


Einführung in das Lightning-Netzwerk

Das Second-Layer-Blockchain-Protokoll für effiziente Bitcoin-Zahlungen verstehen und nutzen

Andreas M. Antonopoulos, Olaoluwa Osuntokun und René Pickhardt

> Deutsche Übersetzung von Peter Klicman

Andreas M. Antonopoulos, Olaoluwa Osuntokun, René Pickhardt

Lektorat: Ariane Hesse Übersetzung: Peter Klicman

Fachliche Unterstützung: René Pickhardt

Korrektorat: Sibylle Feldmann, www.richtiger-text.de

Satz: Jörg Liedtke, Flensburg Herstellung: Stefanie Weidner

Umschlaggestaltung: Michael Oréal, www.oreal.de

Druck und Bindung: mediaprint solutions GmbH, 33100 Paderborn

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN:

Print 978-3-96009-201-8 PDF 978-3-96010-736-1 ePub 978-3-96010-737-8 mobi 978-3-96010-738-5

1. Auflage 2023

Translation Copyright © 2023 dpunkt.verlag GmbH Wieblinger Weg 17 69123 Heidelberg

Dieses Buch erscheint in Kooperation mit O'Reilly Media, Inc. unter dem Imprint »O'REILLY«. O'REILLY ist ein Markenzeichen und eine eingetragene Marke von O'Reilly Media, Inc. und wird mit Einwilligung des Eigentümers verwendet.

Authorized German translation of the English edition of *Mastering the Lightning Network* ISBN 9781492054863 © 2022 aantonop Books LLC, René Pickhardt, and uuddlrlrbas LLC. This translation is published and sold by permission of O'Reilly Media, Inc., which owns or controls all rights to publish and sell the same.

Hinweis

Dieses Buch wurde auf PEFC-zertifiziertem Papier aus nachhaltiger Waldwirtschaft gedruckt. Der Umwelt zuliebe verzichten wir zusätzlich auf die Einschweißfolie.

Schreiben Sie uns:

Falls Sie Anregungen, Wünsche und Kommentare haben, lassen Sie es uns wissen: kommentar@oreilly.de.

Die vorliegende Publikation ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Die Verwendung der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche Zustimmung des Verlags urheberrechtswidrig und daher strafbar. Dies gilt insbesondere für die Vervielfältigung, Übersetzung oder die Verwendung in elektronischen Systemen.

Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und Hardware-Bezeichnungen sowie Markennamen und Produktbezeichnungen der jeweiligen Firmen im Allgemeinen warenzeichen-, marken- oder patentrechtlichem Schutz unterliegen.

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene Fehler und deren Folgen.

Inhalt

Vor	Vorwort		
Vor	Vorwort zur deutschen Ausgabe		
Tei	II Das Lightning-Netzwerk verstehen		
1	Einführung	31 32	
	Vertrauen in dezentralisierten Netzwerken	33	
	Fairness ohne zentrale Autorität	34	
	Vertrauenswürdige Protokolle ohne Intermediäre	35	
	Ein Fairness-Protokoll in Aktion	36	
	Sicherheits-Primitive als Grundbausteine	37	
	Beispiel für Fairness-Protokolle	38	
	Motivation für das Lightning-Netzwerk	39	
	Blockchains skalieren	40	
	Die das Lightning-Netzwerk definierenden Eigenschaften	42	
	Anwendungsfälle, Nutzer und ihre Geschichten	42	
	Fazit	43	
2	Erste Schritte	45	
	Alice' erste Lightning-Wallet	45	
	Lightning-Nodes	46	
	Lightning-Explorer	46	
	Lightning-Wallets	47	
	Testnet-Bitcoin	50	
	Balance zwischen Komplexität und Kontrolle	51	
	Download und Installation einer Lightning-Wallet	52 53	
	Eine neue Wallet anlegen	53 53	
	Mnemonische Wörter	53	
	Die mnemonische Phrase sichern	55 54	
	Die innemonische i mase sienem	JT	

	Bitcoin auf die Wallet laden	55
	Bitcoin beschaffen	55
	Bitcoin empfangen	55
	Von Bitcoin zum Lightning-Netzwerk	59
	Lightning-Netzwerk-Kanäle	59
	Einen Lightning-Kanal öffnen	61
	Eine Tasse Kaffee über das Lightning-Netzwerk kaufen	63
	Bobs Café	63
	Eine Lightning-Rechnung	64
	Fazit	66
3	Wie das Lightning-Netzwerk funktioniert	67
	Was ist ein Zahlungskanal?	68
	Grundlagen eines Zahlungskanals	68
	Zahlungen über Kanäle routen	69
	Zahlungskanäle	70
	Multisignaturadressen	71
	Funding-Transaktion	71
	Commitment-Transaktionen	73
	Betrug mit vorherigem Zustand	74
	Ankündigung des Kanals	77
	Den Kanal schließen	78
	Rechnungen	82
	Zahlungshash und Preimage	83
	Zusätzliche Metadaten	84
	Zustellung der Zahlung	85
	Das Peer-to-Peer-Gossip-Protokoll	85
	Wegfindung und Routing	86
	Quellbasierte Wegfindung	87
	Onion-Routing	88
	Algorithmus zur Zahlungsweiterleitung	90
	Verschlüsselung der Peer-to-Peer-Kommunikation	91
	Überlegungen zum Vertrauen	92
	Vergleich mit Bitcoin	93
	Adressen versus Rechnungen, Transaktionen versus Zahlungen	93
	Outputs wählen versus Pfad finden	94
	Change-Output bei Bitcoin versus kein Wechselgeld bei Lightning	94
	Mining-Gebühren versus Routing-Gebühren	95
	Gebühren basierend auf Traffic versus angekündigte Gebühren	95
	Öffentliche Bitcoin-Transaktionen versus private	
	Lightning-Zahlungen	96
	Warten auf Bestätigungen versus sofortiger Zahlungseingang	96

	Senden beliebiger Summen versus Kapazitätsbeschränkungen	97
	Anreize für Großbeträge versus Kleinbeträge	97
	Blockchain als Kassenbuch versus Blockchain als	
	Gerichtssystem	98
	Offline versus online, asynchron versus synchron	98
	Satoshis versus Millisatoshis	99
	Gemeinsamkeiten von Bitcoin und Lightning	99
	Monetäre Einheit	99
	Unumkehrbarkeit und Finalität von Zahlungen	99
	Vertrauen und Gegenparteirisiko	100
	Genehmigungsfreier Betrieb	100
	Open Source und Open System	100
	Fazit	100
4	Lightning-Node-Software	101
	Die Lightning-Entwicklungsumgebung	102
	Die Kommandozeile nutzen	102
	Das Buch-Repository herunterladen	103
	Docker-Container	103
	Bitcoin Core und Regtest	105
	Den Bitcoin-Core-Container erzeugen	106
	Das c-lightning-Lightning-Node-Projekt	109
	c-lightning als Docker-Container	109
	Ein Docker-Netzwerk einrichten	110
	Ausführen der bitcoind- und c-lightning-Container	110
	c-lightning aus dem Quellcode installieren	112
	Vorab benötigte Bibliotheken und Pakete installieren	112
	Den c-lightning-Quellcode kopieren	113
	Den c-lightning-Quellcode kompilieren	113
	Das Lightning-Netzwerk-Daemon-Node-Projekt	115
	Der LND-Docker-Container	116
	Die bitcoind- und LND-Container ausführen	117
	LND aus dem Quellcode installieren	118
	Den LND-Quellcode kopieren	119
	Den LND-Quellcode kompilieren	119
	Das Eclair-Lightning-Node-Projekt	120
	Der Eclair-Docker-Container	120
	Die bitcoind- und Eclair-Container ausführen	121
	Eclair aus dem Quellcode installieren	123
	Den Eclair-Quellcode installieren	123
	Den Eclair-Ouellcode kompilieren	124

	Ein Netzwerk diverser Lightning-Nodes aufbauen	124
	docker-compose zur Orchestrierung von Docker-Containern	
	nutzen	125
	docker-compose-Konfiguration	125
	Das Demo-Lightning-Netzwerk starten	126
	Kanäle öffnen und eine Zahlung routen	127
	Fazit	129
5	Eine Lightning-Netzwerk-Node betreiben	131
	Eine Plattform wählen	132
	Warum ist Zuverlässigkeit für den Betrieb einer	
	Lightning-Node wichtig?	132
	Hardware für Lightning-Nodes	133
	Betrieb in der Cloud	133
	Eine Node zu Hause betreiben	134
	Welche Hardware wird zum Betrieb einer Lightning-Node	
	benötigt?	13
	Serverkonfiguration in der Cloud wechseln	130
	Einen Installer oder Helfer nutzen	13
	RaspiBlitz	13
	Mynode	138
	Umbrel	138
	BTCPay Server	140
	Bitcoin-Node oder leichtgewichtige Lightning-Node	140
	Wahl des Betriebssystems	14
	Wahl der Lightning-Node-Implementierung	142
	Eine Bitcoin- oder Lightning-Node installieren	143
	Hintergrunddienste	143
	Prozessisolation	14
	Node starten	14
	Node-Konfiguration	14
	Netzwerkkonfiguration	14
	Die Sicherheit Ihrer Node	15
	Betriebssystemsicherheit	15
	Node-Zugriff	153
	Node- und Kanal-Backups	15
	Hot-Wallet-Risiko	150
	Sweeping von Guthaben	15
	Uptime und Verfügbarkeit einer Lightning-Node	159
	Fehler tolerieren und die Dinge automatisieren	159
	Die Node-Verfügbarkeit überwachen	160
	Watchtower	16

	Kanalmanagement	162
	Ausgehende Kanäle öffnen	162
	Eingehende Liquidität beschaffen	166
	Kanäle schließen	167
	Kanäle wieder ausgleichen	167
	Routing-Gebühren	168
	Node-Management	169
	Ride The Lightning	170
	lndmon	170
	ThunderHub.	170
	Fazit	171
	1 azıt	1/1
Tei	il II Das Lightning-Netzwerk im Detail	
6	Architektur des Lightning-Netzwerks	175
U	Die Lightning-Netzwerk-Protokoll-Suite.	175
	Lightning im Detail	175
	Lighthing in Detail	176
7	Zahlungskanäle	179
-	Eine andere Art, das Bitcoin-System zu nutzen	180
	Bitcoin-Eigentümerschaft und -Kontrolle	181
	Diversität der (unabhängigen) Eigentümerschaft und Multisig	181
	Gemeinsamer Besitz ohne unabhängige Kontrolle	182
	»Gesperrte« und nicht einzulösende Bitcoin verhindern	182
	Einen Zahlungskanal aufbauen	182
	Private und öffentliche Node-Schlüssel	183
	Node-Netzwerkadresse	183
		183
	Node-Kennungen	184
		184
	Den Kanal aufbauen	185
	Peer-Protokoll für das Kanalmanagement	
		185
	Die Funding-Transaktion	188
	Eine Multisignaturadresse generieren	189
	Die Funding-Transaktion konstruieren	189
	Signierte Transaktionen halten, aber nicht veröffentlichen	190
	Refunding vor Funding	190
	Die vorsignierte Refund-Transaktion konstruieren	190
	Transaktionen ohne Veröffentlichung verketten	191
	(Ver-)Formbarkeit von Transaktionen (Segregated Witness)	192
	Die Funding-Transaktion veröffentlichen	194

Zahlungen über den Kanal senden	195
Das Guthaben aufteilen	195
Konkurrierende Commitments	196
Mit alten Commitment-Transaktionen betrügen	197
Alte Commitment-Transaktionen widerrufen	197
Asymmetrische Commitment-Transaktionen	198
Verzögerte Auszahlung von to_self (Timelock)	199
Widerrufsschlüssel	200
Die Commitment-Transaktion	201
Den Kanalzustand verändern	203
Die commitment_signed-Nachricht	204
Die revoke_and_ack-Nachricht	204
Widerruf und neuer Commit	205
Betrug und Sanktionierung in der Praxis	205
Die Kanalreserve: das Spiel am Laufen halten	208
Den Kanal schließen (kooperatives Schließen)	209
Die shutdown-Nachricht	209
Die closing_signed-Nachricht	210
Die Kooperatives-Schließen-Transaktion	211
	212
Fazit	212
	212 213
Routing in einem Netzwerk aus Zahlungskanälen	
Routing in einem Netzwerk aus Zahlungskanälen	213
Routing in einem Netzwerk aus Zahlungskanälen	213 213
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung	213 213 215
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen	213 213 215 215
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing	213213215215216
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll	213213215215216
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll Implementierung atomarer vertrauensfreier Multihop-	213 213 215 215 216 222
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll Implementierung atomarer vertrauensfreier Multihop-Zahlungen	213 213 215 215 216 222
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel	213 213 215 215 216 222 222 223
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel. On-Chain- versus Off-Chain-Abwicklung von HTLCs	213 215 215 216 222 222 223 224
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel. On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts	213 213 215 215 216 222 222 223 224 225
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts HTLCs in Bitcoin-Skript Zahlungs-Preimage und Hashverifikation	213 213 215 215 216 222 222 223 224 225 226
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel. On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts. HTLCs in Bitcoin-Skript	213 213 215 216 222 222 223 224 225 226 227
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop- Zahlungen Ein erneuter Blick auf das Spenden-Beispiel On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts. HTLCs in Bitcoin-Skript Zahlungs-Preimage und Hashverifikation HTLCs von Alice zu Dina propagieren	213 213 215 216 222 222 223 224 225 226 227 227
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel. On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts. HTLCs in Bitcoin-Skript Zahlungs-Preimage und Hashverifikation HTLCs von Alice zu Dina propagieren Rückpropagation des Secrets Signaturbindung: Diebstahl von HTLCs verhindern	213 213 215 216 222 222 223 224 225 226 227 227 228
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop-Zahlungen Ein erneuter Blick auf das Spenden-Beispiel. On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts. HTLCs in Bitcoin-Skript Zahlungs-Preimage und Hashverifikation HTLCs von Alice zu Dina propagieren Rückpropagation des Secrets	213 213 215 216 222 222 223 224 225 226 227 227 228 230
Routing in einem Netzwerk aus Zahlungskanälen Routing einer Zahlung Routing versus Wegfindung Ein Netzwerk von Zahlungskanälen aufbauen Ein reales Beispiel für das Routing Fairness-Protokoll. Implementierung atomarer vertrauensfreier Multihop- Zahlungen Ein erneuter Blick auf das Spenden-Beispiel. On-Chain- versus Off-Chain-Abwicklung von HTLCs Hash Time-Locked Contracts. HTLCs in Bitcoin-Skript Zahlungs-Preimage und Hashverifikation HTLCs von Alice zu Dina propagieren Rückpropagation des Secrets Signaturbindung: Diebstahl von HTLCs verhindern Hashoptimierung	213 213 215 216 222 222 223 224 225 226 227 227 228 230 232
	Konkurrierende Commitments Mit alten Commitment-Transaktionen betrügen. Alte Commitment-Transaktionen widerrufen Asymmetrische Commitment-Transaktionen Verzögerte Auszahlung von to_self (Timelock) Widerrufsschlüssel. Die Commitment-Transaktion Den Kanalzustand verändern Die commitment_signed-Nachricht. Die revoke_and_ack-Nachricht Widerruf und neuer Commit. Betrug und Sanktionierung in der Praxis Die Kanalreserve: das Spiel am Laufen halten Den Kanal schließen (kooperatives Schließen) Die shutdown-Nachricht Die closing_signed-Nachricht

9	Kanalbetrieb und Zahlungsweiterleitung	237
	Lokal (einzelner Kanal) versus geroutet (mehrere Kanäle)	238
	Zahlungen weiterleiten und Commitments aktualisieren mit HTLCs	238
	Nachrichtenfluss für HTLC und Commitment	239
	Zahlungen mit HTLCs weiterleiten	239
	Einen HTLC hinzufügen	239
	Die update_add_HTLC-Nachricht	240
	HTLC in Commitment-Transaktionen	241
	Neues Commitment mit HTLC-Output	242
	Alice' Commit	242
	Bob bestätigt das neue Commitment und widerruft das alte	244
	Bobs Commit	246
	Mehrere HTLCs	248
	Den HTLC einhalten	249
	HTLC-Propagation	249
	Dina erfüllt den HTLC mit Chan	249
	Bob verrechnet den HTLC mit Alice	250
	Einen HTLC aufgrund eines Fehlers oder Verfallsdatums entfernen	253
	Eine lokale Zahlung vornehmen	254
	Fazit	255
10	Onion-Routing	257
	Ein anschauliches Beispiel des Onion-Routings	258
	Einen Pfad wählen	258
	Die Schichten aufbauen	259
	Die Schichten abschälen	261
	Einführung in das Onion-Routing von HTLCs	262
	Alice wählt den Pfad	262
	Alice konstruiert die Nutzdaten	264
	Schlüsselgenerierung.	267
	Die Onion-Schichten verpacken	271
	Onions fester Länge	271
	Die Onion verpacken (Zusammenfassung)	272
	Dinas Hop-Nutzdaten verpacken	273
	Chans Hop-Nutzdaten verpacken	277
	Bobs Hop-Nutzdaten verpacken	278
	Das finale Onion-Paket	279
	Die Onion senden	280
	Die update_add_htlc-Nachricht	280
	Alice sendet die Onion an Bob	280
	Bob überprüft die Onion	281
	Bob generiert Füllbytes	281

	Bob »entschleiert« seine Hop-Nutzdaten	282
	Bob extrahiert den äußeren HMAC für den nächsten Hop	283
	Bob entfernt seine Nutzdaten und verschiebt die	
	Onion-Daten nach links	283
	Bob konstruiert das neue Onion-Paket	284
	Bob verifiziert die HTLC-Details	284
	Bob sendet update_add_htlc an Chan	284
	Chan leitet die Onion weiter	285
	Dina empfängt die finalen Nutzdaten	286
	Fehler zurückgeben	286
	Fehlermeldungen	287
	Spontane Zahlungen per keysend	289
	Benutzerdefinierte Onion-TLV-Records	290
	keysend-Zahlungen senden und empfangen	290
	Keysend und benutzerdefinierte Records in	2,0
	Lightning-Anwendungen	291
	Fazit	291
	Tuzit	271
11	Gossip und der Kanal-Graph	293
	Peers entdecken	296
	P2P-Bootstrapping	296
	DNS-Bootstrapping	297
	SRV-Query-Optionen	300
	Der Kanal-Graph.	301
	Ein gerichteter Graph.	301
	Gossip-Protokoll-Nachrichten	302
	Die node_announcement-Nachricht	303
	Die channel_announcement-Nachricht	305
	Die channel_update-Nachricht	309
	Fortlaufende Pflege des Kanal-Graphen	310
	Fazit	310
	1 421	510
12	Wegfindung und Zustellung der Zahlung	311
	Wegfindung in der Lightning-Protokoll-Suite	311
	Wo ist das BOLT?	312
	Wegfindung: Welches Problem lösen wir?	312
	Wahl des besten Pfads	313
	Wegfindung in Mathematik und Informatik	313
	Kapazität, Guthaben, Liquidität	314
	Unsicherheit der Guthaben	314
	Komplexität der Wegfindung	315
	Die Dinge einfach halten	316
	Wegfindung und Zahlungszustellung	316
	vi eginiaang ana zamangozaothang	210

	Aufbau des Kanal-Graphen	317
	Liquidität: Unsicherheit und Wahrscheinlichkeit	320
	Gebühren und andere Kanalmetriken	322
	Pfadkandidaten finden	323
	Zustellung der Zahlung (Versuch-und-Irrtum-Schleife)	324
	Erster Versuch (Pfad #1)	324
	Zweiter Versuch (Pfad #4)	325
	Multipart-Zahlungen	326
	MPP nutzen	327
	Versuch und Irrtum über mehrere »Runden«	328
	Fazit	330
13	Wire-Protokoll: Framing und Erweiterbarkeit	331
	Messaging-Schicht in der Lightning-Protokoll-Suite	331
	Wire-Framing	332
	High-Level-Wire-Framing.	332
	Typcodierung	333
	Type-Length-Value-Nachrichtenerweiterungen	334
	Das Protocol-Buffers-Nachrichtenformat	334
	Vor- und Rückwärtskompatibilität	334
	Type-Length-Value-Format	335
	BigSize-Integercodierung	336
	Beschränkungen der TLV-Codierung	336
	Kanonische TLV-Codierung	336
	Feature-Bits und Erweiterbarkeit des Protokolls	337
	Feature-Bits als Mechanismus zur Erkennung von Upgrades	337
	TLV für Vor- und Rückwärtskompatibilität	339
	Taxonomie des Upgrade-Mechanismus	339
	Updates auf Ebene der Kanalkonstruktion	341
	Fazit	341
14	, i	343
	Verschlüsselter Transport in der Lightning-Protokoll-Suite	343
	Einführung	344
	Der Kanal-Graph als dezentralisierte Public-Key-Infrastruktur	344
	Warum nicht TLS?	345
	The Noise-Protokoll-Framework	345
	Lightnings verschlüsselter Transport im Detail	346
	Noise_XK: Noise-Handshake des Lightning-Netzwerks	346
	Handshake-Notation und Protokollfluss	347
	Übersicht auf hohem Niveau	347
	Handshake in drei Akten	348
	Fazit	358

15	Lightning-Zahlungsanforderungen	359
	Rechnungen in der Lightning-Protokoll-Suite	359
	Einführung	359
	Lightning-Rechnungen versus Bitcoin-Adressen	360
	BOLT #11: Serialisierung und Interpretation von	
	Lightning-Rechnungen	361
	Rechnungscodierung in der Praxis	361
	Das visuell lesbare Präfix	36
	bech32 und das Datensegment	362
	Fazit	364
16	Sicherheit und Privatsphäre im Lightning-Netzwerk	365
	Warum ist Privatsphäre wichtig?	365
	Privatsphäre definieren	365
	Evaluierung der Privatsphäre	366
	Anonyme Menge.	367
	Privatsphäre: Unterschiede zwischen	
	Lightning-Netzwerk und Bitcoin	368
	Angriffe auf Lightning	370
	Zahlungsbeträge beobachten	370
	Sender und Empfänger verknüpfen	370
	Kanalguthaben aufdecken (Probing)	372
	Denial of Service.	374
	Commitment-Jamming	376
	Einfrieren der Kanalliquidität	370
	Schichtenübergreifende Deanonymisierung	376
	Clustering von On-Chain-Bitcoin-Entitäten	37
	Clustering von Off-Chain-Lightning-Nodes	378
	Schichtenübergreifende Verknüpfung: Lightning-Nodes	
	und Bitcoin-Entitäten	379
	Lightning-Graph	379
	Wie sieht der Lightning-Graph wirklich aus?	380
	Zentralisierung im Lightning-Netzwerk	382
	Ökonomische Anreize und Graph-Struktur	383
	Praktischer Rat zum Schutz der Privatsphäre	383
	Unangekündigte Kanäle	383
	Routing-Erwägungen	384
	Kanäle akzeptieren	38
	Fazit	386
	Quellenangaben und Literaturhinweise	38

17 Fazit .		389
Dezen	itralisierte und asynchrone Innovation	389
In	novationen im Bitcoin-Protokoll und bei Bitcoin-Skript	390
In	nnovationen des Lightning-Protokolls	390
T	LV-Erweiterbarkeit	391
K	onstruktion von Zahlungskanälen	391
	pt-in-Ende-zu-Ende-Features	391
	ning-Anwendungen (LApps)	392
	le Plätze, fertig, los!	393
Anhang A	Bitcoin-Grundlagen	395
Anhang B	Docker: Grundlegende Installation und Nutzung	415
Anhang C	Nachrichten des Wire-Protokolls	419
Anhang D	Quellen und Lizenzinformationen	437
Glossar		439
Index		457

Vorwort

Das Lightning-Netzwerk (engl. *Lightning Network*, kurz auch LN) ist ein Second-Layer-Peer-to-Peer-Netzwerk, das es uns erlaubt, Bitcoin-Zahlungen »Off-Chain« abzuwickeln, d.h., ohne sie als Transaktionen auf der Bitcoin-Blockchain bestätigen zu müssen.

Das Lightning-Netzwerk bietet uns sichere, günstige, schnelle und deutlich vertraulichere Bitcoin-Zahlungen, und das auch bei sehr kleinen Beträgen.

Basierend auf der Idee von Zahlungskanälen, die erstmals von Bitcoin-Erfinder Satoshi Nakamoto vorgeschlagen wurden, ist das Lightning-Netzwerk ein geroutetes Netzwerk, bei dem Zahlungen über einen Pfad von Zahlungskanälen vom Sender zum Empfänger geleitet werden.

Die ursprüngliche Idee des Lightning-Netzwerks wurde 2015 in der wegweisenden Arbeit »The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments« von Joseph Poon und Thaddeus Dryja vorgeschlagen. Im Jahr 2017 lief im Internet ein Lightning-»Test«-Netzwerk, in dem unterschiedliche Gruppen kompatible Implementierungen entwickelten und einige Kompatibilitätsstandards festlegten. 2018 ging das Lightning-Netzwerk »live«, und die Zahlungen begannen zu fließen.

Im Jahr 2019 vereinbarten Andreas M. Antonopoulos, Olaoluwa Osuntokun und René Pickhardt, beim Schreiben dieses Buchs zusammenzuarbeiten. Wie es scheint, mit Erfolg!

Leserkreis

Dieses Buch richtet sich hauptsächlich an ein technisches Publikum, das die Grundlagen von Bitcoin und anderen Blockchains versteht.

Verwendete Konventionen

Im Buch folgen wir diesen typografischen Konventionen:

Kursivschrift

Wird für neue Begriffe, URLs, E-Mail-Adressen, Dateinamen und Dateierweiterungen verwendet.

Nichtproportionalschrift

Wird für Programmlistings verwendet. Im normalen Fließtext werden damit Programmelemente wie Variablen- oder Funktionsnamen, Datenbanken, Datentypen, Umgebungsvariablen, Anweisungen und Schlüsselwörter hervorgehoben.

Nichtproportionalschrift fett

Wird für Befehle oder andere Eingaben eingesetzt, die Sie wortwörtlich eingeben müssen.

Nichtproportionalschrift kursiv

Wird für Text verwendet, der durch benutzereigene oder durch den Kontext bestimmte Werte ersetzt wird.

Mit diesem Symbol wird ein Tipp oder ein Vorschlag angezeigt.

Mit diesem Symbol wird ein allgemeiner Hinweis angezeigt.

Mit diesem Symbol wird eine Warnung angezeigt.

Codebeispiele

Die Beispiele sind in Go, C++ und Python geschrieben und verwenden die Kommandozeilen unixoider Betriebssysteme. Alle Code-Snippets finden Sie im GitHub-Repository im *code*-Unterverzeichnis. Laden Sie den Buchcode herunter, probieren Sie die Codebeispiele aus und senden Sie Korrekturen an: GitHub (https://github. com/lnbook/lnbook).

Alle Code-Snippets können für die meisten Betriebssysteme mit einer minimalen Installation der Compiler, Interpreter und Bibliotheken für die entsprechenden Sprachen repliziert werden. Wenn nötig, stellen wir grundlegende Installationsanweisungen und schrittweise Beispiele für die Ausgaben bereit.

Einige der Code-Snippets wurden für den Druck aufbereitet. In diesen Fällen wurden die Zeilen mit einem Backslash-Zeichen (\) gefolgt von einem Newline-Zeichen getrennt. Wenn Sie mit diesen Beispielen arbeiten, müssen Sie die beiden Zeichen entfernen und die Zeilen wieder zusammenfassen. Die Ergebnisse sollten dann denen der Beispiele entsprechen.

Alle Code-Snippets verwenden wann immer möglich reale Werte und Berechnungen. Sie können sich also von Beispiel zu Beispiel vorarbeiten und kommen immer zu den gleichen Ergebnissen wie das Buch. So sind beispielsweise die privaten Schlüssel und die dazugehörigen öffentlichen Schlüssel und Adressen alle echt.

Verwendung der Codebeispiele

Bei technischen Fragen oder Problemen mit den Codebeispielen senden Sie bitte eine E-Mail an bookquestions@oreilly.com.

Dieses Buch ist dazu gedacht, Ihnen bei der Erledigung Ihrer Arbeit zu helfen. Im Allgemeinen dürfen Sie den Code in diesem Buch in Ihren eigenen Programmen oder Dokumentationen verwenden. Solange Sie den Code nicht in großem Umfang reproduzieren, brauchen Sie uns nicht um Erlaubnis zu bitten. Der Verkauf oder Vertrieb von Beispielen aus O'Reilly-Büchern ist dagegen genehmigungspflichtig. Signifikante Teile von Beispielcode aus diesem Buch für die eigene Produktdokumentation zu verwenden, ist genehmigungspflichtig.

Wir freuen uns über eine Quellenangabe, verlangen sie aber nicht unbedingt. Zu einer Quellenangabe gehören normalerweise Autor, Titel, Verlagsangabe, Veröffentlichungsjahr und ISBN, hier also: »Mastering the Lightning Network by Andreas M. Antonopoulos, Olaoluwa Osuntokun, and René Pickhardt (O'Reilly). Copyright 2022 aantonop Books LLC, René Pickhardt, and uuddlrlrbas LLC, ISBN 978-1-492-05486-3«.

Mastering the Lightning Network wird unter der Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 International License (CC BY-NC-ND 4.0) angeboten.

Sollten Sie befürchten, dass Ihre Verwendung der Codebeispiele gegen das Fairnessprinzip oder die Genehmigungspflicht verstoßen könnte, nehmen Sie bitte unter permissions@oreilly.com Kontakt mit uns auf.

Hinweise auf Unternehmen und Produkte

Alle Hinweise auf Unternehmen oder Produkte dienen der Information, Demonstration oder Referenz. Die Autoren unterstützen keines der genannten Unternehmen oder Produkte. Der Einsatz und die Sicherheit der in diesem Buch vorgestellten Produkte, Projekte oder Codefragmente wurden nicht getestet. Deren Nutzung erfolgt auf eigene Gefahr!

Adressen und Transaktionen in diesem Buch

Die Bitcoin-Adressen, Transaktionen, Schlüssel, QR-Codes und Blockchain-Daten in diesem Buch sind größtenteils echt. Sie können also die Blockchain durchgehen, sich die in den Beispielen enthaltenen Transaktionen genau ansehen und sie mit Ihren eigenen Skripten/Programmen abrufen.

Beachten Sie aber, dass die in diesem Buch zur Generierung von Adressen verwendeten privaten Schlüssel »verbrannt« wurden. Wenn Sie also Geld an diese Adressen senden, ist es für immer verloren, oder es kann von jedem abgeschöpft werden, der die hier abgedruckten privaten Schlüssel kennt.

Bitte senden Sie keinesfalls Geld an irgendeine der in diesem Buch verwendeten Adressen! Ihr Geld landet bei einem anderen Leser oder ist für immer verloren.

Andreas kontaktieren

Sie erreichen Andreas M. Antonopoulos über seine persönliche Website: https://aantonop.com

Folgen Sie Andreas' Kanal auf YouTube:

https://www.youtube.com/aantonop

Folgen Sie Andreas' Seite auf Facebook:

https://www.facebook.com/AndreasMAntonopoulos

Folgen Sie Andreas auf Twitter:

https://twitter.com/aantonop

Folgen Sie Andreas auf LinkedIn:

https://linkedin.com/company/aantonop

Andreas möchte sich auch bei allen Förderern bedanken, die seine Arbeit durch monatliche Spenden unterstützen. Sie können Andreas auf Patreon unterstützen unter https://patreon.com/aantonop.

René kontaktieren

Sie erreichen René Pickhardt über seine persönliche Website:

https://ln.rene-pickhardt.de

Folgen Sie Renés Kanal auf YouTube:

https://www.youtube.com/user/RenePickhardt

Folgen Sie René auf Twitter:

https://twitter.com/renepickhardt

Folgen Sie René auf LinkedIn:

https://www.linkedin.com/in/rene-pickhardt-80313744

René möchte sich ebenfalls bei allen Förderern bedanken, die seine Arbeit durch eine monatliche Spende unterstützen. Sie können René auf Patreon unterstützen unter https://patreon.com/renepickhardt.

Sie können seine Arbeit aber auch direkt unter https://donate.ln.rene-pickhardt.de über das Lightning-Netzwerk in Bitcoin unterstützen. Dafür ist René ebenso dankbar wie seinen Förderern bei Patreon.

Olaoluwa Osuntokun kontaktieren

Sie erreichen Olaoluwa Osuntokun über seine berufliche E-Mail-Adresse: laolu@lightning.engineering

Folgen Sie Olaoluwa auf Twitter: https://twitter.com/roasbeef

Danksagungen von Andreas

Meine Liebe zu Wörtern und Büchern verdanke ich meiner Mutter Theresa, die mich in einem Haus aufzog, in dem Bücher jede Wand mit Beschlag belegten. Meine Mutter kaufte mir 1982 auch meinen ersten Computer, obwohl sie sich selbst als »technophob« beschrieb. Mein Vater Menelaos, ein Bauingenieur, der sein erstes Buch mit 80 veröffentlichte, lehrte mich logisches und analytisches Denken und weckte meine Leidenschaft zu Wissenschaft und Technik.

Ich danke euch allen für eure Unterstützung während meiner Reise.

Danksagungen von René

Ich möchte dem deutschen Bildungssystem danken, dem ich das Wissen verdanke, auf dem meine Arbeit aufbaut. Es ist eines der größten mir gemachten Geschenke. Ebenso möchte ich dem deutschen Gesundheitswesen danken und allen Menschen, die in diesem Bereich arbeiten. Ihr Einsatz und ihr Durchhaltevermögen machen sie zu meinen persönlichen Helden, und ich werde nie die Hilfe, Aufmerksamkeit und Unterstützung vergessen, die mir zuteilwurde, als ich sie benötigte. Mein Dank geht an all die Studenten, denen ich etwas lehren durfte und die sich in interessanten Diskussionen und Fragen engagierten. Von ihnen habe ich das meiste gelernt. Ich bin auch der Bitcoin- und Lightning-Netzwerk-Community dankbar, die mich freundlich willkommen hieß, sowie den Enthusiasten und Privatpersonen, die meine Arbeit finanziell unterstützten und das auch weiterhin tun. Ich danke ganz besonders allen Open-Source-Entwicklern (nicht nur Bitcoin und dem Lightning-Netzwerk) und den Menschen, die sie finanzieren, um diese Technik möglich zu machen. Ein besonderer Dank an meine Mitautoren, die den Weg mit mir gegangen sind. Und nicht zuletzt danke ich meinen Liebsten.

Danksagungen von Olaoluwa Osuntokun

Ich möchte dem großartigen Team von Lightning Labs danken, ohne die es kein LND gäbe. Ich möchte auch der ursprünglichen Gruppe von Autoren der BOLT-Spezifikation danken: Rusty Russell, Fabrice Drouin, Conner Fromnkchet, Pierre-Marie Padiou, Lisa Neigut und Christian Decker. Nicht zuletzt möchte ich Joseph Poon und Tadge Dryja danken, den Autoren des ursprünglichen Lightning-Netzwerk-Papers, ohne die es kein Lightning-Netzwerk gäbe, über das man ein Buch schreiben kann.

Beitragende

Viele Beitragende lieferten Kommentare, Korrekturen und Ergänzungen zu diesem Buch, als es gemeinschaftlich auf GitHub geschrieben wurde.

Nachfolgend eine alphabetisch sortierte Liste aller GitHub-Beitragenden mit deren GitHub-IDs in Klammern:

- 8go (@8go)
- Aagil Aziz (@batmanscode)
- Alexander Gnip (@quantumcthulhu)
- Alpha Q. Smith (@alpha_github_id)
- Ben Skee (@benskee)
- Brian L. McMichael (@brianmcmichael)
- CandleHater (@CandleHater)
- Daniel Gockel (@dancodery)
- Dapeng Li (@luislee818)
- Darius E. Parvin (@DariusParvin)
- Doru Muntean (@chriton)
- Eduardo Lima III (@elima-iii)
- Emilio Norrmann (@enorrmann)
- Francisco Calderón (@grunch)
- Francisco Requena (@FrankyFFV)
- François Degros (@fdegros)
- Giovanni Zotta (@GiovanniZotta)
- Gustavo Silva (@GustavoRSSilva)
- Guy Thayakorn (@saguywalker)
- Haoyu Lin (@HAOYUatHZ)
- Hatim Boufnichel (@boufni95)
- Imran Lorgat (@ImranLorgat)

- Jeffrey McLarty (@jnmclarty)
- John Davies (@tigeryant)
- Julien Wendling (@trigger67)
- Jussi Tiira (@juhi24)
- Kory Newton (@korynewton)
- Lawrence Webber (@lwebbz)
- Luigi (@gin)
- Maximilian Karasz (@mknoszlig)
- Omega X. Last (@omega_github_id)
- Owen Gunden (@ogunden)
- Patrick Lemke (@PatrickLemke)
- Paul Wackerow (@wackerow)
- Randy McMillan (@RandyMcMillan)
- René Köhnke (@rene78)
- Ricardo Marques (@RicardoM17)
- Sebastian Falbesoner (@theStack)
- Sergei Tikhomirov (@s-tikhomirov)
- Severin Alexander Bühler (@SeverinAlexB)
- Simone Bovi (@SimoneBovi)
- Srijan Bhushan (@srijanb)
- Taylor Masterson (@tjmasterson)
- Umar Bolatov (@bolatovumar)
- Warren Wan (@wlwanpan)
- Yibin Zhang (@z4y1b2)
- Zachary Haddenham (@senf42)

Ohne die Hilfe der oben aufgeführten Personen wäre dieses Buch nicht möglich gewesen. Eure Beiträge demonstrieren die Kraft von Open Source und einer offenen Kultur, und wir sind euch unendlich dankbar.

Vielen Dank.

Ouellen

Ein Teil des Materials in diesem Buch stammt aus unterschiedlichen Public-Domainbzw. Open-License-Quellen. Für andere Teile wurden Genehmigungen erteilt. Details zu Quellen, Lizenzen und Quellenzuordnungen finden Sie in Anhang D.

Vorwort zur deutschen Ausgabe

Als Satoshi Nakamoto Bitcoin 2009 veröffentlichte, dauerte es nicht lange, bis sich eine kleine Gruppe technisch Begeisterter zusammenfand, um die Vor- und Nachteile des neuen Systems zu diskutieren und damit herumzuspielen. Ich gehöre selbst auch zu den Leuten, die eher zufällig auf Bitcoin gestoßen sind, aber seitdem ich Bitcoin entdeckt habe, lässt es mich nicht mehr los.

Das Ziel, das sich Satoshi gesetzt hatte, war, dass Bitcoin ein globales Wertetransfer-Netzwerk werden sollte, ohne Mittelsmänner. In diesem Netzwerk sollten Werte in Form von Bitcoins beliebig hin und her verschoben werden können. Das Ganze durch pseudonyme Adressen ergänzt, um die Privatsphäre der Teilnehmer zu schützen.

Anfangs waren es noch wenige, die eher aus technischem Interesse mitmachten, denn damals wurden Bitcoins noch kein Wert zugeschrieben. Bereits zu diesem Zeitpunkt war aber schon klar, dass, sollte Bitcoin erfolgreich sein, wir schnell an die Grenzen des damaligen Systems stoßen würden. Deshalb mussten neue Ideen her.

Die wahrscheinlich schwierigste Frage war, wie Bitcoin denn skalieren könnte. Wie sollte Bitcoin sich also bei steigender Nachfrage anpassen, um allen Menschen die Möglichkeit zu geben, Bitcoin zu nutzen. Das Problem dabei war nämlich, dass die Blockchain, die von Satoshi für Bitcoin erfundene Technologie, ein geteiltes Medium darstellt, allerdings mit begrenzter Kapazität für das Bearbeiten von Transaktionen. Diese Frage stellten wir uns schon sehr früh, und 2012 war mir klar, dass ich meine Forschung im Rahmen meines Doktorats diesem Thema widmen würde.

Eine potenzielle Lösung waren sogenannte Micropayment Channels. Bei Micropayment Channels, auch Off-Chain-Protokolle genannt, handelt es sich um Systeme, die auf einer Blockchain aufbauen, um deren Nutzen zu erweitern. Bei Off-Chain-Protokollen werden Änderungen nicht mehr dem gesamten Netzwerk mitgeteilt, sondern zunächst nur den Teilnehmern, die an einer Transaktion beteiligt sind. Das gesamte Netzwerk wird erst später informiert. Die Saldierung aller stattfindenden Off-Chain-Transfers hat den Vorteil, dass am Ende nur eine einzige

ı

Transaktion bestätigt werden muss. Und da für diese Bestätigung immer On-Chain-Gebühren anfallen, ist es viel kostengünstiger, wenn eine On-Chain-Gebühr auf beliebig viele Off-Chain-Transfers verteilt werden kann.

Was anfangs noch sehr abstrakt war, wurde durch Experimente in dieser Richtung immer konkreter: angefangen mit den einfachen unidirektionalen Channels von Matt Corallo und Jeremy Spillmann bis hin zu dem Lightning Network Paper von Joseph Poon und Tadge Dryja.

Als Joseph und Tadge 2015 das Lightning Network Paper publizierten, stieß es auf großes Interesse, gerade bei denjenigen von uns, denen der Mangel einer plausiblen Lösung für die Skalierung von Bitcoin unter den Nägeln brannte. Aber Skalierbarkeit sollte nicht der einzige Vorteil des Lightning Network sein, hinzu kommt auch, dass es in Echtzeit Zahlungen ermöglicht und die Privatsphäre potenziell besser schützen kann, weil nicht mehr alles bis in alle Ewigkeit auf der Blockchain gespeichert wird.

Doch die Vorteile brachten wiederum einiges an Komplexität und neuen Konzepten mit sich, die die Nutzer der Technologie erst einmal kennenlernen und verstehen müssen. Beim Lightning-Netzwerk muss man sowohl Bitcoin als auch die Konzepte hinter Lightning verstehen, wodurch der Einstieg alles andere als einfach ist.

Hinzu kommt, dass das Paper an sich sehr komplex ist und eher ein abstraktes Bild als ein voll funktionsfähiges System beschreibt. Es fehlten alle technischen Details, bis auf das Grundgerüst in Form der Bitcoin-Transaktionen.

So passierte erst mal nichts, bis Rusty Russell von Blockstream sich des Problems annahm und anfing, die fehlenden Stellen auszuschmücken, denn eines war uns klar, dieses System musste unbedingt real werden. Kurz darauf fingen dann auch die Kollegen von Acinq und Lightning Labs an, eine Implementierung zu bauen. Im Herbst 2016 entschieden die drei Teams dann zusammenzuarbeiten, um ein einziges großes Netz zu bauen, in dem jeder jedem anderen Teilnehmer Bitcoins senden konnte: schnell und anonym. Und so fing die Lightning Network Specification an, ein Prozess, der bis heute anhält.

Dieses Buch wendet sich an alle, die die Hintergründe hinter dem Lightning Netzwerk interessieren, ob das nun ein Nutzer ist, eine Entwicklerin, die auf Lightning aufbauen will, oder vielleicht sogar ein zukünftiger Protokollentwickler. Es bildet das fehlende Bindeglied zwischen dem Paper von 2015 und dem Protokoll, so wie es heute aktiv im Netzwerk genutzt wird, und die Leserinnen und Leser werden langsam und schrittweise an das komplexe Thema herangeführt.

Bei den Autoren handelt es sich um echte Heavyweights der Bitcoin Community. Andreas Antonopoulos ist langjähriger Speaker und hat die unglaublich wertvolle Fähigkeit, komplexe Themen anschaulich zu vermitteln. Olaoluwa Osuntokun, Entwickler der ersten Stunde, bringt die praktische Erfahrung und das notwendige Detailwissen mit und René Pickhardt den theoretischen Hintergrund, um das Protokoll abstrakt zu behandeln.

Ein solches Buch zu schreiben, ist nicht einfach, denn es handelt sich beim Lightning-Netzwerk um ein bewegliches Ziel, und so beleuchtet das Buch sowohl Konzepte als auch deren konkrete Umsetzungen.

Es handelt sich bei diesem Buch also um ein Nachschlagewerk, über das ich mich damals, als wir das Protokoll entwickelt haben, sehr gefreut hätte.

> Dr. Christian Decker Researcher, Blockstream

Das Lightning-Netzwerk verstehen

Eine Übersicht über das Lightning-Netzwerk für jeden, der die grundlegenden Konzepte und die Nutzung des Lightning-Netzwerks verstehen will.