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Preface

In 2013, a school on Geometric Measure Theory and Real Analysis, or-
ganized by G. Alberti, C. De Lellis and myself, took place at the Centro
De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro
and D. Vittone.
The lectures were so well-organized and up-to-date that we suggested

publishing them as Lecture Notes. All lecturers kindly agreed to this
project.
The book presents in a friendly and unitary way many recent develop-

ments which have not previously appeared in book form. Topics include:
in nite-dimensional analysis, minimal surfaces and isoperimetric prob-
lems in the Heisenberg group, regularity of sub-Riemannian geodesics
and the regularity theory of area-minimizing currents in any dimension
and codimension.



Sobolev classes on infinite-dimensional
spaces

Vladimir I. Bogachev
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Introduction

Sobolev classes of functions of generalized differentiability belong to the
major analytic achievements in the XX century and have found impres-
sive applications in the most diverse areas of mathematics. So it does not
come as a surprise that their in nite-dimensional analogs attract consid-
erable attention. It was already at the end of the 60s and the beginning of
the 70s of the last century that in the works of N. N. Frolov, Yu. L. Dalet-
ski , L. Gross, M. Krée, and P. Malliavin Sobolev classes with respect to
Gaussian measures on in nite-dimensional spaces were introduced and
studied. Their rst triumph came with the development of the Malli-
avin calculus since the mid of the 70s. At present, such classes and their
generalizations have become a standard tool of in nite-dimensional anal-

This work was supported by the RSF project 14-11-00196.



2 Vladimir I. Bogachev

ysis. They nd applications in stochastic analysis, optimal transportation,
mathematical physics, and mathematical nance.
The aim of this survey is to give a concise account of the theory of

Sobolev classes on in nite-dimensional spaces with measures. We pres-
ent a number of already classical cornerstone achievements, some more
recent results, and open problems with relatively short formulations.
There are already some books presenting elements of this rapidly devel-
oping theory (mostly in the Gaussian case), see Bogachev [13, 16] (see
also [12]), Bouleau, Hirsch [25], Da Prato [34], Fang [41], Janson [58],
Malliavin [66], Malliavin, Thalmaier [67], Nourdin, Peccati [73], Nu-
alart [74], Shigekawa [83], and Üstünel, Zakai [87]. There is also another
direction developing Sobolev classes on the so-called measure metric
spaces, see Ambrosio, Di Marino [7], Ambrosio, Tilli [10], Cheeger [30],
Haj asz, Koskela [53], Heinonen [54], Keith [59], Reshetnyak [77–79],
Vodop’janov [88], which is quite different from the topics discussed here.
The survey is based on several courses I lectured at the Scuola Normale

Superiore di Pisa in the years 1995–2013.
Over the years I have had a splendid opportunity to discuss problems

related to Sobolev classes in in nite dimensions with many experts in
this eld, including H. Airault, L. Ambrosio, G. Da Prato, D. Elwor-
thy, S. Fang, D. Feyel, M. Fukushima, M. Hino, A. Lunardi, P. Malli-
avin, P.-A. Meyer, D. Nualart, M. Röckner, I. Shigekawa, S. Watanabe,
N. Yoshida, and M. Zakai.

1 Measures on in nite-dimensional spaces

Given a topological space X we denote by B(X) its Borel σ - eld.
Bounded measures on B(X) (possibly, signed) will be called Borel mea-
sures. Such a measure μ can be uniquely written as μ = μ+ − μ−,
where μ+ and μ− are mutually singular nonnegative measures called the
positive and negative parts of μ, respectively. Set

|μ| = μ+ + μ−, ‖μ‖ = |μ|(X).

The class of all μ-integrable functions is denoted by L1(μ) and the cor-
responding Banach space of equivalence classes (where functions equal
almost everywhere are identi ed) is denoted by L1(μ). Similar notation
Lp(μ) and L p(μ) is used for the classes of μ-measurable functions in-
tegrable to power p ∈ (1,∞) and the respective spaces of equivalence
classes. For a Hilbert space H , the symbol L p(μ, H) is used to denote
the L p-space of H -valued mappings.



3 Sobolev classes on infinite-dimensional spaces

If a measure ν on B(X) has the form ν = � · μ, where � is a μ-
integrable function, which means that

ν(A) =
∫
A
�(x) μ(dx), A ∈ B(X),

then � is called absolutely continuous with respect to μ, which is denoted
by ν � μ, and � is called its Radon–Nikodym density with respect to μ.
A necessary and suf cient condition for that, expressed by the Radon–
Nikodym theorem, is that ν vanishes on all sets of μ-measure zero. If
also μ � ν, which is equivalent to � �= 0 μ-a.e., then the measures are
called equivalent, which is denoted by ν ∼ μ.
A nonnegative Borel measure μ on a topological space X is called

Radon if, for every set B ∈ B(X) and every ε > 0, there is a compact set
Kε ⊂ B such that μ(B\Kε) < ε.

Theorem 1.1. Each Borel measure on any complete separable metric
space X is Radon. Moreover, this is true for any Souslin space X , i.e., the
image of a complete separable metric space under a continuous mapping.

In particular, this is true for the spaces C[0, 1], R∞, and all separable
Hilbert spaces.
For the purposes of this survey it is suf cient to have in mind the space

R
∞, the countable power of the real line with its standard product topol-
ogy (making it a complete metrizable space). The Borel σ - eld in this
space coincides with the smallest σ - eld containing all cylinders, i.e.,
sets of the form

CB = {x : (x1, . . . , xn) ∈ B}, B ∈ B(Rn).

The measure μn de ned on R
n by the formula

μn(B) = μ(CB)

is called the projection of μ on R
n . These projections are consistent in

the sense that the projection of μn+1 on R
n equals μn .

By Kolmogorov’s theorem, the converse is true: given a consistent se-
quence of probability measures μn on the spaces R

n , there is a unique
probability measure μ on R

∞ with these projections (and there is a nat-
ural extension of this result to the case of signed measures, where in the
inverse implication the uniform boundedness of μn is required).
There is a dual concept to that of projections: conditional measures.

Let us consider the one-dimensional subspace Re1 generated by the rst
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coordinate vector e1 and its natural complementing hyperplane Y1 con-
sisting of vectors x with x1 = 0. Let ν1 be the projection of |μ| to Y1, i.e.,
its image under the natural projecting to Y1. It is known (see [15, Chap-
ter 10]) that there are Borel measures μ1,y , y ∈ Y1, on the real line (these
measures are probability measures if so is μ) such that for every bounded
Borel function f , writing x as x = (x1, y) with y = (x2, x3, . . .) and
identifying y with (0, x2, x3, . . .), one has∫

f (x1, x2, . . .) μ(dx) =
∫ ∫

f (x1, y) μ
1,y(dx1) ν

1(dy),

where the function de ned by the integral in x1 is Borel measurable in
y. Similarly, there exist conditional measures μn,y , y ∈ Yn , correspond-
ing to the nth coordinate vector en and its natural complementing hyper-
plane Yn consisting of vectors with zero nth coordinate. Unlike nite-
dimensional distributions, conditional measures (even regarded for all n)
do not uniquely determine the measure; the problem of reconstructing
a measure from its conditional measures is the subject of the theory of
Gibbs measures. Of course, it is not essential that we have considered
basis vectors. For a general Radon measure μ (possibly, signed) on a lo-
cally vector space X that is a direct topological sum of two closed linear
subspaces Z and Y , letting ν be the image of |μ| under the projection
on Y , one can nd Radon measures μy , y ∈ Y , on Z such that for each
bounded Borel function f on X one has∫

X
f dμ =

∫
Y

∫
Z
f (z, y) μy(dz) ν(dy),

where we write elements of X as x = (z, y), z ∈ Z , y ∈ Y , the function
y 
→ ‖μy‖ is ν-integrable, and the inner integral is also ν-integrable.
Finally, note that sometimes it is more convenient geometrically to

de ne the conditional measures μy on the straight lines Rh + y rather
than on the real line. In that case the previous equality reads simply as∫

X
f dμ =

∫
Y

∫
Z
f (x) μy(dx) ν(dy).

It will be useful below to represent different measures μ and σ via con-
ditional measures using a common measure ν on Y that may be different
from their projections on Y . This is possible if take ν on Y such that
both projections are absolutely continuous with respect to ν. Indeed, if
μ = μy μY (dy) and σ = σ y σY (dy), where μY = g1 · ν, σY = g2 · ν,
then we obtain the representations

μ = g1(y)μ
y ν(dy), σ = g2(y)σ

y ν(dy)
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or
μ = μy,ν ν(dy), σ = σ y,ν ν(dy),

where ν in the symbol μy,ν indicates that the disintegration is taken with
respect to the measure ν on Y in place of μY .
We recall the de nition of variation and semivariation of vector mea-

sures (see Diestel, Uhl [38] or Dunford, Schwartz [39]). Let H be a
separable Hilbert space. A vector measure with values in H is an H -
valued countably additive function η de ned on a σ -algebraA of subsets
of a space �. Such a measure automatically has bounded semivariation
de ned by the formula

V (η) := sup
∣∣∣ n∑
i=1

αiη(�i)

∣∣∣
H
,

where sup is taken over all nite partitions of� into disjoint parts�i ∈ A
and all nite sets of real numbers αi with |αi | ≤ 1. In other words, this
is the supremum of variations of real measures (η, h)H over h ∈ H with
|h|H ≤ 1. However, this does not yet mean that the vector measure η has
nite variation which is de ned as

Var(η) := sup
n∑
i=1

|η(�i)|H ,

where sup is taken over all nite partitions of � into disjoint parts �i ∈
A. The variation of the measure η will be denoted by ‖η‖ (but in [39]
this notation is used for semivariation).
By the Pettis theorem (see Dunford, Schwartz [39, Chapter IV, §10]),

an H -valued mapping 	 is a vector measure of bounded semivariation
provided that (	, h)H is a bounded scalar measure for each h ∈ H .
The sets of measures of bounded variation and bounded semivaria-

tion are Banach spaces with the norms η 
→ ‖η‖ and η → V (η),
respectively. It is easy to give an example of a measure with values
in an in nite-dimensional Hilbert space having bounded semivariation,
but in nite variation: consider the standard basis {en} in l2 and take
Dirac’s measures δ(en) in the points en and the vector measure η =∑∞

n=1 n
−1δ(en)en . Its semivariation equals the sum of the numbers n−2,

but it is of in nite variation.
The space of all continuous linear functions on a locally convex space

X is denoted by X∗ and is called the dual (or topological dual) space.
Let FC∞ denote the class of all functions f on X of the form

f (x) = f0(l1(x), . . . , ln(x)), f0 ∈ C∞
b (R

n), li ∈ X∗,
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where C∞
b (R

n) is the class of all in nitely differentiable functions on R
n

with bounded derivatives. In case of R
∞ we obtain just the union of all

C∞
b (R

n).

2 Gaussian measures

AGaussian measure on the real line is a Borel probability measure which
is either concentrated at some point a (i.e., is Dirac’s measure δa at a) or
has density (2πσ)−1/2 exp

(−(2σ)−1(x − a)2
)
with respect to Lebesgue

measure, where a ∈ R
1 is its mean and σ > 0 is its dispersion. The

measure for which a = 0 and σ = 1 is called standard Gaussian.
Similarly the standard Gaussian measure onR

d is de ned by its density

(2π)−d/2 exp(−|x |2/2)
with respect to Lebesgue measure.
Although below a general concept of a Gaussian measure on a locally

convex space is introduced, we de ne explicitly general Gaussian mea-
sures on R

d . These are measures that are concentrated on af ne sub-
spaces in R

d and are standard in suitable (af ne) coordinate systems. In
other words, these are images of the standard Gaussian measure under
af ne mappings of the form x 
→ Ax + a, where A is a linear operator
and a is a vector. A bit more explicit representation is provided by the
Fourier transform of a bounded Borel measure μ on R

d de ned by the
formula

μ̃(y) =
∫
exp
(
i(y, x)

)
μ(dx), y ∈ R

d .

In these terms, a measureμ is Gaussian if and only if its Fourier transform
has the form

μ̃(y) = exp
(
i(y, a)− 1

2
Q(y, y)

)
,

where Q is nonnegative quadratic form on R
d .

The Fourier transform of the standard Gaussian measure is given by

γ̃ (y) = exp(−|y|2/2).
The change of variables formula yields the following relation between A
and Q if μ is the image of γ under the af ne mapping Ax + a:

μ̃(y) =
∫
exp
(
i(y, Ax + a)

)
γ (dx)

= exp
(
i(y, a)

) ∫
exp
(
i(A∗y, x)

)
γ (dx)

= exp
(
i(y, a)− |A∗y|2/2),
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that is, Q(y) = (AA∗y, y). It is readily veri ed that μ has a density on
the whole space precisely when A is invertible.
The vector a is called the mean of μ and is expressed by the equality

(y, a) =
∫
(y, x) μ(dx).

For the quadratic form Q we have the equality

Q(y, y) =
∫
(y, x − a)2 μ(dx).

These equalities are veri ed directly (it suf ces to check them in the one-
dimensional case).
Let us de ne Gaussian measures on general locally convex spaces.

De nition 2.1. Let X be a locally convex space with the topological
dual X∗. A Borel probability measure γ on X is called Gaussian if the
induced measure γ ◦ f −1 is Gaussian for every f ∈ X∗. If all these
measures are centered, then γ is called centered.

In the case of the space R
∞ the space R

∞
0 of nite sequences coincides

with the dual space. Hence Gaussian measures on R
∞ are measures with

Gaussian nite-dimensional projections.

Example 2.2. An important example of a Gaussian measure is the count-
able product γ of the standard Gaussian measures on the real line. This
measure is de ned on the space X = R

∞. This special example plays
a very important role in the whole theory. In some sense (see Bogachev
[13] for details) this is a unique up to isomorphism in nite-dimensional
Gaussian measure.
Another important example of a Gaussian measure is the Wiener mea-

sure on the spaceC[0, 1] of continuous functions or on the space L2[0, 1].
This measure can be de ned as the image of the standard Gaussian mea-
sure γ on X = R

∞ under the mapping

x = (xn) 
→ w( · ), w(t) =
∞∑
n=1

xn

∫ t

0
en(s) ds,

where {en} is an arbitrary orthonormal basis in L2[0, 1]. One can show
that this series converges in L2[0, 1] for γ -almost every x ; moreover, for
γ -almost every x convergence is uniform on [0, 1].
We recall that a countable product μ = ⊗∞

n=1 μn of probability mea-
sures μn on spaces (Xn,Bn) is de ned on X =∏∞

n=1 Xn as follows: rst
it is de ned on sets of the form A = A1 × · · · × An × Xn+1 · · · by

μ(A) = μ1(A1)× · · · × μn(An),
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then it is veri ed that μ is countably additive on the algebra of nite
unions of such sets (called cylindrical sets), which results in a countably
additive extension to the smallest σ -algebra B := ⊗∞

n=1 Bn containing
such cylindrical sets.
The standard Gaussian measure γ on R

∞ can be restricted to many
other smaller linear subspaces of full measure. For example, taking any
sequence of numbers αn > 0 with

∑∞
n=1 αn < ∞, we can restrict γ to

the weighted Hilbert space of sequences

E :=
{
(xn) ∈ R

∞ :
∞∑
n=1

αnx
2
n <∞

}
,

making this expression the square of the norm. The fact that γ (E) = 1
follows by the monotone convergence theorem, which shows that

∞∑
n=1

αnx
2
n <∞

almost everywhere due to convergence of the integrals of the terms (the
integral of x2n is 1). Similarly, one can nd non-Hilbert full measure
Banach spaces of sequences (xn)with supn βn|xn|<∞ or lim

n→∞βn|xn|= 0

for suitable sequences βn → 0; more precisely, the condition is this:

∞∑
n=1

exp
(
− C

β2n

)
<∞ ∀C > 0.

However, there is no minimal linear subspace of full measure. The point
is that the intersection of all linear subspaces of positive (equivalently,
full) measure is the subspace l2, which has measure zero, as one can
verify directly.
It is known that any Radon Gaussian measure γ has mean m ∈ X , i.e.,

m is a vector in X such that

f (m) =
∫
X
f (x) γ (dx) ∀ f ∈ X∗.

If m = 0, i.e., the measures γ ◦ f −1 for f ∈ X∗ have zero mean, then
γ is called centered. Any Radon Gaussian measure γ is a shift of a cen-
tered Gaussian measure γm de ned by the formula γm(B) := γ (B + m).
Hence for many purposes it suf ces to consider only centered Gaussian
measures.
For a centered Radon Gaussian measure γ we denote by X∗

γ the closure
of X∗ in L2(γ ). The elements of X∗

γ are called γ -measurable linear
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functionals. There is an operator Rγ : X∗
γ → X , called the covariance

operator of the measure γ , such that

f (Rγ g) =
∫
X
f (x)g(x) γ (dx) ∀ f ∈ X∗, g ∈ X∗

γ .

Set
g := ĥ if h = Rγ g.

Then ĥ is called the γ -measurable linear functional generated by h. The
following vector equality holds (if X is a Banach space, then it holds in
Bochner’s sense):

Rγ g =
∫
X
g(x)x γ (dx) ∀ g ∈ X∗

γ .

For example, if γ is a centered Gaussian measure on a separable Hilbert
space X , then there exists a nonnegative nuclear operator K on X for
which Ky = Rγ y for all y ∈ X , where we identify X∗ with X . Then we
obtain

(Ky, z) = (y, z)L2(γ ) and γ̃ (y) = exp
(−(Ky, y)/2).

Let us take an orthonormal eigenbasis {en} of the operator K with eigen-
values {kn}. Then γ coincides with the image of the countable power γ0
of the standard Gaussian measure on R

1 under the mapping

R
∞ → X, (xn) 
→

∞∑
n=1

√
knxnen.

This series converges γ0-a.e. in X by convergence of the series
∑∞

n=1 knx
2
n ,

which follows by convergence of the series of kn and the fact that the
integral of x2n against the measure γ0 equals 1. Here X

∗
γ can be identi ed

with the completion of X with respect to the norm x 
→ ‖√Kx‖X , i.e.,
the embedding X = X∗ → X∗

γ is a Hilbert–Schmidt operator.
The space

H(γ ) = Rγ (X
∗
γ )

is called the Cameron–Martin space of the measure γ . It is a Hilbert
space with respect to the inner product

(h, k)H :=
∫
X
ĥ(x )̂k(x) γ (dx).

The corresponding norm is given by the formula

|h|H := ‖ĥ‖L2(γ ).
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Moreover, it is known that H(γ )with the indicated norm is separable and
its closed unit ball is compact in the space X . Note that the same norm is
given by the formula

|h|H = sup
{
f (h) : f ∈ X∗, ‖ f ‖L2(γ ) ≤ 1

}
.

It should be noted that if dim H(γ ) = ∞, then γ
(
H(γ )
) = 0.

In terms of the inner product in H the vector Rγ (l) is determined by
the identity(

jH ( f ), Rγ g
)
H
= f (Rγ g) =

∫
X
f g dγ, f ∈ X∗, g ∈ X∗

γ . (2.1)

In the above example of a Gaussian measure γ on a Hilbert space we
have

H(γ ) = √
K (X).

Let us observe that H(γ ) coincides also with the set of all vectors of the
form

h =
∫
X
f (x)x γ (dx), f ∈ L2(γ ).

Indeed, letting f0 be the orthogonal projection of f onto X∗
γ in L

2(γ ), we
see that the integral of the difference [ f (x) − f0(x)]x over X vanishes
since the integral of [ f (x)− f0(x)]l(x) vanishes for each l ∈ X∗.

Theorem 2.3. The mapping h 
→ ĥ establishes a linear isomorphism be-
tween H(γ ) and X∗

γ preserving the inner product. In addition, Rγ ĥ = h.

If {en} is an orthonormal basis in H(γ ), then {ên} is an orthonormal
basis in X∗

γ and ên are independent random variables.
One can take an orthonormal basis in X∗

γ consisting of elements
ξn ∈ X∗. The general form of an element l ∈ X∗

γ is this:

l =
∞∑
n=1

cnξn,

where the series converges in L2(γ ). Since ξn are independent Gaus-
sian random variables, this series converges also γ -a.e. The domain of
its convergence is a Borel linear subspace L of full measure. One can
take a version of l which is linear on all of X in the usual sense; it is
called a proper linear version. It is easy to show that such a version is
automatically continuous on H(γ ) with the norm | · |H ; more precisely,

f0(h) = (Rγ f, h)H =
∫
X
f ĥ dγ, h ∈ H.
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Conversely, any continuous linear functional l on the Hilbert space
H(γ ) admits a unique extension to a γ -measurable proper linear func-
tional l̂ such that l̂ coincides with l on H(γ ). For every h ∈ H(γ ),
such an extension of the functional x 
→ (x, h)H is exactly ĥ. If h =∑∞

n=1 cnen , then ĥ = ∑∞
n=1 cnên . Two γ -measurable linear functionals

are equal almost everywhere precisely when their proper linear versions
coincide on H(γ ).
If a measure γ on X = R

∞ is the countable power of the standard
Gaussian measure on the real line, then X∗ can be identi ed with the
space of all sequences of the form f = ( f1, . . . , fn, 0, 0, . . .). Here we
have

( f, g)L2(γ ) =
∞∑
i=1

fi gi .

Hence X∗
γ can be identi ed with l

2; any element l = (cn) ∈ l2 de nes
an element of L2(γ ) by the formula l(x) := ∑∞

n=1 cnxn , where the se-
ries converges in L2(γ ). Therefore, the Cameron–Martin space H(γ )
coincides with the space l2 with its natural inner product. An element
l represents a continuous linear functional precisely when only nitely
many numbers cn are nonzero. For the Wiener measure on C[0, 1] the
Cameron–Martin space coincides with the class W 2,1

0 [0, 1] of all abso-
lutely continuous functions h on [0, 1] such that h(0) = 0 and h′ ∈
L2[0, 1]; the inner product is given by the formula

(h1, h2)H :=
∫ 1

0
h′
1(t)h

′
2(t) dt.

The next classical result, called the Cameron–Martin formula, relates
measurable linear functionals and vectors in the Cameron–Martin space
to the Radon–Nikodym density for shifts of the Gaussian measure.

Theorem 2.4. The space H(γ) is the set of all h∈ X such that γh∼γ ,
where γh(B) := γ (B + h), and the Radon–Nikodym density of the mea-
sure γh with respect to γ is given by the following Cameron–Martin for-
mula:

dγh/dγ = exp
(−ĥ − |h|2

H
/2
)
.

For every h �∈ H(γ ) we have γ ⊥ γh .

It follows from this formula that for every bounded Borel function f
on X we have∫

X
f (x + h) γ (dx) =

∫
X
f (x) exp

(̂
h(x)− |h|2

H
/2
)
γ (dx).
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In the case of the standard Gaussian measure on R
∞ this formula is

a straightforward extension of the obvious nite-dimensional expression,
one just needs to de ne ĥ(x) as the sum of a series.
A centered Radon Gaussian measure is uniquely determined by its

Cameron–Martin space (with the indicated norm!): if μ and ν are cen-
tered Radon Gaussian measures such that H(μ) = H(ν) and |h|H(μ) =
|h|H(ν) for all h ∈ H(μ) = H(ν), then μ = ν. The Cameron-Martin
space is also called the reproducing Hilbert space.

De nition 2.5. A Radon Gaussian measure γ on a locally convex space
X is called nondegenerate if for every nonzero functional f ∈ X∗ the
measure γ ◦ f −1 is not concentrated at a point.
The nondegeneracy of γ is equivalent to that γ (U) > 0 for all non-

empty open sets U ⊂ X . This is also equivalent to that the Cameron-
Martin space H(γ ) is dense in X . For every degenerate Radon Gaussian
measure γ there exists the smallest closed linear subspace L ⊂ X for
which γ (L + m) = 1, where m is the mean of the measure γ . Moreover,
L + m coincides with the topological support of γ . If m = 0, then on L
the measure γ is nondegenerate.
Let γ be a centered Radon Gaussian measure on a locally convex

space X ; as usual, one can assume that this is the standard Gaussian
measure on R

∞. The Ornstein–Uhlenbeck semigroup is de ned by the
formula

Tt f (x) =
∫
X
f
(
e−t x −

√
1− e−2t y

)
γ (dy), f ∈ Lp(γ ). (2.2)

A simple veri cation of the fact that {Tt}t≥0 is a strongly continuous semi-
group on all L p(γ ), 1 ≤ p < ∞, can be found in [13]; the semigroup
property means that

Tt+s f = TsTs f, t, s ≥ 0.

An important feature of this semigroup is that the measure γ is invariant
for it, that is, ∫

X
Tt f (x) γ (dx) =

∫
X
f (x) γ (dx).

Theorem 2.6. For every p ∈ [1,+∞) and f ∈ L p(γ ) one has

lim
t→0

‖Tt f − f ‖L p(γ ) = 0, lim
t→+∞

∥∥∥∥Tt f − ∫ f dγ

∥∥∥∥
L p(γ )

= 0

and if 1 < p <∞, then also lim
t→0

Tt f (x) = f (x) a.e.
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It is also known that in the nite-dimensional case lim
t→0

Tt f (x) = f (x)

a.e. for all f ∈ L1(γ ). It remains an open problem whether this is true in
in nite dimensions.
The generator L of the Ornstein–Uhlenbeck semigroup is called the

Ornstein–Uhlenbeck operator (more precisely, for every p ∈ [1,+∞),
there is such a generator on the corresponding domain in L p(γ ); if p is
not explicitly indicated, then usually p = 2 is meant). By de nition,
L f = lim

t→0
(Tt f − f )/t if this limit exists in the norm of L p(γ ). This

operator will be important Section 4. In the case of R
∞, on smooth func-

tions f (x) = f (x1, . . . , xn) in nitely many variables one can explicitly
calculate that

L f (x) = � f (x)− (x,∇ f (x)
) = n∑

i=1

[
∂2xi f (x)− xi∂xi f (x)

]
.

This representation can be also extended to some functions in in nitely
many variables. In the general case L f is the sum of a similar series, but
its two parts need converge separately.
In the theory of Gaussian measures an important role is played by the

Hermite (or Chebyshev–Hermite) polynomials Hn de ned by the equali-
ties

H0 = 1, Hn(t) = (−1)n√
n! e

t2/2 d
n

dtn
(
e−t

2/2
)
, n > 1.

They have the following properties:

H ′
n(t) =

√
nHn−1(t) = t Hn(t)−

√
n + 1Hn+1(t).

In addition, the system of functions {Hn} is an orthonormal basis in
L2(γ ), where γ is the standard Gaussian measure on the real line.
For the standard Gaussian measure γn on R

n (the product of n copies
of the standard Gaussian measure on R

1) an orthonormal basis in L2(γn)
is formed by the polynomials of the form

Hk1,...,kn (x1, . . . , xn) = Hk1(x1) · · · Hkn (xn), ki ≥ 0.

If γ is a centered Radon Gaussian measure on a locally convex space X
and {ln} is an orthonormal basis in X∗

γ , then a basis in L
2(γ ) is formed

by the polynomials

Hk1,...,kn (x) = Hk1

(
l1(x)
) · · · Hkn

(
ln(x)
)
, ki ≥ 0, n ∈ N.

For example, for the countable power of the standard Gaussian mea-
sure on the real line such polynomials are Hk1,...,kn (x1, . . . , xn). It is
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convenient to arrange polynomials Hk1,...,kn according to their degrees
k1 + · · · + kn . For k = 0, 1, . . . we denote by Xk the closed linear sub-
space of L2(γ ) generated by the functions Hk1,...,kn with k1+· · ·+kn = k.
The functions Hk1,...,kn are mutually orthogonal and, for the xed value
k = k1 + · · · + kn , form an orthonormal basis in Xk .
The one-dimensional space X0 consists of constants and X1 = X∗

γ .
One can show that every element f ∈ X2 can be written in the form

f =
∞∑
n=1

αn(l
2
n − 1),

where {ln} is an orthonormal basis in X∗
γ and

∑∞
n=1 α

2
n < ∞ (i.e., the

series for f converges in L2(γ )).
The spaces Xk are mutually orthogonal and their orthogonal sum is the

whole L2(γ ):

L2(γ ) =
∞⊕
k=0

Xk,

which means that, denoting by Ik the operator of orthogonal projection
onto Xk , we have an orthogonal decomposition

F =
∞∑
k=0

Ik(F), F ∈ L2(γ ).

One can check that Tt Hk1,...,kn = e−k1−···−kn Hk1,...,kn , which yields that

Tt F =
∞∑
k=0

e−kt Ik(F), F ∈ L2(γ ).

Given a separable Hilbert space E , one de nes similarly the space Xk(E)
of polynomials with values in E as the closure in L2(γ, E) of the liner
span of the mappings f · v, where f ∈ Xk , v ∈ E .

3 Integration by parts and differentiable measures

Suppose that f is a bounded Borel function on a locally convex space X
with a centered Radon Gaussian measure γ such that the partial derivative

∂h f (x) = lim
t→0

f (x + th)− f (x)

t

exists for some vector h in the Cameron-Martin space of γ and is bounded.
Applying the Cameron-Martin formula and Lebesgue’s dominated con-
vergence theorem, we arrive at the equality∫

X
∂h f (x) γ (dx) =

∫
X
f (x )̂h(x) γ (dx),
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where we also use that the derivative of t 
→ etĥ−t2|h|2H /2 at zero is ĥ.
This simple formula, called the integration by parts formula for the Gaus-
sian measure, plays a very important role in stochastic analysis and is a
starting point for far-reaching generalizations connected with differentia-
bilities of measures in the sense of Fomin [45, 46] and in the sense of
Skorohod [85].
A measure μ on X is called Skorohod differentiable along a vector h if

there exists a measure dhμ, called the Skorohod derivative of the measure
μ along the vector h, such that

lim
t→0

∫
X

f (x − th)− f (x)

t
μ(dx) =

∫
X
f (x)dhμ(dx) (1)

for every bounded continuous function f on X . If the measure dhμ is
absolutely continuous with respect to the measure μ, then the measure
μ is called Fomin differentiable along the vector h, the Radon–Nikodym
density of the measure dhμ with respect to μ is denoted by β

μ

h and called
the logarithmic derivative of μ along h. The Skorohod differentiability
of μ along h is equivalent to the identity∫

X
∂h f (x) μ(dx) = −

∫
X
f (x) dhμ(dx), f ∈ FC∞.

The Fomin differentiability is the equality∫
X
∂h f (x) μ(dx) = −

∫
X
f (x) βμh (x) μ(dx), f ∈ FC∞.

On the real line the Fomin differentiability is equivalent to the member-
ship of the density in the Sobolev class W 1,1, and the Skorohod differ-
entiability is the boundedness of variation of the density; the picture is
similar also in R

n . A detailed discussion of these types of differentiabil-
ity of measures can be found in Bogachev [16].
It follows from our previous discussion that for the centered Gaussian

measure μ we have

β
μ

h = −ĥ, h ∈ H(μ).

In the case of a probability measure on R∞ ef cient conditions for both
types of differentiability can be expressed in terms of nite-dimensional
distributions. The Skorohod differentiability along a vector h = (hn) is
equivalent to the following condition: for every n, the generalized deriva-
tive of the projection μn onR

n along the vector (h1, . . . , hn) is a bounded
measure and such measures are uniformly bounded. For Fomin’s dif-
ferentiability more is needed: the corresponding logarithmic derivatives


