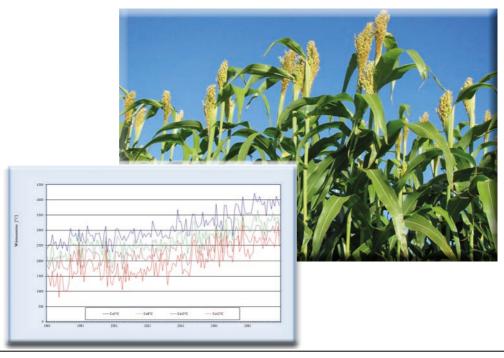
Erdsicht - Einblicke in geographische und geoinformationstechnische Arbeitsweisen


Schriftenreihe des geographischen Instituts der Universität Göttingen, Abteilung Kartographie, GIS und Fernerkundung Herausgegeben von Prof. Dr. Martin Kappas

Christine von Buttlar, Marianne Karpenstein-Machan, Roland Bauböck

Anbaukonzepte für Energiepflanzen in Zeiten des Klimawandels

Beitrag zum Klimafolgenmanagement in der Metropolregion Hannover-Braunschweig-Göttingen-Wolfsburg

ibidem

Christine von Buttlar, Marianne Karpenstein-Machan, Roland Bauböck

Anbaukonzepte für Energiepflanzen in Zeiten des Klimawandels

Ein Beitrag zum Klimafolgenmanagement in der Metropolregion Hannover-Braunschweig-Göttingen-Wolfsburg

Forschung für den Klimaschutz und Schutz vor Klimawirkungen Bundesministerium für Bildung und Forschung

Interdisziplinäres Zentrum für Nachhaltige Entwicklung

ERDSICHT - EINBLICKE IN GEOGRAPHISCHE UND GEOINFORMATIONSTECHNISCHE ARBEITSWEISEN

Schriftenreihe des Geographischen Instituts der Universität Göttingen, Abteilung Kartographie, GIS und Fernerkundung

Herausgegeben von Prof. Dr. Martin Kappas

ISSN 1614-4716

15 Arno Krause

Einführung eines GIS für die Landwirtschaftsverwaltungen der BRD auf Grundlage EU-rechtlicher und nationaler Verordnungen unter besonderer Berücksichtigung des Bundeslandes Mecklenburg-Vorpommern ISBN 3-89821-738-8

16 Pavel Propastin

Remote sensing based study on vegetation dynamics in dry lands of Kazakhstan ISBN 978-3-89821-823-8

17 Matthias Stähle

Trinkwasser in Delhi Versorgungsproblematik einer indischen Megastadt ISBN 978-3-89821-827-6

18 Roland Bauböck

Bioenergie im Landkreis Göttingen

GIS-gestützte Biomassepotentialabschätzung anhand ausgewählter Kulturen, Triticale und Mais

ISBN 978-3-89821-959-4

19 Wahib Sahwan

Geomorphologische Untersuchungen mittels GIS- und Fernerkundungsverfahren unter Berücksichtigung hydrogeologischer Fragestellungen Fallbeispiele aus Nordwest Syrien ISBN 978-3-8382-0094-1

20 Julia Krimkowski

Das Vordringen der Malaria nach Mitteleuropa im Zuge der Klimaerwärmung Fallbeispiel Deutschland ISBN 978-3-8382-0312-6

21 Julia Kubanek

Comparison of GIS-based and High Resolution Satellite Imagery Population Modeling

A Case Study for Istanbul ISBN 978-3-8382-0306-5

Christine von Buttlar, Marianne Karpenstein-Machan, Roland Bauböck

ANBAUKONZEPTE FÜR ENERGIEPFLANZEN IN ZEITEN DES KLIMAWANDELS

Beitrag zum Klimafolgenmanagement in der Metropolregion Hannover-Braunschweig-Göttingen-Wolfsburg

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

 ∞

ISSN: 1614-4716

ISBN-13: 978-3-8382-6525-4

© *ibidem*-Verlag Stuttgart 2013

Alle Rechte vorbehalten

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und elektronische Speicherformen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

All rights reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronical, mechanical, photocopying, recording or otherwise) without the prior written permission of the publisher. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Vorwort des Herausgebers

Die Reihe "Erdsicht – Einblicke in geographische und geoinformationstechnische Arbeitsweisen" soll Forschungsergebnisse und Arbeiten im Bereich der Erdsystemforschung vorstellen. Die Betrachtung der Erde als System ist als Inhalt heutiger und zukünftiger geowissenschaftlicher Gemeinschaftsforschung dringend gefordert. Die Herausforderungen liegen u.a. in der Erforschung der vielfältigen Interaktionen zwischen den verschiedenen Teilbereichen des Systems Erde. Hierzu zählen Wechselwirkungen zwischen fester Erde und Atmosphäre, zwischen der Landoberfläche und der Hydrosphäre oder zwischen Biosphäre, Hydrosphäre und Atmosphäre.

Der Mensch steht dabei mit seinen zentralen Nutzungsansprüchen (Ernährung – landwirtschaftliche Nutzung – Ressourcennutzung – Energieversorgung) im Mittelpunkt eines vielfach vernetzten Erdsystems. Der Mensch verändert Landschaften und Atmosphäre und greift somit in alle Skalenbereiche des Erdsystems ein. Insofern müssen diese Veränderungen beobachtet und bewertet werden, damit Konzepte für ein nachhaltiges Erdsystemmanagement auf den unterschiedlichen Raum- und Zeitskalen entwickelt werden können. Die neuen Geoinformationstechniken (Geostatistik; Geographische Informationssysteme – GIS; luft- und satellitengestützte Fernerkundungssysteme – Remote Sensing) helfen dabei, das System Erde zu beobachten und zu begreifen.

Der vorliegende Band mit dem Titel "Anbaukonzepte für Energiepflanzen in Zeiten des Klimawandels" von Christine von Buttlar, Marianne Karpenstein-Machan und Roland Bauböck greift ein aktuelles Problem der Klimafolgenforschung auf und knüpft an den bereits erschienenen ERDSICHT-Band "Bioenergie im Landkreis Göttingen. GIS-gestützte Biomassepotenzialabschätzung anhand ausgewählter Kulturen, Triticale und Mais" thematisch an.

Die Kernfrage dabei ist, welche konkreten Auswirkungen der Klimawandel auf regionaler Ebene (z.B. Agrarproduktion, Energieversorgung) haben wird und wie wir uns an die daraus resultierenden Probleme anpassen können? Hierzu sind neue Managementstrategien für unsere Landwirtschaft und Energieerzeugung gefragt. Das vorliegende Buch in der Reihe "ERDSICHT" fasst die Ergebnisse des interdisziplinären Forschungsprojektes "Regionales Management von Klimafolgen durch nachhaltige

standort- und klimaangepasste Anbaukonzepte für Energiepflanzen" zusammen und liefert wichtige Kernaussagen für zukünftige Entscheidungsträger.

Martin Kappas

Inhaltsverzeichnis

1 EI	INLEITUNG UND ZIELSTELLUNG	17
1.1	Forschungsverbundprojekt "Klimafolgenmanagement"	17
1.2	Teilprojekt Energiepflanzen	18
2 M	ATERIAL UND METHODEN	21
2.1	Gebietsübersicht und Standortbedingungen der Leitgebiete	21
2.2		
2.3	Beschreibung des Klimas und der phänologischen Phasen unterschiedlich	ier
	Kulturen im Ist-Szenario	23
2.4	Ertragsdaten des Landesamtes für Statistik Niedersachsen	24
2.5	Ertragsmodellierung mit BioSTAR	24
3 BI	ESTANDSAUFNAHME	27
3.1	Vom Klimawandel betroffene Produktionsfaktoren des Pflanzenbaus	27
3.2	Keimtemperaturen, Wasserbedarf und kritische Entwicklungsstadien	
	landwirtschaftlicher Kulturen	30
3.3	Ertragsentwicklung und Klimawandel seit 1961 bis heute	32
3.4	Ertragsentwicklungen und Extremjahre seit 1949 bis heute	36
3.5	Aktuelle Ackerkulturen und Fruchtfolgen in der Metropolregion	37
3.6	Standorteigenschaften, aktuelle Erträge und Energiefruchtfolgen in den	
	Leitgebieten	40
3.7	Kulturensteckbriefe	42
3.8	Energetische Einsatzbereiche von Ackerkulturen	44
4 EI	RGEBNISSE DER ZUKUNFTSSZENARIEN FÜR DIE LEITGEBIET	E. 47
4.1	Klimaänderungen in den Leitgebieten	47
4.	1.1Niederschläge und Temperatur	47
4.	1.2Wärmesummen	50
4.	1.3Frosttage	51
4.	1.4Auswirkungen auf die Vegetationszeiten	52
4.2	Modellierung der Ertragsleistung mit dem Pflanzenwachstumsmodell	58
4.	2.1Modellierte Ertragsszenarien im Leitgebiet Göttingen (Krebeck-	
	Wollbrandshausen)	58

	4.2.2Modellierte Ertragsszenarien im Leitgebiet Hildesheim (Alfeld)	62
	4.2.3Modellierte Ertragsszenarien im Leitgebiet Celle (Uetze)	65
4.	.3 Exemplarische Simulation von klimatischen Extremjahren und	
	Zusatzbewässerung im Hinblick auf die Ertragsleistung von Silomais und	
	Roggen	68
	4.3.1Simulation eines Trockenjahres mit reduzierter Niederschlagsmenge	68
	4.3.2Ertragsstabilität von Mais und Roggen im Vergleich	69
	4.3.3Einfluss von Zusatzbewässerung auf die Ertragsleistung von Roggen und	
	Silomais	71
4.	.4 Zusammenfassende Bewertung der Anpassungsfähigkeit der untersuchten	
	Kulturen im Klimawandel	73
<i>-</i> 1	FRUCHTFOLGEGESTALTUNG UNTER BERÜCKSICHTIGUNG DES	
	KLIMAWANDELS 5.1.1Grundlagen und Kulturenbeschreibung	
	5.1.2Fruchtfolgebeispiele für die nördliche Metropolregion	
	5.1.3Fruchtfolgebeispiele für die südliche Metropolregion	
	5.1.4Zusammenfassende Bewertung der Fruchtfolgebeispiele	
	5.1.42usammemassende Dewertung der Fruentiolgebeispiele	104
6 A	ACKER- UND PFLANZENBAULICHE MASSNAHMEN ZUR	
I	ANPASSUNG AN DEN KLIMAWANDEL	109
6.	.1 Grundlagen und Maßnahmenübersicht	109
6.	.2 Fruchtartenwahl und Fruchtfolgegestaltung	110
	6.2.1Fruchtartenwahl	111
	6.2.2Fruchtfolgegestaltung	112
	6.2.3Sortenwahl	112
6.	.3 Bestandesführung	114
	6.3.1 Angepasste Saat- und Erntetermine	114
	6.3.2Angepasstes Düngemanagement	115
	6.3.3Integrierter Pflanzenschutz	120
	.4 Maßnahmen der Bodenbearbeitung	
	6.4.1Überblick	123
	6.4.2Konventionelle Bodenbearbeitung	
	6.4.3Reduzierte Bodenbearbeitung	125
	6 4 4Direktsaatverfahren	129

6.5 Aussaat- und Pflanzverfahren	131
6.5.1Überblick	131
6.5.2Engsaatverfahren	132
6.5.3Untersaatverfahren	134
6.5.4Dammkultur	136
6.5.5Folienanbau	138
6.6 Pflanzenzüchtung	139
6.7 Ökologischer Landbau	143
6.8 Nutzung von Agrarinformationsdiensten	146
7 ZUSAMMENFASSUNG UND WEITERER FORSCHUNSGBEDA	ARF 149
8 ABSTRACT	161
9 LITERATURVERZEICHNIS	163

Tabellenverzeichnis

Tabelle 1: Vom Klimawandel betroffene Produktionsfaktoren des Pflanzenbaus	27
Tabelle 2: Ertragsbestimmende Faktoren von Kulturpflanzen	28
Tabelle 3: Folgen des Klimawandels für die Pflanzengesundheit	29
Tabelle 4: Wasserbedarf, Transpirationskoeffizienten und kritische	
Entwicklungsstadien nach BBCH-Code	31
Tabelle 5: Mindestkeimtemperaturen der untersuchten Kulturen	32
Tabelle 6: Mittlere Niederschläge und mittlere Jahresdurchschnittstemperaturen,	im
Winter- und Sommerhalbjahr in den Zeiträumen 1961 - 1990 und 19	91 -
2007 in Niedersachsen, den Landkreisen Göttingen, Hildesheim und	
Celle und Veränderung der Niederschläge [mm; %] und Temperature	en
[°C, %]	33
Tabelle 7: Änderung der Niederschläge in der Hauptvegetationszeit zwischen 196	51-
1990 und 1991-2007 für Niedersachsen und die drei Leitgebiete	
Göttingen, Hildesheim und Celle	34
Tabelle 8: Änderung der Jahresmitteltemperaturen in der Hauptvegetationszeit	
zwischen 1961-1990 und 1991-2007 für Niedersachsen und die drei	
Leitgebiete Göttingen, Hildesheim und Celle	34
Tabelle 9: Nutzbare Feldkapazitäten und Bodenpunkte in den drei Leitgebieten	40
Tabelle 10: Biomasseertragsleistungen (bei den Körnerfrüchten auf der Basis der	
Kornerträge kalkuliert) in den Leitgebieten (Mittelwerte der Jahre 19) 99 –
2008)	41
Tabelle 11: Typische Marktfruchtfrucht- und Biomassefruchtfolgen nördliche	
Metropolregion	42
Tabelle 12: Typische Marktfruchtfrucht- und Biomassefruchtfolgen südliche	
Metropolregion	42
Tabelle 13: Kulturartensteckbriefe am Beispiel der durchwachsenen Silphie	43
Tabelle 14: Übersicht und Bewertung von Kulturarteneigenschaften vor dem	
Hintergrund klimatischer Änderungen	44
Tabelle 15: Wertgebende Eigenschaften von Biomasse für verschiedene	
Konversionsverfahren und deren energetische	
Verwertungsmöglichkeiten	45

Tabelle 16:	Einsatzbereiche landwirtschaftlicher Kulturen bei der Energieerzeugung
Tabelle 17:	Mittlere monatliche Niederschlagssummen und
	Durchschnittstemperaturen im Leitgebiet Hildesheim für den Zeitraum
	1961-1990 (DWD Daten) sowie die Szenarienzeiträume 2021-2050 und
	2071-2100 (CLM Modellierung). (Datenbasis: Krause und Groß, 2011).
Taballa 10.	Mittlers manatlishe Niederschlagsgummen und
Tauche 16.	Mittlere monatliche Niederschlagssummen und Durchschnittstemperaturen im Leitzehiet Cättingen für den Zeitraum
	Durchschnittstemperaturen im Leitgebiet Göttingen für den Zeitraum
	1961-1990 (DWD Daten) sowie die Szenarienzeiträume 2021-2050 und
T 1 11 10	2071-2100 (Datenbasis: Krause und Groß, 2011)
Tabelle 19:	Mittlere monatliche Niederschlagssummen und
	Durchschnittstemperaturen im Leitgebiet Celle für den Zeitraum 1961-
	1990 (DWD Daten) sowie die Szenarienzeiträume 2021-2050 und 2071-
T 1 11 60	2100 (Datenbasis: Krause und Groß, 2011)
Tabelle 20:	Wärmesummen in den drei Leitgebieten für die 3 Szenarienzeiträume.
	Angabe der Veränderung vom (Ist-Zustand, DWD Daten) zu A1B 2021-
	2050 und A1B 2071-2100 (Datenbasis: Krause und Groß, 2011) 50
Tabelle 21:	Erster und letzter Frosttag im Jahr für die drei Leitgebiete Göttingen
	(Gö), Hildesheim (Hi) und Celle (UE) für die 3 Szenarienzeiträume.
	Angabe der Veränderung zum Ist-Zustand (DWD Daten); (Datenbasis
	A1B Szenarien: Krause und Groß, 2011)
Tabelle 22:	Änderung des Vegetationsbeginns und Endes (Datum) in den
	Klimaszenarien 2021-2050 und 2071-2100 im Vergleich zum Ist-
	Zustand 1961-1990 unter Berücksichtigung verschiedener
	Feldaufgangstemperaturen, im Mittel der Leitgebiete
Tabelle 23:	Modellierte Biomasseerträge von ausgewählten Energiepflanzen für die
	Klimaperioden 2021-2050 und 2070-2100, dargestellt als Änderung zu
	1961-1990 (Basisertrag) für das Leitgebiet Krebeck-Wollbrandshausen
	59
Tabelle 24:	Modellierte Biomasseerträge von ausgewählten Energiepflanzen für die
	Klimaperioden 2021-2050 und 2071-2100, dargestellt als Änderung zu
	1961-1990 (Basisertrag) für das Leitgebiet Alfeld

Tabelle 25: Modellierte Biomasseerträge von ausgewählten Energiepflanzen für die
Klimaperioden 2021-2050 und 2071-2100, dargestellt als Änderung zu
1961-1990 (Basisertrag) für das Leitgebiet Celle (Uetze)
Tabelle 26: Berechnung der Auswirkungen reduzierter Niederschlagsmengen auf die
Wasserverfügbarkeit und den Ertrag verschiedener Kulturen für drei
Leitgebiete auf Basis der DWD Daten a) Ist-Zustand voller
Niederschlag, b) 30% Niederschlagsreduktion
Tabelle 27: Variation des Niederschlags und des CO ₂ - Gehaltes und Auswirkungen
auf den modellierten Ertrag und Wasserbedarf bei Silomais am Beispiel
Uetze
Tabelle 28: Variation des Niederschlags und des CO ₂ - Gehaltes und Auswirkungen
auf den modellierten Ertrag und Wasserbedarf bei Winterroggen am
Beispiel Uetze
Tabelle 29: Ertragsleistung von Mais und Roggen bei unterschiedlichen
Feldkapazitäten und Beregnungsgaben auf Basis der Eckdaten des Ist-
Szenarios für das Leitgebiet Uetze
Tabelle 30: Positive Kultureigenschaften im Hinblick auf den Klimawandel
Tabelle 31: Veränderte Kulturartenwahl als Reaktion auf den Klimawandel
Tabelle 32: Übersicht der potenziellen Gewinner und Verlierer im Klimawandel
(Einschätzung auf Basis der Ertragsmodellierung und ackerbaulicher
Kenntnisse)76
Tabelle 33: Beispiel nördliche Metropolregion: Biogasfruchtfolge humusstark, Ist-
Zustand (1999-2007)
Tabelle 34: Beispiel nördliche Metropolregion: Biogasfruchtfolge Szenario A1B
2021-2050
Tabelle 35: Beispiel nördliche Metropolregion: Biogasfruchtfolge im Szenario A1B
2071-2100
Tabelle 36: Beispiel Mischfruchtfolge Marktfrucht - Bioenergie mit Angabe von
Erträgen, Humusbilanz und Wasserbedarf für den Ist-Zustand (1999-
2007)
Tabelle 37: Beispiel Mischfruchtfolge Marktfrucht – Bioenergie wasseroptimiert. Mi
Angabe von Erträgen, Humusbilanz und Wasserbedarf für das Szenario
A1B 2071-2100

Tabelle 38: Beispiel Mischfruchtfolge Marktfrucht - Bioenergie humus- und		
wasseroptimiert. Mit Angabe von Erträgen, Humusbilanz und		
Wasserbedarf für das Szenario A1B 2071-2100		
Abbildungsverzeichnis		
Abbildung 1: Struktur des Forschungsverbundprojektes (www.		
klimafolgenmanagement.de)18		
Abbildung 2: Struktur und Arbeitsbereiche des Teilprojektes Energiepflanzen		
(www.klimafolgenmanagement.de)		
Abbildung 3: Lage der Metropolregion und der Leitgebiete in Niedersachsen 21		
Abbildung 4: Flussdiagramm mit Eingangsparametern, die in das		
Biomasseertragsmodell BioSTAR einfließen		
Abbildung 5: Ertragsentwicklung im Zeitraum 1949 bis 2008 für verschiedene		
Getreidearten und Raps (Mittelwerte für Niedersachsen) (Datenquelle:		
Niedersächsisches Landesamt für Statistik 2008)		
Abbildung 6: Ertragsentwicklung im Zeitraum 1949 bis 2008 für Zuckerrübe, Mais		
und Kartoffeln, Mittelwerte für Niedersachsen (Daten:		
Niedersächsisches Landesamt für Statistik 2008)		
Abbildung 7: Kulturarten in % der Ackerfläche in niedersächsischen Landkreisen der		
Metropolregion im Jahr 1999 (Daten: Niedersächsisches Landesamt für		
Statistik 2008)		
Abbildung 8: Kulturarten in % der Ackerfläche in niedersächsischen Landkreisen der		
Metropolregion im Jahr 2007 (Daten: Niedersächsisches Landesamt für		
Statistik 2008)		
Abbildung 9: Relative Veränderung der angebauten Kulturarten in 2007 im Vergleich		
zu 1999 in niedersächsischen Landkreisen der Metropolregion (Daten:		
Niedersächsisches Landesamt für Statistik 2008)		
Abbildung 10: Entwicklung der jährlichen Wärmesummen oberhalb 5, 8, 10 und 12		
°C im Szenarien-Zeitraum 1961 bis 2100 am Beispiel des Leitgebietes		
Celle51		
Abbildung 11: Vegetationsdauer in Tagen in den Klimaszenarien 1961-1990, 2021-		
2050 und 2071-2100 unter Berücksichtigung verschiedener		

Feldaufgangstemperaturen. Leitgebiet Göttingen (Gemeinde Krebeck-
Wollbrandshausen)53
Abbildung 12: Vegetationsdauer in Tagen in den Klimaszenarien 1961-1990, 2021-
2050 und 2071-2100 unter Berücksichtigung verschiedener
Feldaufgangstemperaturen. Leitgebiet Hildesheim (Gemeinde Alfeld). 54
Abbildung 13: Vegetationsdauer in Tagen in den Klimaszenarien 1961-1990, 2021-
2050 und 2071-2100 unter Berücksichtigung verschiedener
Feldaufgangstemperaturen. Leitgebiet Celle (Gemeinde Uetze) 55
Abbildung 14: Vegetationsdauer in Tagen in den Klimaszenarien 1961-1990, 2021-
2050 und 2071-2100 unter Berücksichtigung verschiedener
Feldaufgangstemperaturen im Mittel der Leitgebiete57
Abbildung 15: Veränderung der Vegetationsdauer in Tagen in den Klimaszenarien
1961-1990, 2021- 2050 und 2071-2100 unter Berücksichtigung
verschiedener Feldaufgangstemperaturen im Mittel der Leitgebiete 57
Abbildung 16: Modellierte Biomasseerträge für Winterweizen in den in den
Klimaszenarien 1961-1990, 2021-2050 und 2071-2100 für die Gemeinde
Krebeck-Wollbrandshausen 60
Abbildung 17: Modellierte Biomasseerträge für Mais in den in den Klimaszenarien
1961-1990, 2021-2050 und 2071-2100 für die Gemeinde Krebeck-
Wollbrandshausen 6
Abbildung 18: Modellierte Biomasseerträge für Zuckerrüben in den in den
Klimaszenarien 1961-1990, 2021-2050 und 2071-2100 für die Gemeinde
Alfeld63
Abbildung 19: Modellierte Biomasseerträge für Winterraps in den in den
Klimaszenarien 1961-1990, 2021-2050 und 2071-2100 für die Gemeinde
Alfeld64
Abbildung 20: Modellierte Biomasseerträge für Mais in den in den Klimaszenarien
1961-1990, 2021-2050 und 2071-2100 für die Gemeinde Uetze 66
Abbildung 21: Modellierte Biomasseerträge für Sorghum bicolor in den in den
Klimaszenarien 1961-1990, 2021-2050 und 2071-2100 für die Gemeinde
Uetze67

Abkürzungsverzeichnis

A1B Klimaszenario (Zeiträume 2021-2050 sowie 2071-2100)

BBCH Entwicklungsstadien
BFI Blattflächenindex

BioSTAR Biomass Simulation Tool for Agricultural Resources
BMBF Bundesministerium für Bildung und Forschung

BTL Biomass to Liquid C Kohlenstoff

CC Cross Compliance CCM Corn Crob Mix

CLM Modellierung Climate Local Model-Daten

CO₂ Kohlenstoffdioxid

dt Dezitonne

DWD Deutscher Wetterdienst

ETK Evapotranspirationskoeffizient

FAO (and Water Division) Food and Agriculture Organization of the United Nations

Ff Fruchtfolge

GIS Geoinformationssysteme

Gö Göttingen

GPS Ganzpflanzensilage

ha Hektar

HAWK Hochschule für angewandte Wissenschaft und Kunst

Hi Hildesheim

I+K-Plattform Internetportal Klimafolgenmanagementprojekt IPCC Intergovernmental Panel on Climate Change

IZNE Interdisziplinäres Zentrum für Nachhaltige Entwicklung der

K Kalium kg Kilogramm

KUP Kurzumtriebsplantage

Liter

LBEG Landesamt für Bergbau, Energie und Geologie

LBG Landsberger Gemenge

LG Leitgebiet LK Landkreis

LSKN Landesbetrieb für Statistik und Kommunikationstechnologie

Mf Marktfrucht
Mg Magnesium
mm Millimeter
N Stickstoff
Nd. Niederschlag

nFK nutzbare Feldkapazität

nFKWe nutzbare Feldkapazität des effektiven Wurzelraumes

NO₂ Stickstoffdioxid

P Phosphor

pH pH-Wert, Maß für den sauren oder basischen Charakter einer

PK Phospor-Kali RA Winterraps RME Rapsmethylester

RO Roggen

RS-US Rotschwingel-Untersaat

S Schwefel

Sommerhalbjahr

SWOT-ANALYSE Stärken- Schwächen-Analyse

Winter

t Tonne
Temp. Temperatur
TM Trockenmasse
UE Celle (Uetze)
US Untersaat

WG Wintergerste

W

WG-US Weidelgras-Untersaat
Winterhj. Winterhalbjahr
WI-US Wicken-Untersaat
WW Winterweizen
ZR Zuckerrüben