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Preface

This book is designed as a reference text for students and researchers who need to consult
stochastic models in their professional work and are unfamiliar with the mathematical and
statistical theory required to understand these methods. The most relevant concepts and
results for the development of the examples are presented, omitting rigorous mathematical
proofs and giving only the guidelines of those fundamental in constructing the models.

The book is divided into five chapters. Chapter 1 presents a compilation of the discrete-
time Markov chain and the most relevant concepts and theorems. Chapter 2 deals with
the Poisson process and some important properties. Chapter 3 is devoted to studying the
continuous-time Markov chain and its applications, with particular emphasis on the birth
and death process. Chapter 4 deals with Branching processes, particularly the Galton-
Watson process with two types of individuals and is presented as an example to describe
the evolution of the SARS-CoV2 virus in Bogota. Chapter 5 presents the theory cor-
responding to a hidden Markov model developed for the behavior of the horizontal
displacements of the behaviors of two animals from their observed trajectories in order to
identify hidden behavioral states and determine the preferences of habitat.

We thank our students for their assistance in typesetting and preparing programming
codes, which has served as the platform for this project. We thank our Editors, Ms.
Susanne Steitz-Filler and Ms. Melanie Rowen, Springer Nature, for their advice and
technical support.

Bogotá, Colombia
February 2023

Liliana Blanco-Castañeda
Viswanathan Arunachalam
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1Discrete-TimeMarkov Chain

Markov chains are named after the Russian mathematician Andrei Andreyevich Markov
(1856–1922) who introduced them in his work “Extension of the law of large numbers to
dependent quantities”, published in 1906, in which he developed the concept of the law of
large numbers and the central limit theorem for sequences of dependent randomvariables [1].
As a disciple of theRussianmathematician PatnufyChebyschev (1821–1894), hemade great
contributions to probability theory, number theory, and analysis. He worked as a professor
at the University of Saint Petersburg since 1886, from where he retired in 1905, although he
continued teaching until the end of his life.

Markov developed his theory of chains from a completely theoretical point of view, he
also applied these ideas to chains of two states, vowels, and consonants, in some literary
texts of the Russian poet Aleksandr Pushkin (1799–1837). Markov analyzed the sequences
of vowels and consonants in Pushkin’s verse work “Eugene Onegin”, concluding that the
letters are not arranged independently in the poem but that the placement of each letter
depends on the previous letter.

Markov lived through a period of great political activity in Russia and became actively
involved. In the year 1902, the Russian novelist, Maxim Gorky was elected to the Russian
Academy of Sciences in 1902, but the direct order of the Tsar canceled his election. Markov
protested and refused the honors he was awarded the following year. Later, when the inte-
rior ministry ordered university professors to report any anti-government activity by their
students, he objected, claiming that he was a professor of probability and not a policeman
[2]. Currently, Markov chains are used to find the author of a text [3] and in web search
systems such as Google [4].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Blanco-Castañeda and V. Arunachalam, Applied Stochastic Modeling, Synthesis
Lectures on Mathematics & Statistics, https://doi.org/10.1007/978-3-031-31282-3_1
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2 1 Discrete-Time Markov Chain

1.1 Introduction to Stochastic Processes

Definition 1.1 A stochastic process is a family or a collection of random variables
X = {Xt , t ∈ T } defined on a common probability space (�, �, P) with taking values in
a measurable space (S,S), called the state space. The set of parameters T is called the
parameter space of the stochastic process, which is usually a subset of R.

The mapping defined for each fixed ω ∈ �, the function t → Xt (ω), t ∈ R, is called
sample path or a realization of the stochastic process X . The process path associated with ω

provides a mathematical model for a random experiment whose outcome can be observed
continuously in time.

The set of possible values of the indexing parameterwhich can be either discrete or contin-
uous. For our convenience, when the indexing parameter is discrete, the family is represented
by {Xn, n = 0, 1, 2 . . . }. In case of continuous time both {Xt , t ∈ T } and {X(t), t ∈ T } are
used. If the state space and the parameter space of a stochastic process are discrete, then the
process is called stochastic sequence, and often referred as a chain.

Stochastic processes can be classified, in general, into the following four types of pro-
cesses:

1. Discrete time, discrete state space (DTDS).
2. Discrete time, continuous state space (DTCS).
3. Continuous time, discrete state space (CTDS).
4. Continuous time, continuous state space (CTCS).

Definition 1.2 Let {Xt ; t ∈ T } be a stochastic process and {t1, t2, . . . , tn} ⊂ T where
t1 < t2 < · · · < tn . The function

Ft1...tn (x1, . . . , xn) := P(Xt1 ≤ x1, . . . , Xtn ≤ xn)

is called the finite-dimensional distribution of the process.

Definition 1.3 If, for all t0, t1, t2, . . . , tn such that t0 < t1 < t2 < · · · < tn , the random
variables Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent, then the process
{Xt ; t ∈ T } is said to be a process with independent increments.

Definition 1.4 A stochastic process {Xt ; t ∈ T } is said to have stationary increments if
Xt2+s − Xt1+s has the same distribution as Xt2 − Xt1 for all choices of t1, t2 ∈ T and s > 0.

Definition 1.5 If for all t1, t2, . . . , tn the joint distributions of the vector random variables

(X(t1), X(t2), . . . , X(tn)) and (X(t1 + h), X(t2 + h) . . . , X(tn + h))
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are the same for all h > 0, then the stochastic process {Xt ; t ∈ T } is said to be a station-
ary stochastic process of order n (or simply a stationary process). The stochastic process
{Xt ; t ∈ T } is said to be a strong stationary stochastic process or strictly stationary process
if the above property is satisfied for all n.

Definition 1.6 Astochastic process {Xt ; t ∈ T } is called a second-order process if E (X2
t

)
<

∞ for all t ∈ T .

Example 1.1 Let Z1 and Z2 be independent normally distributed random variables, each
having mean 0 and variance σ 2. Let λ ∈ R and

Xt = Z1 cos(λt) + Z2 sin(λt), t ∈ R.

{Xt ; t ∈ T } is a second-order stationary process. �

Definition 1.7 A second-order stochastic process {Xt ; t ∈ T } is called covariance station-
ary or weakly stationary if its mean function m(t) = E[Xt ] is independent of t and its
covariance function Cov(Xs, Xt ) depends only on the difference | t − s | for all s, t ∈ T .
That is:

Cov(Xs, Xt ) = f (| t − s |) .

Definition 1.8 A stochastic process that is not stationary in any sense is called an evolu-
tionary stochastic process.

Definition 1.9 A stochastic process {Xt ; t ∈ T } is a Gaussian process if the random vec-
tors (X(t1), X(t2), . . . , X(tn)) have a joint Normal distribution for all (t1, t2, . . . , tn) and
t1 < t2 < · · · < tn .

Definition 1.10 Let {Xt ; t ≥ 0} be a stochastic process defined over a probability space
(�, �, P) andwith state space (R,B).We say that the stochastic process {Xt ; t ≥ 0} is called
a Markov process if for any 0 ≤ t1 < t2 < · · · < tn and for any states
B, B1, B2, . . . , Bn−1 ∈ B:

P
(
Xtn ∈ B | Xt1 ∈ B1, . . . , Xtn−1 ∈ Bn−1

) = P
(
Xtn ∈ B | Xtn−1 ∈ Bn−1

)
. (1.1)

The above condition (1.1) is called the Markov property, and has the following implica-
tions: Any stochastic process with independent increments is a Markov process. Also, the
Markov process is such that, given the value of Xs , for t > s, the distribution of Xt does not
depend on the values of Xu , for u < s.
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1.2 Discrete-TimeMarkov Chain

The Markov chain is defined as a sequence of random variables taking a finite or countable
set of values and characterized by the Markov property. This section discusses the most
important properties of the discrete-time Markov chain (for more details see [5, 6]).

Definition 1.11 The stochastic process {Xn; n ∈ N} with n = 0, 1, . . . is called a
discrete-time Markov chain if for all for all t0 < t1 < · · · < tn+1 with ti ∈ T and
i, j, i0, i1, . . . , in−2 ∈ S We have

P (Xn = j | Xn−1 = i, Xn−2 = in−2, . . . , X0 = i0) = P (Xn = j | Xn−1 = i) (1.2)

with
P(X0 = i0, . . . , Xn−1 = i) > 0.

Here the future state Xn = j of the Markov chain depends only on the present state
Xn−1 = i , but not on the past “Xn−2, Xn−3, . . . , X0”.

Let {Xn; n ∈ N} be a discrete-time Markov chain. If X0 = i0, then the chain is said to
have started in the state i0. If Xn = in then the chain is said to be at time n in state in . The
sequence of states i0, i1, . . . , in is said to be the complete history of the chain up to the time
n, if X0 = i0, X1 = i1, . . . , Xn = in .

Theorem 1.1 The stochastic process {Xn; n ∈ N} with set of states S is a Markov chain,
if and only if, for any finite sequence of natural numbers 0 ≤ n0 < n1 < · · · < nk and for
any choice in0 , in1 , . . . , ink ∈ S it is satisfied that:

P
(
Xnk+m = j | Xnk = ink , . . . , Xn0 = in0

) = P
(
Xnk+m = j | Xnk = ink

)
(1.3)

for any integer m > 1.

Definition 1.12 Let {Xn; n ∈ N} be a Markov chain with discrete-time parameter. The
probabilities

pi j := P (Xn+1 = j | Xn = i) (1.4)

with i, j ∈ S are called transition probabilities. Thematrix form of the transition probability
is written as

P = (pi j ) =

⎛

⎜
⎜⎜
⎝

p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

. . .

⎞

⎟
⎟⎟
⎠
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is called the transition probabilities matrix or stochastic matrix, and satisfies the following:

pi j ≥ 0 for all i, j ∈ S
∑

j

pi j = 1 for all i ∈ S .

Remark 1.1 • AMarkov chain {Xn; n ≥ 0} is called homogeneous if the transition prob-
abilities do not depend on time-step n. That, is for n ∈ N

pi j := P (X1 = j | X0 = i) = P (Xn+1 = j | Xn = i) .

• The transition probabilities with the initial distribution π
(0)
i := P(X0 = i) completely

determines the Markov chain. That is, if {Xn, n = 0, 1, 2, . . . } is a Markov chain, then
for all n and i0, . . . , in the set of states the satisfies the following:

P (X0 = i0, . . . , Xn = in) = π
(0)
i P (X1 = i1 | X0 = i0) . . . P

(
Xn = in | Xn−1 = in−1

)
.

Example 1.2 Suppose a random experiment is performedwhere there are only two possible
outcomes success or failure, with a probability of success 0 < p < 1 and probability of
failure q := 1 − p. Let Xn be the random variable denoting the number of successes in
n repetitions of the experiment. The random variable Xn has a binomial distribution of
parameters n and p and the sequence {Xn; n ≥ 1} is a Markov chain with state set S =
{0, 1, 2, . . . } and transition matrix

P = (
pi, j

)
i, j∈S

with

pi j =
⎧
⎨

⎩

p if j = i + 1
q if j = i
0 otherwise

Example 1.3 (Random walk) Let (Yn)n≥1 be a sequence of independent and equally dis-
tributed variables with values in Z. The process {Xn; n ≥ 0} defined by:

X0 : = 0

Xn : =
n∑

k=1

Yk

is a Markov chain with state set Z and matrix of transition P = (
pi, j

)
i, j∈ Z

where pi, j =
P (Y1 = j − i) .
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Example 1.4 Suppose we have two players A and B at the beginning of the game, player
A has a capital of x ∈ Z

+ dollar and player B a capital of y ∈ Z
+ dollar. Say a := x + y.

In each round of the game, either A wins B a dollar with probability p or B wins A a dollar
with probability q being p + q = 1. The game continues until one of the two players loses
his capital, that is, until Xn = 0 or Xn = a.

Let Xn := “capital of A after the nth game round.” The sequence (Xn)n∈N is a Markov
chain with set of states S = {0, 1, 2, . . . , a} and transition matrix is given by

P =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 · · · 0
q 0 p 0 · · · 0
0 q 0 p · · · 0
...

...
...

... · · · ...
...

...
...

... · · · ...

0 0 0 0 · · · 1

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

Definition 1.13 Let {Xn; n ∈ N} be a Markov chain. The transition probability in m steps,
p(m)
i j , is the probability that from the state i , the state reached at state j at the mth step and

defined as
p(m)
i j = P (Xm = j | X0 = i) . (1.5)

The p(m)
i j is stationary, if and only if, for all n ∈ N.

p(m)
i j = P (Xn+m = j | Xn = i) = P (Xm = j | X0 = i) (1.6)

AMarkov chain whose transition probabilities inm steps are all stationary is called a homo-
geneous Markov chain. The transition matrix for m− transition probabilities is written as

pm =
(
pmi j

)

i, j∈S (1.7)

Homogeneous Markov chains can be represented by a network in which the vertices
indicate the states of the chain, and the arcs indicate the transitions between one state and
another. For example, if {Xn; n ∈ N} is a Markov chain with set of states S = {0, 1, 2, 3}
with transition probability matrix

P =

⎛

⎜⎜
⎜
⎝

1
5

1
5 0 3

5

0 1
3

2
3 0

1
2 0 0 1

2
1
4

1
4

1
4

1
4

⎞

⎟⎟
⎟
⎠

.

The graphical representation of the state transition is shown in Fig. 1.1.
The following Chapman-Kolmogorov equation gives a method of computing n−step

transition probabilities.
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Fig. 1.1 State transition diagram

Proposition 1.1 If {Xn; n ∈ N} is a homogeneous Markov chain and if k < m < n then for
states h, i, j ∈ S, we have

pnhj =
∑

i∈S
pn−m
i j pmhi . (1.8)

Remark 1.2 The above proposition which states that the transition matrix in m steps is the
mth power of the transition matrix. That is,

P(n) = Pn (1.9)

Example 1.5 A Markov chain {Xn; n ≥ 1} with set of states S = {0, 1} and transition
matrix

P =
(
1 − a a
b 1 − b

)

where a and b are real numbers with 0 < a < 1 and 0 < b < 1.
The eigenvalues of the matrix P are λ1 = 1 and λ2 = 1 − a − b and the corresponding

eigenvectors are

υ1 =
(
1
1

)
and υ2 =

(−a
b

)

Then
P = ADA−1

with

A =
(
1 − a
1 b

)

D =
(
1 0
0 1 − a − b

)

Since


