## Jaleh Samadi · Emmanuel Garbolino

Future of CO<sub>2</sub> Capture, Transport and Storage Projects Analysis using a Systemic Risk Management Approach



## SpringerBriefs in Environmental Science

SpringerBriefs in Environmental Science present concise summaries of cutting-edge research and practical applications across a wide spectrum of environmental fields, with fast turnaround time to publication. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Monographs of new material are considered for the SpringerBriefs in Environmental Science series.

Typical topics might include: a timely report of state-of-the-art analytical techniques, a bridge between new research results, as published in journal articles and a contextual literature review, a snapshot of a hot or emerging topic, an in-depth case study or technical example, a presentation of core concepts that students must understand in order to make independent contributions, best practices or protocols to be followed, a series of short case studies/debates highlighting a specific angle.

SpringerBriefs in Environmental Science allow authors to present their ideas and readers to absorb them with minimal time investment. Both solicited and unsolicited manuscripts are considered for publication.

More information about this series at http://www.springer.com/series/8868

Jaleh Samadi · Emmanuel Garbolino

# Future of CO<sub>2</sub> Capture, Transport and Storage Projects

Analysis using a Systemic Risk Management Approach



Jaleh Samadi MINES ParisTech Paris France Emmanuel Garbolino CRC MINES ParisTech Sophia-Antipolis Cedex France

 ISSN 2191-5547
 ISSN 2191-5555
 (electronic)

 SpringerBriefs in Environmental Science
 ISBN 978-3-319-74849-8
 ISBN 978-3-319-74850-4
 (eBook)

 https://doi.org/10.1007/978-3-319-74850-4

Library of Congress Control Number: 2018930142

© The Author(s) 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

#### **Preface and Acknowledgements**

The current book is an update of a Ph.D. thesis made in MINES ParisTech, from 2009 to 2012. The research question came up at that time is still topical. That is why we decided to readdress the question and analyze the evolution of the situation concerning Capture, Transport and Storage of  $CO_2$  projects.

I wish to express my gratefulness to all the persons who made this possible, and especially my parents for their endless love and support.

Paris, France

Jaleh Samadi

### Contents

| 1        | CTS                                                   | SC, Risk Management and Requirement of a Systemic                                                                                     |    |  |  |
|----------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Approach |                                                       |                                                                                                                                       |    |  |  |
|          | 1.1                                                   | CTSC and Climate Change                                                                                                               | 2  |  |  |
|          | 1.2                                                   | CTSC Projects Current Status in the World                                                                                             | 3  |  |  |
|          | 1.3                                                   | CTSC Technology and Risks                                                                                                             | 4  |  |  |
|          |                                                       | <ul> <li>1.3.1 Health and Safety Aspects of Exposure to CO<sub>2</sub></li> <li>1.3.2 CTSC: Risks Associated to Each Phase</li> </ul> | 4  |  |  |
|          |                                                       | and to CTSC Chain                                                                                                                     | 5  |  |  |
|          |                                                       | Risk Management: Concepts and Evolution of Approaches                                                                                 | 12 |  |  |
|          |                                                       | 1.4.1 Definition of Main Concepts                                                                                                     | 12 |  |  |
|          |                                                       | 1.4.2 Evolution of Risk/Safety Management Methods                                                                                     | 13 |  |  |
|          |                                                       | Risk Management and CTSC                                                                                                              | 16 |  |  |
|          |                                                       | 1.5.1 Available Risk Management Approaches for CTSC:                                                                                  |    |  |  |
|          |                                                       | Status and Limitations                                                                                                                | 16 |  |  |
|          | 1.6 Requirement of a Novel Systemic Approach for CTSC |                                                                                                                                       |    |  |  |
|          |                                                       | Risk Management                                                                                                                       | 20 |  |  |
|          | Refe                                                  | erences                                                                                                                               | 22 |  |  |
| 2        | Syst                                                  | ems Theory, System Dynamics and Their Contribution                                                                                    |    |  |  |
| -        | -                                                     | TSC Risk Management                                                                                                                   | 27 |  |  |
|          |                                                       |                                                                                                                                       |    |  |  |
|          | and Key Concepts                                      |                                                                                                                                       | 28 |  |  |
|          |                                                       | 2.1.1 Systems Theory                                                                                                                  | 28 |  |  |
|          |                                                       | 2.1.2 System Dynamics                                                                                                                 | 28 |  |  |
|          | 2.2                                                   | Current Dynamics of CTSC                                                                                                              | 31 |  |  |
|          |                                                       | 2.2.1 Dynamics of Climate/Atmosphere                                                                                                  | 31 |  |  |
|          |                                                       | 2.2.2 Dynamics of Subsurface.                                                                                                         | 32 |  |  |
|          |                                                       | -                                                                                                                                     |    |  |  |

|    |                                          | 2.2.3                                  | Dynamics of Project                                     | 32       |  |  |  |  |  |
|----|------------------------------------------|----------------------------------------|---------------------------------------------------------|----------|--|--|--|--|--|
|    |                                          | 2.2.4                                  | Dynamics of Risks                                       | 33       |  |  |  |  |  |
|    | 2.3                                      |                                        | Contribution of Systemic Approaches and System Dynamics |          |  |  |  |  |  |
|    |                                          | to Stu                                 | dy the Dynamics of CTSC                                 | 34       |  |  |  |  |  |
|    | Refe                                     | erences                                | · · · · · · · · · · · · · · · · · · ·                   | 38       |  |  |  |  |  |
| 3  | Systemic Methodology for Risk Management |                                        |                                                         |          |  |  |  |  |  |
| 5  | of CTSC Projects                         |                                        |                                                         |          |  |  |  |  |  |
|    | 3.1                                      |                                        |                                                         |          |  |  |  |  |  |
|    | 5.1                                      | 3.1.1                                  | Step 1: Identifying Major Risks Associated to CTSC      | 42<br>42 |  |  |  |  |  |
|    |                                          | 3.1.2                                  | Step 2: Assigning the Risks to Different CTSC           | 72       |  |  |  |  |  |
|    |                                          | 5.1.2                                  | Subsystems and Project Phases                           | 44       |  |  |  |  |  |
|    |                                          | 3.1.3                                  | Step 3: Defining the Nature of Risks and Their          | 44       |  |  |  |  |  |
|    |                                          | 5.1.5                                  | Consequences                                            | 44       |  |  |  |  |  |
|    |                                          | 3.1.4                                  | Step 4: Extracting the Risks Related to the Very First  | 44       |  |  |  |  |  |
|    |                                          | 5.1.4                                  | Phases of the Project                                   | 44       |  |  |  |  |  |
|    |                                          | 215                                    | 0                                                       | 44       |  |  |  |  |  |
|    |                                          | 3.1.5                                  | Step 5: Modeling of CTSC Projects Safety Control        | 49       |  |  |  |  |  |
|    | 2 2                                      | Madal                                  | Structure                                               | 49<br>52 |  |  |  |  |  |
|    | 3.2                                      |                                        | ling Major Risks Affecting CTSC Project Progress.       |          |  |  |  |  |  |
|    |                                          | 3.2.1                                  | First Example: Risk of not Obtaining Project Permits    | 52       |  |  |  |  |  |
|    |                                          | 3.2.2                                  | Second Example: Risk of Public Opposition               | 54       |  |  |  |  |  |
|    |                                          | 3.2.3                                  | Third Example: Risk of Financial Resource Shortage      | 56       |  |  |  |  |  |
|    |                                          | 3.2.4                                  | Risk Interconnections                                   | 58       |  |  |  |  |  |
|    | 3.3                                      |                                        | cation of the Methodology for Case Studies              | 59       |  |  |  |  |  |
|    |                                          | 3.3.1                                  | First Example: Barendrecht                              | 59       |  |  |  |  |  |
|    |                                          | 3.3.2                                  |                                                         | 63       |  |  |  |  |  |
|    |                                          | 3.3.3                                  | Third Example: Weyburn                                  | 66       |  |  |  |  |  |
|    | 3.4                                      | -                                      | arison of Case Studies, from Context Point of View      | 67       |  |  |  |  |  |
|    | 3.5                                      |                                        | arison of Case Studies, from Risk Point of View         | 68       |  |  |  |  |  |
|    | 3.6                                      | ······································ |                                                         |          |  |  |  |  |  |
|    | Refe                                     | erences                                |                                                         | 78       |  |  |  |  |  |
| Co | onclus                                   | sion                                   |                                                         | 81       |  |  |  |  |  |

#### About the Authors

Jaleh Samadi was awarded a Ph.D. in Engineering Science at MINES ParisTech, France. Since then, she has worked as Project Manager and Safety Engineer at EReIE (Energy Research, Innovation & Engineering) in France. She has been specially involved in the development and construction of an innovative biogas treatment/bioLNG production unit.

Since 2016, Dr. Samadi continues her professional career as a Project Manager and Business Developer in JIFMAR Offshore Services in France.

She continues her research on the development of CTSC technology as well as Risk Management approaches.

**Emmanuel Garbolino** was awarded a Ph.D. in Geography at the University of Nice-Sophia Antipolis, and since 2002 has been a Lecturer and Assistant Professor at the CRC, MINES ParisTech.

Dr. Garbolino's research areas include climate change impacts on ecosystems and human societies, modeling of natural and anthropogenic systems, risk engineering dedicated to natural and anthropogenic hazards (risk assessment and prevention, crisis management, and damage assessment).

Dr. Garbolino is a member of the Education and Research Centre on  $\rm CO_2$  Capture, Transport and Storage.

### Abbreviations

| atm.                | Atmosphere (pressure unit of measurement)                     |
|---------------------|---------------------------------------------------------------|
| Ar                  | Argon                                                         |
| AS/NZS 4360: 2004   | Australian/New Zealand risk management standard, version 2004 |
| Bar                 | Pressure unit of measurement                                  |
| BLEVE               | Boiling Liquid Expanding Vapor Explosion                      |
| °C                  | Degrees of Celsius (temperature unit of measurement)          |
| CCS                 | CO <sub>2</sub> Capture and Storage                           |
| CH <sub>4</sub>     | Methane                                                       |
| CO                  | Carbon monoxide                                               |
| $CO_2$              | Carbon dioxide                                                |
| CTSC                | Capture, Transport and Storage of CO <sub>2</sub>             |
| DNV                 | Det Norske Veritas                                            |
| EIA                 | Environmental Impact Assessment                               |
| EOR                 | Enhanced Oil Recovery                                         |
| ESD                 | Emergency Shut Down                                           |
| EU                  | European Union                                                |
| GCCSI               | Global CO <sub>2</sub> Capture and Storage Institute          |
| Gt                  | Giga (10 <sup>12</sup> ) tonnes                               |
| H <sub>2</sub>      | Hydrogen                                                      |
| $H_2S$              | Hydrogen Sulfide                                              |
| HSE                 | Health, Safety and Environment                                |
| ICPE                | Installation Classée pour la Protection de l'Environnement    |
| IEA                 | International Energy Agency                                   |
| IEC 60300-3-9: 1995 | International Electrotechnical Commission standard for        |
|                     | risk management. Guide to risk analysis of technological      |
|                     | systems, version 1995                                         |
| IPCC                | Intergovernmental Panel on Climate Change                     |
| IRGC                | International Risk Governance Council                         |

| International standard for risk management-Vocabulary |
|-------------------------------------------------------|
| -Guidelines for use in standards, version 2002        |
| Square kilometer                                      |
| Kilometer                                             |
| Liquified Natural Gas                                 |
| Large-Scale Integrated Project                        |
| Meter                                                 |
| Maximum                                               |
| Massachusetts Institute of Technology                 |
| Million tonnes per annum                              |
| Nitrogen                                              |
| Non-governmental Organization                         |
| Nitrogen monoxide                                     |
| Nitrogen dioxide                                      |
| Oxygen                                                |
| Parts per million                                     |
| Sulfur dioxide                                        |
| Systems-Theoretic Accident Model and Processes        |
| Short-Term Exposure Limit                             |
| Systems-Theoretic Process Analysis                    |
| Tonnes                                                |
| United Kingdom                                        |
| United States of America                              |
|                                                       |