SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY · CONTINUUM MECHANICS

Per Olsson

Transport Phenomena in Newtonian Fluids - A Concise Primer

SpringerBriefs in Applied Sciences and Technology

SpringerBriefs in Continuum Mechanics

Series Editors

Holm Altenbach, Magdeburg, Germany Andreas Öchsner, Johor Bahru, Malaysia

For further volumes: http://www.springer.com/series/10528 Per Olsson

Transport Phenomena in Newtonian Fluids -A Concise Primer

Per Olsson Göteborg Sweden

 ISSN 2191-530X
 ISSN 2191-5318 (electronic)

 ISBN 978-3-319-01308-4
 ISBN 978-3-319-01309-1 (eBook)

 DOI 10.1007/978-3-319-01309-1
 springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013944552

© The Author(s) 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

The original version of the book was revised. For detailed information please see erratum. The erratum to the book is available at https://doi.org/10.1007/978-3-319-01309-1_7

Contents

1	Elem	entary N	Mathematics
	1.1	Introdu	ction 1
	1.2	Vector	Notation 1
		1.2.1	Scalar Product
		1.2.2	Cross Product
		1.2.3	The ∇ Operator
		1.2.4	Gradient Vector
		1.2.5	The Laplace Operator
		1.2.6	Divergence
		1.2.7	Curl 4
		1.2.8	Line Integrals 5
		1.2.9	Surface Integrals 5
		1.2.10	Volume Integrals
		1.2.11	The Stokes Theorem
		1.2.12	The Gauss Theorem
	1.3	Tensor	Notation
		1.3.1	The Einstein Summation Convention 7
		1.3.2	Derivative Notation
		1.3.3	The Kronecker Delta8
		1.3.4	The Levi-Civita Symbol 8
		1.3.5	Scalar Product
		1.3.6	Cross Product
		1.3.7	Gradient Vector
		1.3.8	Divergence
		1.3.9	Curl
		1.3.10	Line Integrals 10
		1.3.11	Surface Integrals 10
		1.3.12	The Stokes Theorem 10
		1.3.13	The Gauss Theorem 10

2	Mom	entum Transport	1				
	2.1	Introduction 1	1				
	2.2	The Navier-Stokes-Duhem Equation	1				
	2.3	The Bernoulli Equation.					
	2.4	Potential Flow	17				
	2.5	The Wave Equation 1	19				
	2.6		20				
	2.7	Analytical Solutions to the Navier-Stokes Equation	22				
		2.7.1 Flow Around a Sphere	22				
		2.7.2 Flow in a Cylindrical Tube	24				
			26				
			30				
		2.7.5 Radial Flow in a Slit	31				
		2.7.6 Flow in an Annular Channel	34				
		2.7.7 Couette Flow Between Two Rotating Cylinders 3	35				
	2.8		36				
		2.8.1 Potential Flow Around a Cylinder	37				
	2.9	Boundary Layer	39				
	2.10	Turbulent Flow	12				
	2.11	Flow Separation	14				
	2.12	Flow in a Packed Bed 4	16				
	2.13	Acoustic Impedance of Audio Sources 4	19				
		2.13.1 Plane Wave Radiation	50				
		2.13.2 Pulsating Sphere	51				
			52				
		2.13.4 Exponential Horn 5	53				
3	Energy Transport						
-	3.1						
	3.2		57				
	3.3	05	50				
	3.4	1 1	51				
	3.5		54				
	0.10		54				
		1	55				
			57				
		8	71				
	3.6	Empirical Correlations for Heat Transfer					
	2.0	1	73 73				
			74				
	Refer		76				
		······································					

4	Mass	Transport	77		
	4.1	Introduction	77		
	4.2	Molar Balance	77		
	4.3	Binary Diffusion	78		
•		Diffusion in Multi Component Systems of Gases	78		
	4.5 The Mass Transport Equation.				
	4.6	Mass Transfer Coefficient	81		
	4.7	Analytical Solutions to the Mass Transport Equation			
		4.7.1 Mass Transfer Around a Sphere	84		
		4.7.2 Mass Transfer in a Cylindrical Tube	84		
		4.7.3 Mass Transfer in a Rectangular Channel	85		
		4.7.4 Mass Transfer in a Slit	86		
	4.8	Empirical Correlations for Mass Transfer	87		
		4.8.1 Mass Transfer in a Packed Bed of Particles	87		
		4.8.2 Mass Transfer in a Package of Wire Screens.	88		
	4.9	Mass Transport in Porous Particles	89		
	Refere	ences	91		
Er	ratum	to: Elementary Mathematics	E1		
Er	ratum	to: Transport Phenomena in Newtonian Fluids - A Concise			
		Primer	E3		
Er	ratum	to: Transport Phenomena in Newtonian Fluids - A Concise			
		Primer	E5		
Inc	Index				

Introduction

This book describes transport phenomena in Newtonian fluids such as momentum transport, energy transport and mass transport. The book contains detailed derivations of the transport equations for these transport phenomena. The book also contains analytical solutions to the transport equations in some simple geometries.

Chapter 1 is a description of the basic mathematics used in the book. The chapter is not intended to be a textbook of mathematics, but contains only such information which is necessary for the reader to be able to read and understand the book's other content.

Chapter 2, which deals with momentum transport, contains a derivation of the Navier-Stokes-Duhem equation describing flow in a Newtonian fluid. Chapter 2 also contains the derivations of the Bernoulli equation, the pressure equation and the wave equation for sound waves. Further, the chapter contains analytical solutions to the flow equation in some simple geometries. The chapter also describes the boundary layer, turbulent flow and flow separation.

Chapter 3, which deals with energy transport, contains a derivation of the heat transport equation describing heat transport in a flowing Newtonian fluid. Heat transport in a flowing fluid is caused by thermal conduction and convection. The chapter also contains a definition of the heat transfer coefficient and analytical solutions for the heat transfer coefficient in some simple geometries. Chapter 2 contains the solutions to the Navier-Stokes equation in these geometries.

Chapter 4, which deals with mass transport, contains a derivation of the mass transport equation describing mass transport in a flowing Newtonian fluid. Mass transport in a flowing fluid is caused by diffusion and convection. The chapter also contains a definition of the mass transfer coefficient and analytical solutions for the mass transfer coefficient in some simple geometries. Chapter 2 contains the solutions to the Navier-Stokes equation in these geometries.

Chapter 1 Elementary Mathematics

1.1 Introduction

This chapter is intended for readers who are not familiar with the vector and tensor notation appearing in the book. The transport equations become much more compact if they are written with vector or tensor notation. This is especially true when the flow equation is written with tensor notation. The chapter is not intended to be a textbook of mathematics, but contains only such information which is necessary for the reader to be able to read and understand the book's other content. There is something improper to speak about vector and tensor notation. It is more proper to speak about *symbolic* and *indicial* notation but in this book *symbolic* notation will be called *vector notation* and *indicial notation* will be called *tensor notation*. Section. 1.3 contains only very basic information about tensors. The most important in Sect. 1.3 is the *Einstein summation convention* and the way to write partial derivatives with respect to the space coordinates with tensor notation. All quantities which are written with tensor notation in this book are Cartesian tensors. Equations written in other coordinate systems are not written with tensor notation. The chapter also contains descriptions of line integrals, surface integrals, volume integrals and some mathematical theorems such as the Stokes theorem and the Gauss theorem.

1.2 Vector Notation

An example of a vector is the the space vector \mathbf{x} in a Cartesian coordinate system. Vectors are denoted by bold straight style in this book. The space vector \mathbf{x} can be written

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
(1.1)

An erratum to this chapter is available at https://doi.org/10.1007/978-3-319-01309-1_5.

P. Olsson, *Transport Phenomena in Newtonian Fluids - A Concise Primer*, SpringerBriefs in Continuum Mechanics, DOI 10.1007/978-3-319-01309-1_1, © The Author(s) 2014

Fig. 1.1 The vectors **a** and **b**

where x, y and z are space coordinates in a Cartesian coordinate system.

1.2.1 Scalar Product

The scalar product between the vectors \mathbf{a} and \mathbf{b} is denoted $\mathbf{a} \cdot \mathbf{b}$ and is defined (see Fig. 1.1)

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$= a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| |\mathbf{b}| \cos \theta \qquad (1.2)$$

1.2.2 Cross Product

The cross product between the vectors **a** and **b** is denoted $\mathbf{a} \times \mathbf{b}$ and is defined (see Fig. 1.2)

