
SpringerBriefs in Applied Sciences and Technology

Lilia Trifonyuk · Iryna V. Soltys · 
Alexander G. Ushenko · Yuriy A. Ushenko · 
Alexander V. Dubolazov · Jun Zheng

Optical Anisotropy 
of Biological 
Polycrystalline 
Networks
Vector-Parametric 
Diagnostics



SpringerBriefs in Applied Sciences 
and Technology



SpringerBriefs present concise summaries of cutting-edge research and practical 
applications across a wide spectrum of fields. Featuring compact volumes of 50 to 
125 pages, the series covers a range of content from professional to academic. 

Typical publications can be: 

• A timely report of state-of-the art methods 
• An introduction to or a manual for the application of mathematical or computer 

techniques 
• A bridge between new research results, as published in journal articles 
• A snapshot of a hot or emerging topic 
• An in-depth case study 
• A presentation of core concepts that students must understand in order to make 

independent contributions 

SpringerBriefs are characterized by fast, global electronic dissemination, standard 
publishing contracts, standardized manuscript preparation and formatting guidelines, 
and expedited production schedules. 

On the one hand, SpringerBriefs in Applied Sciences and Technology are 
devoted to the publication of fundamentals and applications within the different 
classical engineering disciplines as well as in interdisciplinary fields that recently 
emerged between these areas. On the other hand, as the boundary separating funda-
mental research and applied technology is more and more dissolving, this series 
is particularly open to trans-disciplinary topics between fundamental science and 
engineering. 

Indexed by EI-Compendex, SCOPUS and Springerlink.



Lilia Trifonyuk · Iryna V. Soltys · 
Alexander G. Ushenko · Yuriy A. Ushenko · 
Alexander V. Dubolazov · Jun Zheng 

Optical Anisotropy 
of Biological Polycrystalline 
Networks 
Vector-Parametric Diagnostics



Lilia Trifonyuk 
Rivne Regional Hospital 
Rivne Oncological Center, Institute 
of Health University of Water Management 
and Environmental Engineering 
Rivne, Ukraine 

Alexander G. Ushenko 
Department of Optics and Publishing 
Chernivtsi National University 
Chernivtsi, Ukraine 

Alexander V. Dubolazov 
Department of Optics and Publishing 
Chernivtsi National University 
Chernivtsi, Ukraine 

Iryna V. Soltys 
Department of Optics and Publishing 
Chernivtsi National University 
Chernivtsi, Ukraine 

Yuriy A. Ushenko 
Computer Science Department 
Chernivtsi National University 
Chernivtsi, Ukraine 

Jun Zheng 
Research Institute of Zhejiang University 
Taizhou, China 

ISSN 2191-530X ISSN 2191-5318 (electronic) 
SpringerBriefs in Applied Sciences and Technology 
ISBN 978-981-99-1086-1 ISBN 978-981-99-1087-8 (eBook) 
https://doi.org/10.1007/978-981-99-1087-8 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

https://doi.org/10.1007/978-981-99-1087-8


Acknowledgments 

This work received funding from: National Research Foundation of Ukraine, Grant 
2020.02/0061 and Scholarship of the Supreme Council for Young Scientists— 
Doctors of Sciences.

v



Introduction 

Relevance of the Topic. Biological tissues are structurally heterogeneous media 
that can absorb optical radiation [1–10]. In order to describe the interaction of laser 
radiation with such complex systems, it is necessary to use an approach that uses 
the formalism of Mueller matrices and of information analysis [11, 14–16, 22–26, 
30–42, 44, 49–51, 53, 54]. Currently, biological and medical research uses many 
practical methods based on the measurement and analysis of Mueller matrices of 
prototypes. In recent years, biomedical optics has formed an independent direction– 
laser polarimetry [12–14]. Within the framework of this research area, it was possible 
to establish the relationship between the coordinate distributions of the values of the 
matrix elements (Mueller-matrix images) and the corresponding distributions of the 
values of the birefringence of polycrystalline networks of optically thin layers of 
human biological tissues. On this basis, changes in the optically anisotropic struc-
ture of biological tissues (skin dermis, epithelial tissue, etc.) are differentiated, which 
are caused by oncological conditions of human organs [17–20, 27–29, 31, 36, 38, 39, 
43–48, 50, 57]. At the same time, laser polarimetry methods require further devel-
opment and deepening. First, not all elements of the Mueller matrix are convenient 
for characterizing biological samples. The reason for this is the azimuthal depen-
dence of the majority of the matrix elements—in general, 12 out of 16 elements 
change as the sample rotates around the sounding axis [21, 22]. In addition, there 
are a number of azimuthally independent combinations of elements of the Mueller 
matrix or Mueller-matrix invariants (MMIs). Secondly, the mechanisms of optical 
anisotropy of biological layers are not limited to manifestations of birefringence of 
spatially structured fibrillar networks. Actual on the way to expanding the arsenal 
of diagnostic techniques is to take into account the influence of the mechanisms of 
amplitude anisotropy—linear and circular dichroism [6, 8, 10]. Thirdly, there is a 
wide range of optically anisotropic biological objects for which laser polarimetry 
methods are not yet widely used. Such objects include biological fluids (blood and 
its plasma, urine, bile, saliva, etc.), which are easily accessible and do not require 
for obtain a sample of a traumatic operation biopsy. Fourth, the manifestations of
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viii Introduction

these mechanisms of optical anisotropy manifest themselves differently on different 
scales of the geometric dimensions of polycrystalline structures of biological layers 
[52–57]. 

Consequently, the relevance of the monograph is due to the need to develop new, 
information-complete and experimentally reproducible approaches to the analysis 
of optical anisotropy of biological tissues and fluids, to search for new azimuthally 
independent methods of Stokes polarimetry using algorithms of polarization recon-
struction and of spatial-frequency filtering of object fields, which allows us to sepa-
rate the manifestations of different mechanisms of phase and amplitude anisotropy 
of multiscale polycrystalline networks of biological layers in the development of 
objective criteria for assessing the degree of pathology and differentiation of the 
research samples. 

The purpose of the monograph is to develop new azimuthally independent 
methods of Stokes polarimetry and Mueller-matrix reconstruction of the distribu-
tions of optical anisotropy parameters using spatial-frequency filtering of phase 
(linear and circular birefringence) and amplitude (linear and circular dichroism) 
anisotropy to diagnose changes in the orientation-phase structure of fibrillar networks 
of histological sections of biological tissues and polycrystalline films of biological 
fluids. 

V. A. Ushenko 
Iryna V. Soltys 
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