Functional
Programming in R 4

Advanced Statistical Programming for
Data Science, Analysis, and Finance

Second Edition

Thomas Mailund

ApPress’

Functional
Programming in R 4

Advanced Statistical
Programming for Data Science,
Analysis, and Finance

Second Edition

Thomas Mailund

Apress’

Functional Programming in R 4: Advanced Statistical Programming for
Data Science, Analysis, and Finance

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-9486-4 ISBN-13 (electronic): 978-1-4842-9487-1
https://doi.org/10.1007/978-1-4842-9487-1

Copyright © 2023 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Dufty

Development Editor: James Markham

Editorial Project Manager: Mark Powers

Cover designed by eStudioCalamar
Cover image by Max van den Oetelaar on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9487-1

Table of Contents

About the AUtNOr ... ———————— vii
About the Technical REVIEWETcuerissssssnmmsnssmmessssssssssssnsssssssssssssnnnns ix
Acknowledgments........cccccuuisssnmmmmmmmmmmmsssssssssssnsnsessssssssssssnnnsesssssssnnnnnns Xi
Chapter 1: Introduction..........cccivnnemmnmnnnssennnmnsssssmmmssssmessssnsassmm. 1
Chapter 2: Functions in Rcccccuneemmmmnnsesnnnmssssssssssssssssssssssssssssssssssnns 3
Writing FUNCLIONS iN R....o.voirir s 3
Named Parameters and Default Parameterscccvvvvrvninnnsncnccnnnsnsenennn, 9
The “Gobble Up Everything Else” Parameter: “...”ccccoveernvennnenesienesensesenenens 10
Lazy Evaluation ... s se s saesnens 13
Functions Don’t Have NamES..........ccouvvnennisnnse s s sens 20
Vectorized FUNCLIONS.........ccveviiinsire s 21
INfiX OPEIAtOrS... ..o e 27
Replacement FUNCHONS ... 31
Chapter 3: Pure Functional Programmingoceeeeemmssssssssssssssssnsnnnas 41
Writing PUre FUNCLIONS.........ccoveirriseresesinesene e 42
RECUISION AS LOOPS....citiierrererreressessessessssessessesssssssessessessssessessesssssssessessessssessessens 44
The Structure of @ Recursive FUNCLION..........cccccvivvnennse e 49
Tail-RECUISIONcveieircce et 58
Runtime Considerations.........ccocevcvvrreererirrer e sessere s s s s e e saesaeenas 60

iii

TABLE OF CONTENTS

Chapter 4: Scope and ClOSUresS.......cccurrrssssnnsrssssssssssssssnssssssssnnssssssnnnnss 65
Environments and FUNCHIONS...........ccovornnnenrec e 68
Environment Chains, Scope, and Function Calls...........ccccccvvrvererccrversenrevcrenne 71
Scopes, Lazy Evaluation, and Default Parameters...........ccccevvvvvinvnienesnsenenne, 74
Nested FUNctions and SCOPES.......ccceevvrrrrieninnnsnie e snens 78
L 01 84
Reaching Outside Your INNErMOSt SCOPEcevvverrerierererrerserersesessessessessssessesaens 86
Lexical and DYNamiC SCOPEcccceeerrrcerinerirenerisseres e sesse e ses e s e e s e ssssesenns 90

Chapter 5: Higher-Order Functions.........ccccocumssmmmsssmssssssssssssssssssssnnas 93
[T o 96
A Parameter Binding FUNCHONoovvivneserne e 103
Continuation-Passing StYIe.........ccccvvrrnsnnenniese e 105
Thunks and TrampPoliNEScccvvererrrrierere s ss e enes 111

Chapter 6: Filter, Map, and Reduce.........ccccevvssssssssnesnnnnsnssssssssssssnnnnns 119

iv

The General Sequence Object in RIS @ LiStccvcevvevvververiennvennensessensssessenenns 120
Filtering SEQUENCEScccovruerirecrirerere et s et 122
Mapping OVEr SEQUENCES........cccvveriererirsiresesis s se s sss e s s ssssessesse s 124
RedUCIiNg SEQUENCEScocveererrererrrmresesesrssesrssesesseses s sesssssssesessssesesssssssssessenes 127
Bringing the Functions Together ... 130
The Apply Family of FUNCLIONScccvcvverererirrre e sese s e 134
sapply, vapply, and 1applY.....cccorrinnnn - 134
The apply FUNCHON........ccoerr e 136
The tapply FUNCTION ... s 137
Functional Programming in PUITT.......ccccovenernsesnsesesese s sessesessssessenes 138
Filter-like FUNCHIONSccoveeireerine s 139

TABLE OF CONTENTS

Map-like FUNCHIONSoocirieren e 141
Reduce-like FUNCHIONS ... s 144
Chapter 7: Point-Free Programming.........cccsesssssnnssssssssssssssssssssssssnns 145
Function CompoSition ... 146
PIPEIINES ..ot e e s 148
Chapter 8: CONCIUSIONS.......covsmssssssssmsssssssssssssmsssssssssssssasassssssssssnsnans 153
T 155

About the Author

Thomas Mailund is Senior Software Architect
at Kvantify, a quantum computing company
from Denmark. He has a background in

math and computer science. He now works
on developing algorithms for computational
problems applicable for quantum computing.
He previously worked at the Bioinformatics
Research Centre, Aarhus University, on
genetics and evolutionary studies, particularly
comparative genomics, speciation, and

gene flow between emerging species. He has
published Beginning Data Science in R with
Apress, as well as other books out there.

vii

About the Technical Reviewer

Megan J. Hirni is currently pursuing her

PhD at the University of Missouri-Columbia
with a focus on applied statistics research. In
addition to her love for R coding, Megan loves
' meeting new people and learning new topics
in multifaceted fields.

ix

Acknowledgments

I'would like to thank Duncan Murdoch and the people on the R-help
mailing list for helping me work out a kink in lazy evaluation in the
trampoline example.

CHAPTER 1

Introduction

Welcome to Functional Programming in R 4. 1wrote this book to have
teaching material beyond the typical introductory level most textbooks
on R have, where functions are simple constructions for wrapping up
some reusable instructions that you can then call when you need those
instructions run. In languages such as R, functions are more than this.
They are objects in their own right that you can also treat as data, create
and manipulate and pass around like other objects, and learning how to
do this will make you a far more effective R programmer.

The R language is a multiparadigm language with elements from
procedural programming, object-oriented programming, and functional
programming. Procedural programming focuses on the instructions you
want the computer to execute—add these numbers, put the result in
this variable, loop through this list, etc. Object-oriented programming,
on the other hand, focuses on what kind of data you manipulate, which
operations you can perform on them, and how they change when you
manipulate them. If you are interested in these aspects of the R language, I
have written another book, Advanced Object-Oriented Programming in R,
also by Apress, that you might be interested in.

Functional programming is the third style of programming, where
the focus is on transformations. Functions transform data from input to
output, and by composing transformations, you construct programs from
simpler functions to more involved pipelines for your data. In functional
programming, functions themselves are considered data, and just as with
other data, you can write transformations that take functions as input and

© Thomas Mailund 2023
T. Mailund, Functional Programming in R 4, https://doi.org/10.1007/978-1-4842-9487-1_1

https://doi.org/10.1007/978-1-4842-9487-1_1

CHAPTER 1 INTRODUCTION

produce (other) functions as output. You can thus write simple functions,
then adapt them (using other functions to modify them), and combine
them in various ways to construct complete programs.

The R programming language supports procedural programming,
object-oriented programming, and functional programming, but it is mainly
a functional language. It is not a “pure” functional language. Pure functional
languages will not allow you to modify the state of the program by changing
values parameters hold and will not allow functions to have side effects (and
need various tricks to deal with program input and output because of it).

R is somewhat close to “pure” functional languages. In general, data
is immutable, so changes to data inside a function do ordinarily not
alter the state of data outside that function. But R does allow side effects,
such as printing data or making plots, and, of course, allows variables to
change values.

Pure functions have no side effects, so a function called with the same
input will always return the same output. Pure functions are easier to
debug and to reason about because of this. They can be reasoned about in
isolation and will not depend on the context in which they are called. The
R language does not guarantee that the functions you write are pure, but
you can write most of your programs using only pure functions. By keeping
your code mostly purely functional, you will write more robust code and
code that is easier to modify when the need arises.

You will want to move the impure functions to a small subset of your
program. These functions are typically those that need to sample random data
or that produce output (either text or plots). If you know where your impure
functions are, you know when to be extra careful with modifying code.

The next chapter contains a short introduction to functions in R. Some
parts you might already know, and so feel free to skip ahead, butI give a
detailed description of how functions are defined and used to ensure that
we are all on the same page. The following chapters then move on to more
complex issues.

CHAPTER 2

Functions in R

In this chapter, we cover how to write functions in R. If you already know
much of what is covered, feel free to skip ahead. We will discuss the

way parameters are passed to functions as “promises,” a way of passing
parameters known as lazy evaluation. If you are not familiar with that but
know how to write functions, you can jump forward to that section. We will
also cover how to write infix operators and replacement functions, so if you
do not know what those are, and how to write them, you can skip ahead to
those sections. If you are new to R functions, continue reading from here.

Writing Functions in R

You create an R function using the function keyword or, since R 4.1, the
\ () syntax. For example, we can write a function that squares numbers
like this:

square <- function(x) x**2
or like this:

square <- \(x) x**2

and then use it like this:
square(1:5)

[1] 1 4 9 16 25

© Thomas Mailund 2023
T. Mailund, Functional Programming in R 4, https://doi.org/10.1007/978-1-4842-9487-1_2

https://doi.org/10.1007/978-1-4842-9487-1_2

CHAPTER 2 FUNCTIONS IN R

The shorter syntax, \(x) x**2, is intended for so-called “lambda
expressions,” and the backslash notation is supposed to look like the Greek
letter lambda, A. Lambda expressions are useful when we need to provide
short functions as arguments to other functions, which is something we
return to in later chapters. Usually, we use the function() syntax when
defining reusable functions, and I will stick to this notation in every case
where we define and name a function the way we did for square earlier.

The function we have written takes one argument, x, and returns the
result x**2. The return value of a function is always the last expression
evaluated in it. If you write a function with a single expression, you can
write it as earlier, but for more complex functions, you will typically need
several statements in it. If you do, you can put the function’s body in curly
brackets like this:

square <- function(x) {
x**2

The following function needs the curly brackets since it needs three
separate statements to compute its return value, one for computing the
mean of its input, one for getting the standard deviation, and a final
expression that returns the input scaled to be centered on the mean and
having one standard deviation.

rescale <- function(x) {
m <- mean(x)
s <- sd(x)
(x -m) /s

The first two statements are just there to define some variables we can
use in the final expression. This is typical for writing short functions.

CHAPTER2 FUNCTIONS IN R

Variables you assign to inside a function will only be visible from inside
the function. When the function completes its execution, the variables
cease to exist. From inside a function, you can see the so-called local
variables—the function arguments and the variables you assign to in the
function body—and you can see the so-called global variables—those
assigned to outside of the function. Outside of the function, however, you
can only see the global variables. At least that is a good way to think about
which variables you can see at any point in a program until we get to the
gritty details in Chapter 4. For now, think in terms of global variables and
local variables, where anything you write outside a function is in the first
category and can be seen by anyone, and where function parameters
and variables assigned to inside functions are in the second category;
see Figure 2-1. If you have the same name for both a global and a local
variable, as in the figure where we have a global variable x and a function
parameter X, then the name always refers to the local variable.

Global variables

X ¢ 1:4 x: 1234

rescape ¢« function(x) { .. } <function object>
rescale: —

{ Local variables for rescale(3:6)
m < mean(x)
s « sd(x) X: 3456
(x-m /s m: 4.5
}
s: 1.29

Figure 2-1. Local and global variables

Assignments are really also expressions. They return an object, the
value that is being assigned; they just do so quietly. R considers some
expressions “invisible,” and while they do evaluate to some value or
other—all expressions do—R does not print the result. Assignments are
invisible in this way; they do return to the value on the right-hand side of the

CHAPTER 2 FUNCTIONS IN R

assignment, but R makes the result invisible. You can remove this invisibility
by putting an assignment in parentheses. The parentheses make R remove
the invisibility of the expression result, so you see the actual value:

(x <- 1:5)
[1] 1 2 3 4 5

You can also go the other way and make a value invisible. When you

evaluate an expression, R will print it:
x**2
[1] 1 4 9 16 25

but if you put the expression in a call to invisible, R will not print
the result:

invisible(x**2)

We usually use assignments for their side effect, assigning a name to
avalue, so you might not think of them as expressions, but everything
you do in R is actually an expression. That includes control structures
like if-statements and for-loops. They return values. They are actually
functions themselves, and they return values. If you evaluate an
if-statement, you get the value of the last expression in the branch it takes:

if (2 + 2 == 4) "Brave New World" else "1984"
[1] "Brave New World"

If you evaluate a loop, you get the value NULL (and not the last
expression in its body):

x <- for (i in 1:10) i
X

NULL

CHAPTER2 FUNCTIONS IN R

Even parentheses and subscripting are functions. Parentheses
evaluate to the value you put inside them (but stripped of invisibility), and
subscripting, [...] or [[...]], evaluates to some appropriate value on the
data structure you are accessing (and you can define how this will work for
your own data structures if you want to).

If you want to return a value from a function before its last expression,
you can use the return function. It might look like a keyword, but it is a
function, and you need to include the parentheses when you use it. Many
languages will let you return a value by writing

return expression
NotR. In R, you need to write
return(expression)

If you are trying to return a value, this will not cause you much trouble.
Rwill tell you that you have a syntax error if you use the former and
not the latter syntax. Where it can be a problem is if you want to return
from a function without providing a value (in which case the function
automatically returns NULL).

If you write something like this:

f <- function(x) {
if (x < 0) return;
Something else happens here...

}

you will not return if x is negative. The if-expression evaluates to the
function return, which is not what you want. Instead, you must write

f <- function(x) {
if (x < 0) return();
Something else happens here...

}

