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Preface

The protection of information and information infrastructures from unauthorized access,
use, disclosure, disruption, modification, or destruction is today more critical than ever
as they represent attractive targets for a diversity of malicious actors. Those actors have
different motivations, such as financial gains, sabotage, espionage, intellectual property
theft, and data theft. They may be supported by enemy nations and can leverage an arsenal
of attack toolkits, zero-day vulnerabilities, and compromised passwords available on the
dark web.

Research and design of defense techniques have, however, greatly progressed over
the past 30 years, and there is an increased general awareness of threats and attacks
in cyberspace and the need for better defenses by public and private organizations and
governmental agencies as well as by the general public.

In order to devise more effective defenses, recent security solutions leverage machine
learning techniques, which are today quite effective because of the huge and diversified
technical advances in the area of machine learning combined with big data collection and
analysis capabilities. We observed that in the last 10 years, the use of machine learning
techniques for security tasks has been steadily increasing in research and also in practice.
Many recent papers have proposed approaches for specific tasks, such as software security
analysis and anomaly detection. However, these approaches differ in many aspects, for
example, with respect to the types of features used in machine learning models and the
datasets used for training the models. Also, the use of machine learning for security tasks
is not trivial. For example, suppose one would like to use machine learning techniques
for network intrusion detection. In that case, one has to understand the features to extract
from network flows for proper training and use machine learning models able to classify
the flows as benign or malicious. To date, however, there is no book or survey article that
systematically covers the entire area of machine learning techniques for cybersecurity.
This monograph aims to address such a gap.

A comprehensive discussion and analysis of the various machine learning techniques
require, however, a proper taxonomy of these techniques. We decided to organize the
discussion around the following main cybersecurity functions: security policy learning,
software security analysis, hardware security analysis, detection, and attack management.

v



vi Preface

For some of those functions, many approaches have been proposed, such as the ones for
intrusion detection. For others, approaches are still very limited—for example, for attack
management. For topics on which many approaches have been proposed, we selected
the approaches that we considered most interesting for the discussion. The monograph
also covers challenges in using machine learning for cybersecurity—many of which are
common to other domains; however, we try, whenever possible, to discuss these chal-
lenges from a cybersecurity perspective. Throughout the discussion, we also point out
research directions based on our analysis of existing approaches, techniques, and tools.
The book also includes a chapter that can be interesting from an educational point of
view. This chapter covers three case studies—each related to a well-known cyber attack;
for each attack, we discuss which machine learning technique(s) (if any) would have
prevented/mitigated which steps of the attack. The case studies are interesting as they
show that attacks are typically multi-steps, so one must deploy many different defense
techniques to enhance security.

Writing this monograph has been an exciting journey for us as we had several interest-
ing discussions and also identified new ideas for future research. We hope you will enjoy
learning about machine learning for cybersecurity as much as we have!!
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1Introduction

Attacks to computer, information, and communication systems, collectively referred to as
cyberspace, are on a dramatic increase. Attacks have a variety of goals, such as data ransoms,
denial of service, critical infrastructure sabotage, data theft, and information tampering,
and are carried out by many different actors with motivations that include financial gains,
cyberwar, misinformation, and disinformation. Security of the cyberspace, referred to as
cybersecurity (security, for short), is more critical than ever for our society that increasingly
relies on cyberspace for all services, functions, and processes we may think of.

It however is well known that there is no system that can be 100% secure from all
adversaries. Critical systems, protocols, and software considered secure are constantly ana-
lyzed by intelligent adversaries with sufficient resources, leading to the identification of
vulnerabilities allowing these adversaries to craft exploits for breaking into computer and
network systems. Vulnerabilities, unknown to the creators or users of a system, are called
zero-day vulnerabilities, and the exploits that take advantage of them are called zero-day
exploits [213]. Recent attacks are increasingly more sophisticated in the vulnerabilities they
exploit, and are supported by the availability on the dark web of attack toolkits, detailed
zero-day vulnerability information, and compromised security credentials.

The huge expansion of cyberspace due to Internet of Things (IoT) devices and systems,
robots, autonomous vehicles, and newwireless and cellular technologies, eachwith different
security postures, has also substantially increased the attack surface. Consequently, the
number of adversaries attempting to find new ways of breaking into these systems has
skyrocketed. It is clear that protecting the cyberspace requires an array of advanced technical
defenses as well as their systematic deployment based on a security life cycle.

In order to devise more effective defenses, recent security solutions leverage machine
learning (ML) techniques, which are today widely applied because of their technical sig-
nificant advances combined with big data collection and analysis capabilities. However, a
major problem is that the application of ML techniques to cybersecurity is not trivial. For

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 1 Introduction

example, if one would like to use ML techniques to classify malware, one has to under-
stand the features to extract from malware for properly training and using ML classification
models.

1.1 Artificial Intelligence,Machine Learning, and Deep Learning

Today, terms such as artificial intelligence (AI), machine learning (ML), and deep learning
(DL) are widely used not only in the technical literature but also in the media, popular
culture, advertising, and more [41]. These terms are often used interchangeably. There are
however differences among the respective areas that we outline in what follows.

AI is a field that started in 1956. The goal then, as now, was to use computer systems to
perform tasks requiring human intelligence [124]. The initial focus was on tasks like playing
checkers and solving logic problems. AI then specialized based on specific application areas,
such as robotics, natural language processing, and computer vision [13]. EarlyAI approaches
were mainly based on declarative knowledge provided by humans, for example, in terms
of logical rules and ontologies. Such knowledge would then be used as input by inference
mechanisms, often based on some formal logic. Today, AI encompasses a broad set of
technology solutions that can learn on their own.

A major problem of early AI approaches was the lack of scalability because of their
reliance on human inputs. ML techniques, which started to be widely used in the1980s,
address this problemby relyingondata, insteadof explicit human input. They apply statistical
methodologies to identify patterns occurring in data. They improve their prediction tasks
every time they acquire new data. A special category of ML techniques is represented by
data mining (DM), which basically addressed the problem of identifying patterns on very
large datasets. Most research in DM was initiated by the database community, which for
example introduced the pioneering concept of association rule mining [10] and designed
efficient algorithms to minimize scans on data stored in secondary storage. However, even
though ML techniques can improve their prediction accuracy, “they only explore data based
on programmed data feature extraction; that is, they only look at data in the way we program
them to do so. They do not adapt on their own to look at data in a different way” [41].

DL techniques represent an important category of ML techniques that address the short-
coming of earlyML techniques. DL essentially refers to algorithms that adapt, when exposed
to different situations or data patterns. Vaguely inspired by biological neural networks,
DL algorithms try to learn various characteristics from data and use them for decision-
making/prediction on similar unseen data. DL techniques have gained interest because of
the increased amounts of data available and their various algorithmic innovations as well as
significant improvements in computing capabilities enabled by GPUs, which have made fast
training and deployment of DLmodels possible [169]. DL has been tremendously successful
at tasks such as image classification, object detection, and text and voice recognition.
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1.2 Security Functions

A detailed and comprehensive discussion of ML-based techniques for cybersecurity is best
based on a taxonomy of ML-based security functions, that is, security techniques and pro-
cesses for which ML approaches have been proposed. The taxonomy we refer to is shown
in Fig. 1.1. As we can see from the taxonomy, the top five categories correspond to major
ML-based security functions that we briefly discuss in what follows.
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Fig. 1.1 Taxonomy of ML-based security functions
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1.2.1 Security Policy Learning

Security policies are critical for configuring security tools and appliances, including access
control systems, authentication systems, and network firewalls. As a manual specification
of policies is time-consuming and not scalable, it has been one of the first areas to whichML
techniques have been applied. The relevance of security policy learning will be increasing
given the recent zero-trust architectures [192] and frameworks [133], which will require the
specification, deployment, and testing of very large number of policies.

1.2.2 Software Security Analysis

Software systems are key components of all infrastructure and application domains we
may think of. However, software systems are still insecure, despite the fact that the “prob-
lem of software security” had been known to the industry and research communities for
decades [31]. Therefore, it is not surprising that software security analysis has recently
become one relevant application area for ML techniques. ML-based approaches range from
enhancing fuzzing to ensure better coverage [187] to predicting the effects of different com-
binations of control parameter values for drones [95] and making static analysis scalable for
large code bases [119]. Such initial approaches show that ML techniques can make software
security analysis more effective. We can expect that this area will see many novel ML-based
approaches to be developed, given the pressing problem of software security.

1.2.3 Hardware Security Analysis

Hardware is commonly assumed to be the root-of-trust for computer systems, in that trust
is established by committing functionality to silicon, which represents a stronger security
foundation compared to the flexible but more vulnerable software [223]. However, hard-
ware can be attacked, via for example side channels [188], and can even include malicious
components (e.g., hardware Trojans). The major use of ML has been for the security evalu-
ation of cipher implementations against side-channel attacks [100] and the construction of
attack models against physical unclonable functions [101]. More recent applications of ML
include the characterization of faults that can be exploited by attackers [206] and security-
aware design flow for chip design [118, 188]. However, ML techniques will undoubtedly
enable the design of novel approaches expanding the faults and vulnerabilities that can be
detected.


