of a set of possible solutions is to be selected 
next [18]. The approximate algorithms trade in guaranteed correctness of the optimal 
solutions for a shorter computing time. In such an algorithm, deterministic guarantee that 
the optimal solution can be found is relaxed into a confidence measurement. They do 
not guarantee that the optimal solution will be found, instead they provide suboptimal 
solutions that can be very close to the optimal solution. Most heuristic search algorithms 
have been based on or derived from a general search technique known as heuristic local 
search algorithm, simply called local search [1]. 

A local search starts with an initial solution and then iteratively explores the neigh-
borhoods of solutions trying to improve the current solution by a local change. Local 
search is simple to implement and quick to execute, but its search scope is limited by the 
neighborhood definition. As a result, it outputs a final solution that may deviate from the 
optimal solution. This type of final solutions is called a locally optimal solution, denoted 
by s' in this book. To distinguish from a locally optimal solution, the optimal solution 
in the solution space is called a globally optimal solution, denoted by s∗. In order  to  
overcome local optimality, local search usually requires some type of diversification to 
avoid a large region of the solution space remaining completely unexplored. The simplest 
way to achieve this diversification is to restart the search process from anew initial point 
once a solution region has been explored. The multi-start search helps explore new areas 
in the solution space, and therefore generates a wide sample of locally optimal points 
[15–17]. Multi-start algorithms can be characterized as iterative procedure consisting of 
two phases: (1) generating a set of random initial points and performing the local search, 
thus generating a set of locally optimal points, and (2) constructing adaptive starting 
points derived from the best locally optimal solution found so far. The entire procedure 
is repeated a number of iterations or certain amount of time, and the best solution is then 
reported. The heuristics rarely solve the problem, but they give good enough solutions 
based on a practical criterion. 

Numerous approaches to solving the TSP have been developed. Even though the TSP 
is believed to be NP-complete and presumable difficult to solve exactly, with today’s 
fast computers, we can perform an exhausted search through all the possible solutions of 
moderately seized instances. Modern approximate algorithms can find the solutions that 
get very close to the optimal solution within a few percent of optimum in a reasonable 
amount of time for large TSP instances with millions of nodes [4, 7, 10–12, 18, 22, 
23, 26]. There are some local search algorithms for many real-world TSP instances, the 
empirical average-case complexity (i.e. time versus problem size) of such algorithm can


