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Preface 

The book you are holding in your hands is about the physics of the world. 
The world around us, which is made up of the planets and stars that we see 
when looking at the sky, mountains and rivers on the Earth’s surface, the seas 
and oceans with their storms and lulls, our planet’s atmosphere with lightning 
and thunder, wind, snow and rain—all of this is like a huge laboratory in 
which physical experiments are taking place every minute and every second. 
Steven Hawking wrote, “The subject of science is often taught in school in 
a dry and boring way. Children learn to mechanically memorize material 
in order to pass tests, but do not see any connection between science and 
the world around them.” The aim of this book is to show that this connec-
tion really does exist and to explain several physical phenomena, which we 
encounter every day. 

Over the centuries people have asked the question: Why is our world like 
this? By providing us with the knowledge that we need, physics gives us infor-
mation about the world, an understanding of what happens in nature and 
why and also predicts what will occur in the future. 

What is the special significance of physics for the development of our 
civilization and what distinguishes it from other natural sciences? 

First, while describing and explaining natural phenomena, physics 
constructs a scientific picture of the world of modern man. Everyone should 
have at least a general idea of how the world in which they live works. This is 
fundamental not only for our general development; a love for nature implies 
that we also respect everything that happens in it. In order for this to happen,
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we need to understand the laws that cause these natural processes to take place 
so that we leave our children a world in which they can live. Neither all prop-
erties of the material world nor all laws of nature have been studied; nature 
is still fraught with many mysteries. As physics develops, we become more 
knowledgeable about the world around us. 

Second, physics determines mankind’s technological development. Every-
thing that distinguishes modern-day civilization from society of past centuries 
has arisen as a result of practical application thanks to discoveries in physics. 
Research in the field of electromagnetics, for example, led to the development 
of household electrical appliances, cell phones and the Internet, which are so 
essential today, while discoveries in mechanics and thermodynamics resulted 
in the production of automobiles and trains. Moreover, advancements in 
the physics of semiconductors gave rise to the unveiling of the computer, 
while in aerodynamics, airplanes, helicopters and rockets were developed. 
In return, innovations in engineering and technology make it possible to 
conduct fundamentally new research. 
Third, physics forms the foundation of all the other natural sciences— 

astronomy, chemistry, geology, biology and geography—because it explores 
fundamental common factors. Chemistry, for example, studies atoms and 
molecules, the substances of which they are composed and the transformation 
of one kind of matter into another. The chemical properties of a substance 
are determined by the physical properties of atoms and molecules, which are 
described in such branches of physics as thermodynamics, electromagnetics 
and quantum mechanics. 

Fourth, physics is closely connected with math because math provides 
a framework with which the laws of physics can be precisely developed. 
Physical theories are almost always formulated as mathematical equations. 
Mathematical formulas had to be included in this book, as they make the 
essence of physical phenomena clearer. Math makes it possible to quantify 
what occurs around us and to establish common factors and connections 
between physical quantities, thus making it possible not only to explain, but 
also to predict, and, in so doing, take control over the future. Without ques-
tion, only those mathematical relationships that can be verified and measured 
observationally and with experiments are of value in physics. Furthermore, 
the level of complexity of mathematical tools should correspond to the 
approximation of the physical model that is used. Everyone knows the joke 
made by Albert Einstein, Nobel Laureate in Physics, who, when referring to 
using overly complex mathematical tools in physics said, “Since the mathe-
maticians have invaded the theory of relativity, I do not understand it myself 
anymore.” Therefore, the level of mathematical description used for each
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problem in this book is of the simplest nature and does not go beyond the 
scope of the material that is presented in a school curriculum. It is also usually 
limited to qualitative explanations and approximate estimates. 

Fifth, observations and experiments form the basis of physical research. By 
generalizing them, it is possible to highlight those patterns that are overar-
ching and the most substantial, as well as aspects of observed phenomena. In 
the early stages of experiments, these underlying characteristics are primarily 
empirical, i.e., they describe only the properties of physical objects and not 
the internal operations that produce these properties. By analyzing empirical 
regularities, physicists use appropriate mathematical tools to develop physical 
theories, which explain the phenomena being researched based on today’s 
ideas of the structure of matter and the interaction between its constituent 
parts. In so doing, this gives clarity to the way that systems work and reasons 
for the occurrence of different phenomena. General physical theories help to 
formulate the laws of physics, which are undisputed until large quantities of 
new experimental results do not require that they be clarified and reviewed. 

I invite you to venture into the fascinating and complicated world of 
physics. I will end this short preface with a quote from another Nobel 
Laureate in Physics, Peter Kapitza, who said, “Nothing prevents a person 
from becoming smarter tomorrow than they were yesterday.” 

Prof. Dmitry Livanov 
Doctor of Physical 

and Mathematical Sciences 
National University of Science 

and Technology MISIS 
Moscow, Russia 
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About This Book 

This book is meant for high school students, university students, professors 
and teachers of physics, as well as everyone who wants to understand what 
is happening in the world around them and develop a scientific perspective 
on the vast number of natural phenomena that exist. Every section of this 
book has essentially a set of physics problems, which enable the reader to 
strengthen their understanding of physical laws and learn to apply them in 
interesting situations.
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1 
The Earth in the Solar System 

Abstract We start with a discussion of the two milestones of Nature—the 
law of universal gravitation and Kepler’s laws, and the latter is the sequence of 
the first. These laws account for the formation of the Solar system. The Sun is 
considered with special attention as the main source of energy inside the Solar 
system. Then we review the main physical features of the planets in the Solar 
system. The rotation of the Earth around its axis is then discussed, and the 
associated physical phenomena on the Earth’s surface as well. In concluding 
the first chapter, we look at the physical background of our calendar. 

Planet Earth is the home of all human beings and people have long sought 
to understand how it works. What is the shape of our planet? Why and how 
does it move in relation to the Sun and stars? Why do different phenomena 
on the Earth’s surface, deep inside of it and around it occur exactly as we 
see them? These are perhaps the primary questions that mankind has always 
sought to answer. 
To our ancient ancestors, the Earth seemed to have a flat surface like that 

of a disk resting on elephants or turtles (Fig. 1.1). They reasoned that a starry 
sky, through which heavenly bodies moved, hung above the flat Earth. Today 
such an idea would make even elementary students laugh, but at that time 
it was an excellent concept. It explained all natural phenomena: the Earth 
seemed flat to someone standing on it and earthquakes were thought to be 
caused by the movement of that very gigantic animal supporting the Earth’s

© The Author(s), under exclusive license to Springer Nature 
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Fig. 1.1 The Earth as imagined by our ancient ancestors 

foundations on its back. No one had seen the ends of the Earth because it 
is so big. Moreover, our ancestors understood the concept of “down” as a 
direction perpendicular to the Earth as a disk. 

However, more than two thousand years ago, the ancient Greeks under-
stood that the Earth is round. Aristotle, the great philosopher of ancient 
times, was the first to prove that the Earth has a spherical shape. He noticed 
that during a lunar eclipse, the shadow of the Earth is round and the constel-
lations that are visible from the Earth change places when one travels along 
its surface. Aristotle surmised that the motionless Earth was located in the 
center of the world, around which all cosmic bodies rotate in circular orbits 
(Fig. 1.2). This was called a geocentric model . Today we sometimes think in 
terms of the geocentric system when we say, for example, that “the sun rises” 
and we imagine that it emerges from a motionless forest instead of a forest 
that is rotating around the Earth’s axis. However, every child today knows 
that the Earth revolves around the Sun in its orbit (Fig. 1.3). Moreover, the 
Earth, just like a top, spins around its axis. But what is the shape of the orbit 
of the Earth and of other planets? Does the angle between the plane of the 
Earth’s orbit and the axis of its rotation change? And why don’t the Earth and 
other planets fly away from the Sun, and the Moon fly away from the Earth? 
What are their laws of motion? We will examine these questions in the first 
chapter of this book with the help of physics and math.
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Fig. 1.2 One of the earliest images of the geocentric system that has survived. 
Macrobius, a manuscript from the ninth century BC 

Fig. 1.3 The Solar system. An illustration from Nicolaus Copernicus’ book On the 
Revolutions of the Celestial Spheres, 1543



4 D. Livanov

1.1 The Law of Universal Gravitation 
and Kepler’s Laws 

Astrologists of the Middle Ages unsuccessfully tried to predict the life events 
of specific people based on the movement of celestial bodies. Their predic-
tions turned out (and still do) quite badly, but their observations and 
descriptions of the movement of planets have been extremely useful. The 
Dane Tycho Brahe, who developed new methods of observation that made 
it possible to minimize measurement errors and achieved a level of accuracy 
that was unprecedented for the sixteenth century, made particularly correct 
predictions. Thanks to data from his observations, Johannes Kepler discov-
ered the laws of planetary motion in the seventeenth century. Based on these 
laws, Isaac Newton formulated the law of universal gravitation in his book 
The Mathematical Principles of Natural Philosophy, which was published in 
1687. 

Newton introduced the law of universal gravitation in his book The Mathemat-
ical Principles of Natural Philosophy, which was published in 1687, and in which 
he did not mention anything about the gravitational constant. It was only after 
a little more than 100 years, in 1798, that Henry Cavendish introduced it on 
an experimental basis and the formula took on its final form. 

This is how the historical chain of discoveries progresses, but the logic of 
physical theories does not always coincide with this progression. Although 
Kepler’s laws were discovered prior to the discovery of the law of universal 
gravitation, we will first consider this law as the reason for the movement of 
celestial bodies, and thereafter examine Kepler’s laws as a result of the law of 
universal gravitation. 
The law of universal gravitation quite simply states: 

Two material points with masses m1 and m2 are mutually attracted and the 
force from their mutual attraction is proportional to the product of their 
masses and inversely proportional to the square of the distance between them. 

F = G 
m1m2 

r2
(1.1) 

If we are not dealing with material points, but with round bodies of finite 
sizes, then the law of universal gravitation will include the distance between
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the centers of these spheres (Fig. 1.4). However, not only round bodies are 
attracted, but also bodies of any shape. In the latter case, it is necessary to 
split each of the bodies into very small parts and sum up the interaction of 
these parts in order to get the force of gravitational pull. 

Now it becomes clear that the direction “down” coincides with the direc-
tion of the force that acts on a body by the Earth. In this case, “down” is the 
direction toward the center of the Earth. 
The law of universal gravitation is one of the most important laws of 

physics. It is both simple and universal. From atoms and molecules to stars 
and galaxies, this law is applicable to all bodies of the universe, the distance 
between which is much larger than their size. But why don’t we notice, for 
example, a pull between books lying on a table? The reason is because of the 
G coefficient, which is called the gravitational constant . Its value is very small: 

G = 6.67 × 10−11 m2 

kg s2 
. 

Consequently, the force of gravitational pull becomes noticeable only when 
a body’s mass is not just large but very large! Which body close to us has the 
largest mass? The Earth, of course. This is precisely why we feel the pull of 
all bodies toward the Earth, which we call gravity, and we absolutely cannot 
detect any gravitational pull of objects on a table toward each other. 
Thus, according to the law of universal gravitation, let us assume that a 

planet and the Sun are pulled toward one another: force is directed along a 
straight line that connects the centers of their mass and is inversely propor-
tional to the square of the distance between them. If these conditions are met, 
the movement of bodies is described by Kepler’s three laws. 

Kepler’s First Law The path of the planets around the Sun is elliptical in shape, with the 
center of the Sun being located at one focus.

Fig. 1.4 The forces of gravitational pull acting between two bodies 
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Planets do not move around the Sun in a perfect circle, as ancient 
astronomers believed, but rather in elliptical orbits (Fig. 1.5). The scientific 
community was not eager to accept this fact because by default it was thought 
that “the celestial sphere was the epitome of perfection” and the circle was 
officially considered the most perfect geometrical figure. Therefore, all celes-
tial bodies were “required” to move only in a circle. However, to this end 
nature had its own opinion, which had to be reckoned with. 

An Ellipse What exactly is an ellipse? Figuratively speaking, an ellipse is an 
elongated circle (this definition is sometimes seen in crossword puzzles). A 
circle has a center and the distance between the center and any point of the 
circle is the radius, which is always the same. Now imagine that there are 
two centers and they have begun to separate. In order to imagine this, we 
will conduct a small experiment. We will take a piece of paper (cardboard is 
better), poke two needles or pins into it that are about 5 cm (1.97 in.) apart, 
connect them with a ring of thread and then, while pulling on the thread 
with a pencil, draw a line, making sure that we are always pulling on the 
thread (Fig. 1.6). Now we have an ellipse!

Half of the “length” of the ellipse is called the semi-major axis and is 
denoted by a, and half of the “width” of the ellipse is called the semi-minor 
axis and is denoted by b. If we move the needles further apart from each 
other, the ellipse will be more elongated; if we move them closer together, it 
will be less elongated. In the most extreme case, when the needles are very

Fig. 1.5 A planet’s orbit in the Solar system 
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Fig. 1.6 How to draw an ellipse

close together, the “width” is equal to the “length” and a circle forms, i.e., 
a = b. The elongation of the orbit of a celestial body is determined by the 

eccentricity e =
⟨
1 − b2 

a2 
(e = 0 is a perfect circle and e = 1 is when the 

ellipse degenerates into a line segment). 
The equation of an ellipse is: 

x2 

a2 
+ 

y2 

b2 
= 1 (1.2) 

If a = b, the equation of an ellipse turns into a center-radius form with a 
radius of a. 

An ellipse is usually characterized by the value of the semi-major axis a 

and of the eccentricity e =
⟨
1 − b2 

a2 
. The foci of the ellipse are two points 

that are symmetrically located on a large axis and the distance between them 
is equal to 2ae (Fig. 1.7). Those who are interested in geometry can easily 
prove that for any ellipse point, the sum total of the distances to the foci is 
constant and equal to 2a.

We will calculate the area of an ellipse. In order to do this, we imagine 
a cylinder with a height h, a radius of the base b, and a volume equal to 
V = πb2h. We cut the cylinder along a plane at an angle α (Fig. 1.8a). An 
ellipse with semiaxes a = b 

cos a and b is obtained in the cross section.
We attach the truncated top of the cylinder to it from below (Fig. 1.8b), 

but the volume of the cylinder does not change. Now we cut the cylinder 
into a large number of n disks that are parallel to the new base. The area of
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Fig. 1.7 Parameters of an ellipse

Fig. 1.8 How to calculate the area of an ellipse

each disk is S and the height is h n cos α. When we make the volume of the 
cylinders equal, we get S = πab. 

Now that we know what an ellipse is, we can move on to Kepler’s second 
law.
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Fig. 1.9 Illustration of Kepler’s second law 

Kepler’s Second Law The radius vector drawn from the Sun to each planet sweeps out equal 
areas in equal intervals of time (Fig. 1.9). 

Fig. 1.10 Illustration of Kepler’s second law
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Support for Kepler’s Second Law Let us consider a planet with the mass m moving in the 
field of gravity of the Sun, which is located at point O. We will disregard the influence of 
other celestial bodies on the planet’s movement. 

We will denote the planet’s speed as v. Its momentum is then P = mv and is directed  
along the tangent to the planet’s trajectory (Fig. 1.10). 

We will fix the origin of coordinates at point O and drop the perpendicular from it onto 
a line that is defined by the vector P. We will denote the length of that perpendicular as ρ. 
The product is called the angular momentum: 

L = ρ P = ρmv. (1.3) 

Because the moment of gravity relative to the origin of coordinates is zero, the angular 
momentum of the planet relative to the Sun does not change when the planet moves. During
Δt the planet orbits the distance vΔt . Let’s consider a shaded triangle with the base vΔt (see 
Fig. 1.10). Its area is

ΔS = 
1 

2 
vΔtρ = 

1 

2 

LΔt 

m 
. (1.4) 

If Δt time is short, then the base of the triangle practically coincides with the portion 
of the trajectory through which the planet passes. In this case, the triangle itself is a section 
of the area that the radius-vector R of the planet sweeps out during Δt . Since  the angular  
momentum is constant in time, the area swept by the line segment is proportional to the 
time interval Δt , that is, for equal periods of time the radius-vector of the planet will sweep 
out equal areas. This is the principle of Kepler’s second law. 

Let’s imagine that an imaginary thread connects the Sun and a planet. 
The area over which the planet has passed remains constant each time for 
the same intervals of time. By applying Kepler’s second law, we can easily 
calculate the linear speed of the planet, the velocity value of which can 
greatly differ depending on the place where the planet is located at that 
particular moment. In perihelion, which is the point in a planet’s orbit that 
is closest to the Sun, planet speed is at its maximum, while in aphelion, 
which is the furthest point from the Sun, planet speed is minimal. There-
fore, the speed of the Sun has the highest possible velocity value in perihelion 
vmax = 30.3 km (18.83 mi)/s. In the furthest point in orbit the formula is 
vmin = 29.3 km (18.21 mi)/s. This is why in January when the Earth reaches 
its perihelion, the Sun’s speed in the sky is a little bit faster than in July when 
it is at aphelion. Admittedly, it is very difficult to observe this with the naked 
eye due to the fact that the shape of the Earth’s orbit is almost circular.
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However, this is not the case with other celestial bodies such as comets. 
Many of them travel on extremely elongated paths. For example, the orbital 
eccentricity of Halley’s Comet is 0.967. Imagine that you are flying on that 
comet further and further away from the Sun until it is nothing more than a 
bright star. Your speed in relation to its speed becomes slower and slower… 
In the darkness and silence, you travel for decades toward aphelion by cosmic 
standards at a snail’s pace of 0.9 km (0.56 mi)/s. Now you have passed 
through aphelion and the comet starts to pick up speed. The Sun keeps 
expanding and finally the comet passes through perihelion with incredible 
speed—54.5 km (33.86 mi)/s! During that very short trip radiation from 
the Sun causes the comet’s surface to quickly become very hot. Owing to 
this, particles of the comet frantically evaporate and it grows a tail millions 
of kilometers (hundreds of miles) long. Imagine if the Earth had the same 
eccentricity as Haley’s Comet. Without any sunshine in aphelion the temper-
ature would drop to almost zero; even the air would freeze and precipitation 
would fall on the cold and lifeless surface. In perihelion the Sun would turn 
into a brutal fiery ball that would make oceans dry up and rocks melt. 

Kepler’s Third Law The ratio of the squares of the orbital periods of planets around the 
Sun (Fig. 1.11) is equal to the ratio of the cube of the length of the semi-major axis of its

Fig. 1.11 Illustration of Kepler’s third law
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elliptical orbit:

T 2 1 

a3 1 
= 

T 2 2 

a3 2 
. (1.5) 

Connection Between Kepler’s Third Law and the Law of Universal Gravitation Newton 
deduced the law of universal gravitation from Kepler’s third law. Let’s try to follow his train 
of thought. 

Let’s assume that there are several planets that move around a star and for simplicity’s sake, 
let’s say that this movement follows a circular pattern. We will denote the radii of planetary 
orbits as R1, R2, etc., and their orbital periods around the star as T 1, T 2, etc. Based on 
Kepler’s third law it follows that: 

R3 
1 

T 2 1 

= 
R3 
2 

T 2 2 

=  · · ·  =  const. (1.6) 

After introducing the angular velocity of the planets ω = 2π 
T , Eq.  1.6 can be written as 

follows: ω2 
1 R

3 
1 = ω2 

2 R
3 
2 =  · · ·  =  const. 

Newton assumed that the force of interaction of a planet with a star is an exponential 
function of the distance between them, i.e., it follows that: F = ARn . 

Then the accelerated velocity that the planet receives when it comes in contact with a star 
is proportional to the distance as well: a = BRn . 

Newton understood that when movement occurs around the periphery of a circle, 
centripetal acceleration is proportional to the squared velocity and inversely proportional to 
the distance, i.e., 

a = 
v2 

R 
= 

2 
ω R ⇒ ω2 = BRn−1. (1.7) 

By virtue of Kepler’s third law, the product ω2R3 should have a constant value, specifically, 
it does not depend on distance. On the other hand, ω2 R3 = BRn+2, which shows that the 
required condition is met in the case of n = −2. In that event, ω2 R3 = B. Newton  
also surmised that the constant value B is proportional to a star’s mass M: B = GM . For 
acceleration we then get: a = G M 

R2 . 
The force that passes such acceleration on to the planet with the mass m will be equal to: 

F = G 
Mm 

R2 . (1.8) 

This is the law of universal gravitation. Newton is not to be commended as much for the 
fact that he discovered a way to express the force of gravitational pull as he is for universalizing 
this law. 

The derivation of Kepler’s third law is also quite intriguing.
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We will find the time of a planet’s complete period of rotation around the Sun, which 
is the orbital period T. According to Kepler’s second law, during Δt the radius-vector of the 
planet sweeps out the area S = Δt L 2m . This means that one can calculate the orbital period 
after having divided the area of the ellipse by the sweep speed: T = S 

L 
2m 

. 

The area of the ellipse is equal to S = π ab where b is its semi-minor axis. Then 
T = 2π abm 

L . 
From the laws of conservation of energy and momentum, we can obtain the formula 

b = L √
2mE  

and then T = π a
⟨

2m 
E . After expressing energy in terms of the semi-major axis 

a
(
E = Gm M 

2a

)
, we get: 

T = 
2π √
GM  

a 
3 
2 . (1.9) 

What is the use of knowing about Kepler’s third law? First, we can compare 
planets’ orbits. Second, when we understand the orbital period of a celestial 
body, we can find the point of the semi-major axis of its orbit. Alternatively, 
after measuring the point of the semi-major axis of a celestial body’s orbit, we 
can confidently determine what its orbital period is. The further a celestial 
body is from the Sun, the longer its orbital period. 

Kepler’s laws have proven just how versatile they are. In particular, they 
“work” well not only when calculating the orbits of celestial bodies around 
the Sun, but also when determining the parameters of the motion of man-
made satellites and natural satellites of other planets. Information obtained 
from studying other galaxies has validated that Kepler’s laws are carried out 
in outer space, which makes it possible to receive a great deal of significant 
and fascinating data. 

It was recently reported that astronomers discovered a galaxy in which 
Kepler’s third law does not “work”: in this particular galaxy, which has a high 
velocity of rotation, hydrogen should have been emitted into more distant 
orbits, but this did not happen. This is because in this galaxy mass is “in short 
supply.” But this is precisely how the natural sciences differ from the liberal 
arts in that laws that have been discovered and proven cannot be “incorrect” 
or “out of date.” If you find out that a law that has proven its validity millions 
of times over can suddenly be disproven, that can only mean one thing— 
there is some new factor at work here that is unknown to you. This was the 
case in this situation. If we assume that in a galaxy there is a significant mass 
of a certain type of matter that we have not observed, then a law will once 
again be applied. In order to find this additional mass, scientists estimated 
the mass of gas between the stars. But that was not enough. Modern-day 
physics was faced with a mystery—what is the invisible substance called
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“dark matter”? Kepler, who had formulated his laws several centuries ago, 
still contributes to the development of modern-day science. 

1.2 A Star Called the Sun 

The most important place in the homes of ancient people was the hearth. It 
gave off warmth, light and it was where people cooked. In those days when 
people did not know how to make a fire, a cold hearth could lead to the 
death of an entire tribe. The Sun, just like the hearth, gives light and warmth 
to the entire Solar System. Without the Sun no life forms on the Earth could 
exist. This is exemplified by the fact that in our energy-based biosphere there 
are planets that store the Sun’s energy in the process of photosynthesis. It is 
not a surprise that in the religions of different countries the Sun God (Ra, 
Helios, or Jarilo) always existed and was among the most highly revered and 
powerful gods (Fig. 1.12). Therefore, we will devote some attention to our 
“cosmic hearth,” under the rays of which life began and exists.
The mass of the  Sun is  MS = 1.99 × 1030 kg. Although it is difficult for 

us to imagine such a weight value within the categorical concepts to which 
we are accustomed, when speaking about celestial bodies such a quantity is 
nothing out of the ordinary. The Sun’s mass makes up no less than 99.9% 
of the entire Solar System. In a manner of speaking, the mass of the Sun is 
the mass of the entire Solar System. Therefore, the Sun’s supremacy over all 
other celestial bodies in the Solar System cannot be doubted. Its mass is large 
enough to keep planets and other celestial bodies of the Solar System in orbit 
around it. 

But on the scale of the Galaxy, the Sun is of average size and an ordinary 
star; there are, according to various estimates, between 200 and 400 billion 
such planets in our Galaxy alone, which is called the Milky Way. We  are  
located deep in the Galaxy (Fig. 1.13) at a distance of 26,400 light years from 
the center of it. It is a quiet place and it is precisely there, according to one 
hypothesis, that the speed of the stars and the spiral arms of the Galaxy come 
together. For this reason, it is difficult for us to fall out of the Galaxy, overtake 
our neighbors or lag behind them. This is called the corotation circle and we 
are very lucky to be located inside of it. After all, if a collision occurs between 
a celestial body in our Galaxy and another star, the existence of something as 
insignificant as our planet will not be of great concern to our celestial neigh-
bors. However, thanks to the corotation circle we have little reason to worry 
about this actually happening.
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Fig. 1.12 The Sun God Ra, ancient Egypt, 901–713 BC

Fig. 1.13 The structure of our Galaxy 

The galactic year of our planet, i.e., one complete revolution around the 
center of the Galaxy, is approximately 200 million years. 

Since we have already described the Sun’s location, now we need to speak 
about its age. The Sun was formed approximately 4.5 billion years ago when 
a molecular cloud composed of hydrogen, helium and other elements rapidly 
compressed under the influence of gravitational force. A star with a mass
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such as that of the Sun has a lifespan of approximately 10 billion years. Thus, 
according to the standards of a star, the Sun is in its prime. 

Ancient astronomers already knew the average distance from the Earth 
to the Sun: RE−S = 1.496 × 1011 km, which stems from the laws of 
gravitational astronomy. If one were to fly on an airplane at the speed of 
800 km (497 mi)/h, it would take more than five years to cover this distance. 
However, it takes a beam of light 8 min and 19 s to do this. 

Because of the fact that from the Earth the Sun resembles a ball with an 
average angular diameter αS = 9.3 × 10−3 rad = 31' 59'', it is easy to calcu-
late the Sun’s radius. It is: RS = 6.7×108 m, which is 109 times greater than 
the Earth’s radius. The average solar density is ρS = 1.4×103 kg/m3. We see 
that solar density is just slightly greater than water density and approximately 
four times less than the average density of the Earth. 
The internal structure of the Sun is well studied today. With the help 

of various devices, including spectroscopes and different types of telescopes, 
the Sun’s electromagnetic radiation is recorded in a variety of ranges and its 
surface and activity are observed, which enables us to draw conclusions about 
its internal structure. 
The chemical composition of the Sun mostly consists of hydrogen (about 

90%) and helium (about 9%) atoms. The remaining elements (iron, oxygen, 
nickel, nitrogen, silicon, sulfur, carbon, magnesium, neon, chromium, 
calcium and sodium) account for less than 2%. 
The primary value of the physical characteristics both on the surface and 

in the inner regions of the Sun, as well as the nature of energy that the Sun 
(and other stars) constantly emits, is also well known. How did this informa-
tion become known? After all, it is impossible to fly to the Sun and measure 
its temperature with a thermometer. Knowing physics and mathematics help 
make everything clearer. 

Constitutive Relation of Solar Matter We will identify some of the physical characteristics 
of the processes that take place on the Sun. 

The intensity of solar radiation is characterized by a value called the solar constant . It  
is the total solar radiation energy per unit of area perpendicular to the Sun’s rays and at 
the Earth’s average distance from the Sun. According to data obtained from exo-atmospheric 
measurements, the solar constant is: S = 1367 W/m2. Despite its name, the solar constant 
does not remain constant over time. Its value is determined by two main factors: the distance 
between the Earth and the Sun, which changes throughout the year (the annual variation is 
6.9%, which is from 1412 W/m2 at the beginning of January to 1312 W/m2 at the beginning 
of July) and changes in solar activity. 

If we multiply the solar constant by the area of the sphere with a radius RE−S, we can  find  
out how much total energy is emitted by the Sun in 1 s, i.e., the solar radiation output or the



1 The Earth in the Solar System 17

solar luminosity. It is equal to L = S × 4π R2 
E−S = 3.83× 1026 W. We can also find the solar 

energy flux density, i.e., the amount of energy that is emitted per second by a square meter 
(square foot) of the Sun’s surface. This is, in fact, its brightness: R = L 

4π R2 
S 

= 6.29 × 107 W. 

The energy flux density emitted by an object is related to its temperature according to the 
Stefan–Boltzmann law: R = σBT 4, where  σB = 5.67 × 10−8 W 

m2 K4 . From here it follows that 
we can calculate the temperature on the Sun’s surface: TS.surf = 5780 K. 

We can obtain the constitutive relation of solar matter, specifically, the relationship between 
temperature, pressure and density. If the gas on the Sun’s surface consists mainly of electrically 
neutral atoms (weakly ionized plasma), then when immersed deep into the Sun and when the 
temperature and pressure are increased, the electrons of the atomic shells detach themselves 
from their atoms, thus forming plasma, the degree of ionization of which reaches 100%. 

Let’s assume that solar plasma is made up of hydrogen nuclei (protons), helium nuclei and 
electrons in a ratio of 91:9:109, respectively. Solar plasma is, in fact, a mixture of three gases: 
hydrogen nuclei, helium nuclei and electrons of the same temperature. For each of the gas 
mixtures, which can be considered ideal, the constitutive relation p = nkBT is true, where 
the concentration of gas particles is n = ρ 

m (ρ is the gas density and m is the mass of gas 
particles) and kB = 1.38 × 10−23 J/K. 

In addition, the total plasma pressure is the sum total of the pressure of individual gases: 
p = pH + pHe + pe, while the overall concentration is n = nH + nHe + ne. We will designate 
the fraction of hydrogen ions in the total number of particles as N . Then the fraction of 
helium ions will be proportional to 1 − N , and the fraction of electrons will be proportional 
to 2 − N . The concentration, pressure and gas density of hydrogen ions can be written as 

nH = N 

3 − N 
n, (1.10) 

pH = 
N 

3 − N 
nkBT, (1.11) 

ρH = mH 
N 

3 − N 
n. (1.12) 

This is similar for the gas of helium ions: 

nHe = 
1 − N 
3 − N 

n, (1.13) 

pHe = 
1 − N 
3 − N 

nkBT, (1.14) 

ρHe = mHe 
1 − N 
3 − N 

n. (1.15) 

For the gas of electrons, it is: 

ne = 
2 − N 
3 − N 

n, (1.16) 

pe = 
2 − N 
3 − N 

nkBT, (1.17)
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ρe = me 
2 − N 
3 − N 

n. (1.18) 

We will take into account that the mass of a helium ion is four times greater than the 
mass of a hydrogen ion, mHe = 4mH, while the mass of the electron is small to negligible as 
compared to the mass of the proton, me « mH. Then we can assume that ρe ≈ 0. We get: 

ρ = ρH + ρHe + ρe = 
4 − 3N 
3 − N 

mHn. (1.19) 

The constitutive relation of solar matter will take on a modern-day appearance of the ideal 
gas law (also known as the Mendeleev-Clapeyron equation): 

ρ = 
ρ 

μmH 
kBT , (1.20) 

for gas with a molar mass: 

μ = 
4 − 3N 
3 − N 

= 0.61. (1.21) 

This mass turned out to be very small due to the fact that, although electron gas exerts 
pressure, it has no bearing on a change in density. This explains the low density of solar 
plasma. 

Since we know the constitutive relation, we can find the temperature and pressure in 
the central region of the Sun. The pressure, which is created inside the Sun, is due to the 
gravitational compression of matter. If we consider a column of matter with the density p and 
the height H in a gravitational field with an acceleration of gravity g , the pressure it creates 
will be equal to: p = ρgH . This formula can be roughly used in this case, although the rate 
of acceleration of gravity for stars naturally varies with depth. We get: 

pS ≈ ρSgS RS ≈ 
GM2 

S 

R4 
S 

≈ 1015 N/m2. (1.22) 

By using an equation of condition, one can even estimate the temperature of the central 
region of the Sun: TS ≈ pSmH 

kBρS 
≈ GMSmH 

kB RS 
≈ 2 × 107 K. 

Our estimate of 20 MK roughly corresponds to information about precise calculations. 
But is gravitational energy enough for the Sun and other stars to exist? We will estimate the 

potential energy of the Sun after it has been compressed by the force of gravity: Ep ≈ GM2 
S 

RS 
≈ 

4 × 1041 J. 
This energy can provide the Sun’s brightness that we see: L = 3.83 × 1026 W for a period 

of t = Ep 
L ≈ 3 × 107 years. 

The lifetime of the Sun can, in fact, last almost as long as five billion years. The solution 
to our above-calculated equation illustrates that, in addition to gravitational energy, a different 
and much more powerful energy source is needed to warm the Sun and other stars.
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We will first focus on the structure of the Sun (Fig. 1.14) and the primary 
physical features of its layers (Fig. 1.15). Thereafter, we will analyze those 
physical mechanisms that cause physics to be at work in the universe. 
The central part of the Sun is the core having a radius of approxi-

mately 151,000 km (93,827 mi). Matter in the core is extremely dense. It 
is about 1.5× 105 kg/m3, which is 150 times higher than water density. The 
temperature in the center of the solar core exceeds 1.5 × 107 K. 

It seems to us that the Sun is a burning ball, but burning is actually an 
example of a chemical change, while an energetically more powerful process 
occurs in the solar core: a thermonuclear reaction that makes hydrogen nuclei 
fuse into helium nuclei. Every second the Sun loses 4.3 T (4.74 sh. tn.) of 
hydrogen. But there is no need to worry—scientists estimate that because the 
Sun has a mass of 2 × 1027 T, there is enough solar fuel to last about five 
billion years.

Fig. 1.14 The structure of the Sun


