Pro ne
Development
with Swift 4

Design and Manage Top Quality Apps

Molly Maskrey
Wallace Wang

APress’

Pro iPhone Development
with Swift 4

Design and Manage Top
Quality Apps

Molly Maskrey
Wallace Wang

Apress’

Pro iPhone Development with Swift 4: Design and Manage Top Quality Apps

Molly Maskrey Wallace Wang
Parker, Colorado, USA San Diego, California, USA
ISBN-13 (pbk): 978-1-4842-3380-1 ISBN-13 (electronic): 978-1-4842-3381-8

https://doi.org/10.1007/978-1-4842-3381-8
Library of Congress Control Number: 2018932359
Copyright © 2018 by Molly Maskrey and Wallace Wang

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Bruce Wade
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3380-1. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3381-8

This book is dedicated to everyone who has an idea for an app but
didn’t know what to do first or how to get started. First, believe in your
idea. Second, trust that you have intelligence to achieve your dream
even if you don’t know how you’ll get there. Third, keep learning and
improving your skills all the time. Fourth, stay focused. Success will
come one day as long as you persist and never give up on yourself.

Table of Contents

About the AUtROrS........cscsmismmssmmssss s —————————_ Xi
About the Technical REVIEWETcussesssssssssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssss xiii
Chapter 1: Multithreaded Programming Using Grand Central Dispatch................... 1
Creating the SlowWorker AppliCaLION.........coe i 3
THreadiNg BASICSvverrrrererreerrssesenesessesesss e s e e s e s s e e s se s e e e srs s s nssnessssessnnes 7
UNIES OF WOTK ..ottt s e 8

GCD: LOW-LEVEl QUELING ...c.veereerreriesereresresessessessessssessessesaesessessesaessessssessessessssessessssssssssessesaes 9
IMProVING SIOWWOTKETvecvecererreserseressesssssssessessessssessessesssssssessessessssessessesssssssessessesssssnsessens 10
Background PrOCESSINGccccvieirrrirereninsisese s s sss e s s e e srs s se s s sssssssesnesressnsesnesnes 17
Application Life CYCIE........cccieriririre sttt sre s et 19
State-Change NOtIfiCatioNSccoveeerrrrrerre e 20
Creating State Lab.........ccccvvevnerrenersse s s nns 22
Exploring EXecution States.......ccccvivrrnininnsinin s s 23
Using Execution State Changes.........ccerrerrrerrerieresessersessessssessessessessssessessesssssssessessessssessessens 26
Handling the INActive Statecccvervvrirrrrrr e 27
Handling the Background State...........cccccviininininnnsni e 33
Saving State When Entering the Background............ccccovevrenmrencnnsesesnenese s sessenenns 37
B30T 111 T PSSR 43
Chapter 2: Simple Games Using SpriteKitcccccnnnmmmmmmmmmmmnssnnmmmsssnmmssssms 45
Creating the TEXISNOOTEr APD.....cvrererirrrrererr s s sa e ae s a e e e e nne e 46
Initial Scene CustoMIzZation ... —————— 51
Player MOVEMENL..........ccoeiiiririre s s e s e s 57
Creating YoUr ENEMIES.......cccucverennnincne st ss s s st st s st snens 63
Putting Enemies in the SCeNe.........cov e 65

STAt SNOOTING.....cceceeeceree s 67

TABLE OF CONTENTS

Attacking Enemies With PRYSICS.........cccuirinnininins s se s 73
FiNISNING LEVEIS......cceeeeceerceree e se s s s s 74
Customizing COIlISIONS.........cccrererereserreseressesesese s s sr s e e sse e ses e nns 77
Spicing Things Up With PartiCleSc.cccvvrenrenerise s s sss s sessesesessesens 83
Putting Particles into the SCENEccvvvrririr e 87
ENdiNg the GAMEcccveereerieierierere e re e see s se s sre s e e s e saesae e s e saesae s s e saesaesessennesnees 89
Create @ STArSCENE.........cccceerererirr e s 92
Adding SoUNd EffECES ...ccccveriiciricrc s e e s 95
Making the Game a Little Harder: FOrce Fieldscoouorrinnneneresrncsesese e 96
B30T 111 T o OSSR 100
Chapter 3: Taps, Touches, and GESIUrescuumsmmmnemnmrmmmmssssssssssssseessssssssssssnssnnns 103
MUIEItOUCH TEIMINOIOQY....cererrrieriereresir s s se s e s s s e s aesae e s e saesnese e e naennees 104
The RESPONAET CRAINccvevveierierererersereressesessessessessssessessesssssssessessessssessessesssssssessessesssssssesseres 105
Responding t0 EVENTS..........ccvcieiinnsnc s 105
Forwarding an Event: Keeping the Responder Chain AliVe.........c.cccoveeeerercrnscrnnenesenenennes 107
The Multitouch ArChitECIUNE........ccveeer e 108
The Four Touch Notification Methods..........cocueerirrnnnnisnnse e 108
Creating the TouchExplorer APpliCAtionccvcvierernsnienevn s enes 110
Creating the SWipes APPlICALION........ccccveverrierere s s sr e e ene s 116
Using Touch Events t0 Detect SWIPES.......cucvrvrninnnnrnse s se s s 116
Automatic Gesture RECOgNItioNc.ccccvcririeniinn s s 120
Implementing MUltiple SWIPES ... s 122
Detecting MUIIPIE TAPS ..o et s e e 125
Detecting Pinch and Rotation GESIUIEScccvervrrinennsinsene s enes 131

£ 11134 R 137
Chapter 4: Determining Location.........ccuusemrrnsssnnnmsssssnsnsssssssnsssssssssssssssssssssssssnnnss 139
The Location MAnAQETcccucrerinininne s s srs s s s s s 140
Setting the DESIred ACCUIACYccoverererrererererreseressesessesessesesessesessese s sessesessssessssesessesenns 140
Setting the DiStance Filter...........ccvevnieienesrnsesre e 141
Getting Permission to Use LOCAtioN SErVICES.......cucuvirernsesrnesessssessssesssesessssesessessssssessnnes 142

TABLE OF CONTENTS

Starting the Location Manager ... s e ssssessessens 142
Using the Location Manager WISelycoccvverrenerenernsesese s sssesennes 142
The Location Manager Dlegateccuvvermrenmrenernsmsesesessse s s s e ssssessssesesssssssenens 143
Getting Location UPAALEScccccerererneniniserinse s se s e s e s s s ssases 143
Getting Latitude and Longitude Using CLLOCALION.........cccccvvercerernrenseniene s sessessesessesesaens 143
Error NOtifications..........ovoincnniir s 147
Creating the WhereAml AppliCatioN..........cccvicrninne s 147
Using Location Manager Updates.........cccovvvvrinnnnnnnninnnssse s se s s s sessesse s 155
Visualizing Your Movement 0n @ Mapcccoveeerenerencrnsesessesese s sese s ssssesessesessenens 159
Changing Location Service PErmiSSiONSc.ccuvererenmrnsesssssessssssessesssssssssssesessssssssssssenes 164
L1114 RS 165
Chapter 5: Device Orientation and Motion..........cccemermnmmnmmmmsssssssnmmmmmm——————— 167
ACCEIErOMETEr PRYSICS ...ccceeeeeririrsie et re st s s sn e s s e e n e sae s s s s 167
Rotation Detection Using the GYroSCOPE........ccvcrvrerisininenie s sse s sessesnens 169
Core Motion and the Motion ManaQET...........cccvreererereresernsesesese s sessesenns 169
Creating the MotionMonitor Application ... 170
Proactive MOTION ACCESSuceerrrererrinerrnesssesssese s srsse e s e sssse s s ssssessssessssssensnns 176
Gyroscope and Attitude RESUILS.........ccccvevrrrrerere s ss e sae s 179
Accelerometer RESUIES ... e 180
DeteCting SNAKESccierieerire st e e e 182
Baked-In ShaKINg ..o s s s s 182
The Shake and Break Application............cccvvrinnsnini e s 183
Accelerometer as a Directional Controller...........coccoveeernsesnsesesese s sesesessenens 188
The Ball APPlICALION........ccveerererirsere s s se e s p e e 188
Calculating Ball MOVEMENL..........cccrvriererrrrirrere e sere e s sse e s sae s s e ssesnesssnessesnees 195

£ 1134 7 198
Chapter 6: Using the Camera and Accessing Photos...........cccceemmmmnnrnsssssssssssnnnnnnas 199
Using the Image Picker and UlimagePickerController.............covvvneenrnenernncrnscneseses e 200
Using the Image PiCKer CONTIOIIENcccveeerneerereserese s 200
Implementing the Image Picker Controller Delegate...........ccuoevrveernsenniesenssesssesesesesenen 203

TABLE OF CONTENTS

Creating the Camera INTEIfaCE.........c.ccvvvririennrnrr e 205

L 13T 0 (0] S 208
Implementing the Camera View CONTroller.........c.vvovrenrnnennesensse s s se e 210
111111 1T o OSSOSO 215
Chapter 7: Translating Apps Using Localizationccccuneemmmnnsssnnnnnssssssssssssssnns 217
Localization ArChItECIUNE..........ccccrereriinrir s 218
L1015 R 219
The SHNGS File.....coeiecce e e 220

The Localized String FUNCHON ..o 221
Creating the LOCAlIZEME APD ...cocveririiiririers sttt s 222
Localizing the ProjECT.......c.cuccvereeereerine e 230
Localizing the SToryboard............ccccveveerennnenienere s sesse s s saessssessessessssessesnees 234
Generating and Localizing @ Strings Filecccvvvrvrieriennsense s sessesessessssessessens 242
Localizing the App Display NamMe ... s 249
Adding Another Localizationcccoceviinnncninnnsine s ss s snes 252

£ 10T TS 253
Chapter 8: Using Machine Learning.........ccccuusssssnnsssssssssssssssssnssssssssssssssssssssssssnnnss 255
Understanding Machine LEarningc.cucuvereresesnsessnsesssesessssessssesssssssssssssssssssssssssssssssssssnns 256
Finding @ Core ML MOGEIccvverierenennereressssenessessessssessessesessessessesssssssessesssssssessessesssnsnsessens 257
IMage RECOGNITION ..ot s r e s s se e s a e s e e e sneene e e ans 258
Creating the Image Recognition Application...........ccccvecvrvenresnsscrnse s 259
Identifying Objects from the Camera...........cccovereerrerrrscr e 269
ANAlYZINgG aN IMAGEcovveerrererree s s e sre e s e e nnennns 275

B 11T 111 7 o SO 283
Chapter 9: Using Facial and Text Recognitionccovusesmsssesmsssnsssssnsssssanssssnnssssns 285
Recognizing FACES iN PICTUIEScccccvuvverierereris e sesse s e sessessessessssessessessessssessessesssssssesaens 286
Highlighting Faces in @n IMaQE..........ccecrvrreriririerree e rses e se s s s e sse s s s e e snessenaenns 293
Highlighting Parts of @ Face in an Image..........cccveriinnnness s sesesnens 301

viil

TABLE OF CONTENTS

Recognizing Text in @an IMAJEccccvviirinirrrrre s 309

£ 1117 TS 315
Chapter 10: Using 3D TOUCK........ccussemmmmmsssnnnsmsssssnnnssssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnnss 317
Understanding 3D TOUCKc.uccovereresernsesese e 318
Detecting 3D Touch AVAIIADIIILYcceernserenererinersse s 321
DEtECHING PrESSUIE......cvecererrertesirere et sse et s e s sse s e e s s saese s e s s ae s s e e s s ae s ae e s e saesaese e e naennnes 323
Creating Home Screen QUICK ACLIONScccviieriiesinese s 325
Responding to QUICK ACHION HEMSccvvceveererrerrere e s s s e ssesae e s saesresa s e ssesaens 329
Adding Dynamic Home Screen QUICK ACHIONScccoeeerreerenncnmreserese e 333
Adding Peeking, Popping, and PrevieWing.........ccoveerenernsmsensssesssssessessssssesssessssssessssssssssssenes 339
B30T 111 T o SRS 346
Chapter 11: Using SPeeCh......ccccurrsssemmmrmssssnnnmsssssnsnssssssnssssssssnnsssssssnnsssssssnnssssssnnnnss 347
Converting SPEECh 10 TEXEccvvvierierirrre e e nnen 347
Recognizing SPoKen COMMANGS.........cccvvrrerereererrerersssessesesessssessessesssssssessessessssessessesssssssessens 356
Turning TeXt t0 SPEECH.........cc i s 358

£ 0T 7 TS 362
Chapter 12: Understanding SiriKit.......ccccorurrmmmmnsssmmmmmmmmmmmssssssssssssmmssssssssssssnns 363
HOW SiFIKITWOIKS ..o s s s sesssnenns 364
Defining How Siri Interacts with the USEr.........cccccvvvviieinesnsse s s 368
Understanding the IntentHandler.SWift File.........c.ccvcvivirrnininnsriene s sessesessessssesessens 371
Understanding the ExtensionUl FOIAETcccevririnneninier e s s s se e sse e saenns 375
Creating a Payment App With Sificouveoricrrrcr s 381

£ 101117 T 386
Chapter 13: Understanding ARKit.......ccccceirrrimmnsssssmmmnmnmnmmmsssssssssssssssssssssssssssssssnnss 389
HOW ARKIt WOTKS......ccoireerieerenesessessssesesessesessesessesessssesesssssssesessssssssssssssssssssssssssssssssssasssssssnsnns 389
Drawing Augmented Reality ODJECTS.......c.ccvvrererinrnsrinesre e 397
Resetting the WOrld OFiginccveevierernserieressssersesesssssssessessesessessessessssessessesssssssessessesssssssessens 399

ix

TABLE OF CONTENTS

Drawing Custom ShaPES.......c.ccciviirinnsr e s 404
Modifying the Appearance 0f ShAPEScccvivriini 407
£ 11T 1117 TS 418
Chapter 14: Interacting with Augmented Realitycccocunsmmmmmmsssennnmnsssssnsmsssssnnns 419
Storing and Accessing GraphiC ASSEIS.......cuucvierrennis e 420
Working With TOUCHh GESIUIES.......cevvvirieriererie s sese s s e saesre e s s saesee e s e sne s 423
Detecting @ Horizontal PIANE.........c.cooevercirrie e r s s 428
Modifying @n IMAJEccccreriirirr e s p e 433
Creating Virtual ODJECEScocccoeeee e e 435
£ S 446
INA@X . tiiiiissnnnnnnnnnnnnssssssssnnnnnnnnnsssssssssnnnnnnnnesssssssssnnnnnnneessssssssnnnnnnnnnssssssssnnnnnnnnnnssssssnn 447

About the Authors

Molly Maskrey started as an electrical engineer in her 20s
working for various large Aerospace companies including
IBM Federal Systems, TRW (now Northrup-Grumman),
Loral Systems, Lockheed-Martin, and Boeing. After
successfully navigating the first dot.com boom, she realized
that a break was in order, took took several years off, moved
to Maui and taught windsurfing at the beautiful Kanaha
Beach Park.

She moved back to Colorado in 2005 and, with Jennifer,

formed Global Tek Labs, an iOS development and accessory design services company
that is now one of the leading consulting services for new designers looking to create
smart attachments to Apple devices.

In 2014 Molly and Jennifer formed Quantitative Bioanalytics Laboratories, a wholly
owned subsidiary of Global Tek to bring high-resolution mobile sensor technology to
physical therapy, elder balance and fall prevention, sports performance quantification
and instrumented gait analysis (IGA). In a pivot, Molly changed the direction of QB Labs
to a platform-based predictive analytics company seeking to democratize data science
for smaller companies.

Molly’s background includes advanced degrees in Electrical Engineering, Applied
Mathematics, Data Science, and business development. Molly generally speaks at a
large number of conferences throughout the year including the Open Data Science
Conference (ODSC) 2017 West advancing the topic of moving analytics from the cloud
to the fog for smart city initiatives. What fuels her to succeed is the opportunity to
bring justice and equality to everyone whether it’s addressing food insecurity, with
her business partner, to looking at options for better management of mental health
using empirical data and tools such as natural language processing, speech pattern
recognition using neural networks, or analyzing perfusion in brain physiology.

ABOUT THE AUTHORS

Wallace Wang has written dozens of computer books over the years beginning with
ancient MS-DOS programs like WordPerfect and Turbo Pascal, migrating to writing
books on Windows programs like Visual Basic and Microsoft Office, and finally switching
to Swift programming for Apple products like the Macintosh and iPhone.

When he’s not helping people discover the joys of programming, he performs stand-
up comedy and appears on two radio shows on KNSJ in San Diego (http://knsj.org)
called “Notes From the Underground” and “Laugh In Your Face Radio.

He also writes a screenwriting blog called “The 15 Minute Movie Method”
(http://15minutemoviemethod.com), a blog about the latest cat news on the Internet
called “Cat Daily News” (http://catdailynews.com), and a blog about the latest trends
in technology called “Top Bananas” (http://www.topbananas.com).

xii

﻿http://knsj.org﻿
http://15minutemoviemethod.com
﻿http://catdailynews.com﻿
http://www.topbananas.com

About the Technical Reviewer

Bruce Wade is a software engineer from British Columbia, Canada. He started software
development when he was 16 years old by coding his first web site. He went on to study
Computer Information Systems ad DeVry Institute of Technology in Calgary, then to
further enhance his skills he studied Visual & Game Programming at The Art Institute
Vancouver. Over the years he has worked for large corporations as well as several start-
ups. His software experience has led him to utilize many different technologies including
C/C++, Python, Objective-C, Swift, Postgres, and JavaScript. In 2012 he started the
company Warply Designed to focus on mobile 2D/3D and OS X development. Aside
from hacking out new ideas, he enjoys spending time hiking with his Boxer Rasco,
working out, and exploring new adventures.

xiii

CHAPTER 1

Multithreaded
Programming Using
Grand Central Dispatch

While the idea of programming multithreaded functions in any environment may
seem daunting at first (see Figure 1-1), Apple came up with a new approach that
makes multithreaded programming much easier. Grand Central Dispatch comprises
language features, runtime libraries, and system enhancements that provide systemic,
comprehensive improvements to the support for concurrent code execution on
multicore hardware in iOS and macOS.

© Molly Maskrey and Wallace Wang 2018
M. Maskrey and W. Wang, Pro iPhone Development with Swift 4,
https://doi.org/10.1007/978-1-4842-3381-8_1

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Figure 1-1. Programming multithreaded applications can seem to be a
disheartening experience

A big challenge facing developers today is writing software able to perform
complex actions in response to user input while remaining responsive, so that the user
isn’t constantly kept waiting while the processor does some behind-the-scenes task.
That challenge has been with us all along; and in spite of the advances in computing
technology that bring us faster CPUs, the problem persists. Look at the nearest computer
screen; chances are that the last time you sat down to work at your computer, at some
point, your workflow was interrupted by a spinning mouse cursor of some kind or
another.

One of the reasons this has become so problematic is the way software is typically
written: as a sequence of events to be performed sequentially. Such software can scale
up as CPU speeds increase, but only to a certain point. As soon as the program gets
stuck waiting for an external resource, such as a file or a network connection, the entire
sequence of events is effectively paused. All modern operating systems now allow the
use of multiple threads of execution within a program, so that even if a single thread
is stuck waiting for a specific event, the other threads can keep going. Even so, many
developers see multithreaded programming as a mystery and shy away from it.

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Note A thread is a sequence of instructions managed independently by the
operating system.

Apple provides Grand Central Dispatch (GCD) giving the developer an entirely new
API for splitting up the work the application needs to do into smaller chunks that can be
spread across multiple threads and, with the right hardware, multiple CPUs.

We access this API using Swift closures, providing a convenient way to structure
interactions between different objects while keeping related code closer together in our
methods.

Creating the SlowWorker Application

As a platform for demonstrating how GCD works, we'll create the SlowWorker
application that consists of a simple interface driven by a single button and a text view.
Click the button, and a synchronous task is immediately started, locking up the app
for about ten seconds. Once the task completes, some text appears in the text view, as
shown in Figure 1-2.

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

4 Back 1o Messages

First: [Number of chars: 8]
Second: [HI THeRe]

Figure 1-2. The SlowWorker application hides its interface behind a single
button. Click the button, and the interface hangs for about ten seconds while the
application does its work.

Start by using the Single View Application template to make a new application in
Xcode, as you've done many times before. Name this one SlowWorker, set Devices
to Universal, click Next to save your project, and so on. Next, make the changes to
ViewController.swift, as shown in Listing 1-1.

Listing 1-1. Add These Methods to the ViewController.swift File

@IBOutlet var startButton: UIButton!
@IBOutlet var resultsTextView: UITextView!

func fetchSomethingFromServer() -> String {

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Thread.sleep(forTimeInterval: 1)
return "Hi there"

}

func processData(_ data: String) -> String {
Thread.sleep(forTimeInterval: 2)
return data.uppercased()

}

func calculateFirstResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 3)
return "Number of chars: \(data.characters.count)"

}

func calculateSecondResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 4)
return data.replacingOccurrences(of: "E", with: "e")

}

@IBAction func doWork(sender: AnyObject) {
let startTime = NSDate()
self.resultsTextView.text =
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"
self.resultsTextView.text = resultsSummary
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as
Date)) seconds")

}

As you can see, the work of this class (such as it is) is split up into a number of small
pieces. This code simulates some slow activities, and none of those methods really do
anything time consuming at all. To make things interesting, each method contains a call to
the sleep(forTimeInterval:) class method in Thread, which simply makes the program

5

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

(specifically, the thread from which the method is called) effectively pause and do nothing
at all for the given number of seconds. The doWork () method also contains code at the
beginning and end to calculate the amount of time it took for all the work to be done.

Now open Main.storyboard and drag a Button and a Text View into the empty View
window. Position the controls as shown in Figure 1-3. You'll see some default text.
Clear the text in the Text View and change the button’s title to Start Working. To set the
auto layout constraints, start by selecting the Start Working button, and then click the
Align button at the bottom right of the editor area. In the pop-up, check Horizontally in
Container and Click Add 1 Constraint. Next, Control-drag from the button to the top of
the View window, release the mouse, and select Vertical Spacing to Top Layout Guide. To
complete the constraints for this button, Control-drag from the button down to the text
view, release the mouse, and select Vertical Spacing. To fix the position and size of the
text view, expand the View Controller Scene in the Document Outline and Control-drag
from the text view in the storyboard to the View icon in the Document Outline. Release
the mouse and, when the pop-up appears, hold down the Shift key and select Leading
Space to Container Margin, Trailing Space to Container Margin, and Vertical Spacing to
Bottom Layout Guide, and then click return to apply the constraints. That completes the
auto layout constraints for this application.

Start Working
Q a Q
Lorem ipsum dolor sit er elit lamet, consectetaur cillium
adipisicing pecu, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim
wveniam, quis d itati I laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu
Ofugiat nulla pariatur. Excepteur sint occaecat cupidatat [
non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum. Nam liber te conscient to factor
tum poen legum odiogue civiuda.

Figure 1-3. The SlowWorker interface consists of a button and a text view

6

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Control-drag from the View Controller icon in the Document Outline to connect
the view controller’s two outlets (i.e., the startButton and resultsTextView instance
variables) to the button and the text view.

Next, Control-drag from the button to the View Controller, release the mouse, and
select the doWork () method in the pop-up so that it’s called when the button is pressed.
Finally, select the text view, use the Attributes Inspector to uncheck the Editable check
box (it’s in the upper-right corner), and delete the default text from the text view.

Save your work, and then select Run. Your app should start up, and pressing the
button will make it work for about ten seconds (the sum of all those sleep amounts)
before showing you the results. During your wait, you'll see that the Start Working button
fades visibly, never turning back to its normal color until the “work” is done. Also, until
the work is complete, the application’s view is unresponsive. Tapping anywhere on the
screen or rotating the device has no effect. In fact, the only way you can interact with
your application during this time is by tapping the home button to switch away from it.
This is exactly the state of affairs we want to avoid.

Threading Basics

Before we start implementing solutions, let’s go over some concurrency basics. This is
far from a complete description of threading in iOS or threading in general. I just want
to explain enough for you to understand what we're doing in this chapter. Most modern
operating systems (including, of course, i0OS) support the notion of threads of execution.
Each process can contain multiple threads, which all run concurrently. If there’s just one
processor core, the operating system will switch between all executing threads, much
like it switches between all executing processes. If more than one core is available, the
threads will be distributed among them, just as processes are.

All threads in a process share the same executable program code and the same
global data. Each thread can also have some data that is exclusive to the thread. Threads
can make use of a special structure called a mutex (short for mutual exclusion) or a
lock, which can ensure that a particular chunk of code can’t be run by multiple threads
at once. This is useful for ensuring correct outcomes when multiple threads access the
same data simultaneously, by locking out other threads when one thread is updating a
value (in what's called a critical section of your code).

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

A common concern when dealing with threads is the idea of code being thread-safe.
Some software libraries are written with thread concurrency in mind and have all their
critical sections properly protected with mutexes. Some code libraries aren’t thread-
safe. For example, in Cocoa Touch, the Foundation framework is generally considered
to be thread-safe. However, the UIKit framework (containing the classes specific to
building GUI applications, such as UIApplication, UIView, and all its subclasses, and
so on) is, for the most part, not thread-safe. (Some UIKit functionality such as drawing
is considered thread-safe however.) This means that in running an iOS application, all
method calls that deal with any UIKit objects should be executed from within the same
thread, which is commonly known as the main thread. If you access UIKit objects from
another thread, all bets are off. You are likely to encounter seemingly inexplicable bugs
(o1, even worse, you won't experience any problems, but some of your users will be
affected by them after you ship your app).

Tip Alot has been written about thread safety. It’s well worth your time to dig in
and try to digest as much of it as you can. One great place to start is Apple’s own
documentation. Take a few minutes and read through this page (it will definitely help):

https://developer.apple.com/library/ios/documentation/
Cocoa/Conceptual/Multithreading/ThreadSafetySummary/
ThreadSafetySummary.html

Units of Work

The problem with the threading model described earlier is that, for the average
programmer, writing error-free, multithreaded code is nearly impossible. This is not
meant as a critique of our industry or of the average programmer’s abilities; it’s simply
an observation. The complex interactions you must account for in your code when
synchronizing data and actions across multiple threads are really just too much for
most people to tackle. Imagine that 5% of all people have the capacity to write software
at all. Only a small fraction of those 5% are really up to the task of writing heavy-duty
multithreaded applications. Even people who have done it successfully will often advise
others to not follow their example.

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Fortunately, there are alternatives. It is possible to implement some concurrency without
too much low-level detailed work. Just as we have the ability to display data on the screen
without directly poking bits into video RAM and to read data from disk without interfacing
directly with disk controllers, we can also leverage software abstractions that let us run our
code on multiple threads without requiring us to do much directly with the threads.

The solutions Apple encourages us to use center around the idea of splitting up
long-running tasks into units of work and putting those units into queues for execution.
The system manages the queues for us, executing units of work on multiple threads.
We don’t need to start or manage the background threads directly, and we are freed
from much of the bookkeeping that’s usually involved in implementing multithreaded
applications; the system takes care of that for us.

GCD: Low-Level Queuing

This idea of putting units of work into queues that can be executed in the background,
with the system managing the threads for you, provides power and greatly simplifies
many development situations where concurrency is needed. GCD made its debut on
0OS X (now macOS) several years ago, providing the infrastructure to do just that. A
couple of years later, this technology came to the iOS platform as well. GCD puts some
great concepts — units of work, painless background processing, and automatic thread
management — into a C interface that can be used not only with Objective-C, but also
with C, C++, and, of course, Swift. To top things off, Apple has made its implementation
of GCD open source, so it can be ported to other Unix-like operating systems, as well.

One of the key concepts of GCD is the queue. The system provides a number of
predefined queues, including a queue that’s guaranteed to always do its work on the
main thread. It’s perfect for the non-thread-safe UIKit. You can also create your own
queues — as many as you like. GCD queues are strictly first-in, first-out (FIFO). Units of
work added to a GCD queue will always be started in the order they were placed in the
queue. That said, they may not always finish in the same order, since a GCD queue will
automatically distribute its work among multiple threads, if possible.

GCD accesses a pool of threads that are reused throughout the lifetime of the
application. It tries to maintain a number of threads appropriate for the machine’s
architecture. It automatically takes advantage of a more powerful machine by utilizing
more processor cores when it has work to do. Until a few years ago, iOS devices were all
single-core, so this wasn’t much of an issue. But now that all iOS devices released in the
past few years feature multicore processors, GCD has become truly useful.

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

GCD uses closures to encapsulate the code to be added to a queue. Closures are
first-class language citizens in Swift — you can assign a closure to a variable, pass one
to a method, or return one as the result of a method call. Closures are the equivalent
of Objective-C’s blocks and similar features, sometimes referred to using the term
lambdas, in other programming languages, such as Python. Much like a method or
function, a closure can take one or more parameters and specify a return value, although
closures used with GCD can neither accept arguments nor return a value. To declare a
closure variable, you simply assign to it some code wrapped in curly braces, optionally
with arguments:

// Declare a closure variable "loggerClosure" with no parameters
// and no return value.
let loggerClosure = {

print("I'm just glad they didn't call it a lambda")

You can execute the closure in the same way as you call a function:

// Execute the closure, producing some output in the console.
loggerClosure()

Improving SlowWorker

To see how to use closures with GCD, let’s revisit SlowWorker’s doWork () method. It
currently looks like this:

@IBAction func doWork(sender: AnyObject) {
let startTime = NSDate()
self.resultsTextView.text =
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"
self.resultsTextView.text = resultsSummary

10

}

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as
Date)) seconds")

We can make this method run entirely in the background by wrapping all the code in

a closure and passing it to a GCD function called DispatchQueue. This function takes two

parameters: a GCD queue and the closure to assign to the queue. Make the changes in

Listing 1-2 to your copy of doWork ().

Listing 1-2. Modifications to the doWork Method to Use GCD

@IBAction func doWork(sender: AnyObject) {

}

let startTime = NSDate()
resultsTextView.text =

let queue = DispatchQueue.global(qos: .default)
queue.async {

let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"
self.resultsTextView.text = resultsSummary
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as
Date)) seconds")

The first changed line grabs a preexisting global queue that’s always available, using

the DispatchQueue.global() function. That function takes one arguments letting you

specify a priority. If you specify a different priority in the argument you will actually get

a different global queue, which the system will prioritize differently. For now, we'll stick

with the default global queue.

11

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

The queue is then passed to the queue.async() function, along with the closure.
GCD takes the closure and puts it on the queue, from where it will be scheduled to run
on a background thread and executed one step at a time, just as when it was running in
the main thread.

Note that we defined a variable called startTime just before the closure is created, and
then use its value at the end of the closure. Intuitively, this doesn’t seem to make sense
because, by the time the closure is executed, the doWork () method has returned, so the
NSDate instance that the startTime variable is pointing to should already be released! This
is a crucial point to understand about closures: if a closure accesses any variables from
“the outside” during its execution, then some special setup happens when the closure is
created, allowing it to continue to access to them. All of this is done automatically by the
Swift compiler and runtime — you don’t need to do anything special to make it happen.

Don’t Forget That Main Thread

Getting back to the project at hand, there’s one problem here: UIKit thread safety.
Remember that messaging any GUI object from a background thread, including our
resultsTextView, is a no-no. In fact, if you run the example now, you'll see an exception
appear in the Xcode console after about ten seconds, when the closure tries to update
the text view. Fortunately, GCD provides a way to deal with this, too. Inside the closure,
we can call another dispatching function, passing work back to the main thread. Make
one additional change to your version of doWork (), as shown in Listing 1-3.

Listing 1-3. The modified doWork Method

@IBAction func doWork(sender: AnyObject) {
let startTime = NSDate()
resultsTextView.text = ""

let queue = DispatchQueue.global(attributes: DispatchQueue.

GlobalAttributes.qosDefault)

queue.async {
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"

12

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
}
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as
Date)) seconds")

}

Giving Some Feedback

If you build and run your app at this point, you'll see that it now seems to work a bit
more smoothly, at least in some sense. The button no longer gets stuck in a highlighted
position after you touch it, which perhaps leads you to tap again, and again, and so on.
If you look in the Xcode console log, you'll see the result of each of those taps, but only
the results of the last tap will be shown in the text view. What we really want to do is
enhance the GUI so that, after the user presses the button, the display is immediately
updated in a way that indicates that an action is underway. We also want the button

to be disabled while the work is in progress so that the user can’t keep clicking it

to spawn more and more work into background threads. We'll do this by adding a
UIActivityIndicatorView to our display. This class provides the sort of spinner

seen in many applications and web sites. Start by adding an outlet for it at the top of
ViewController.swift:

@IBOutlet var spinner : UIActivityIndicatorView!

Next, open Main.Storyboard; locate an Activity Indicator View in the library; and
drag it into our view, next to the button. You'll need to add layout constraints to fix the
activity indicator’s position relative to the button. One way to do this is to Control-drag
from the button to the activity indicator and select Horizontal Spacing from the pop-up
menu to fix the horizontal separation between them, and then Control-drag again and
select Center Vertically to make sure that their centers remain vertically aligned.

With the activity indicator spinner selected, use the Attributes Inspector to check the
Hides When Stopped check box so that our spinner will appear only when we tell it to start
spinning (no one wants an unspinning spinner in their GUI). Next, Control-drag from the
View Controller icon to the spinner and connect the spinner outlet. Save your changes.

13

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Now open ViewController.swift. Here, we'll first work on the doWork () method a
bit, adding a few lines to manage the appearance of the button and the spinner when
the user taps the button and when the work is done. We'll first set the button’s enabled
property to false, which prevents it from registering any taps and also shows that the
button is disabled by making its text gray and somewhat transparent. Next, we get the
spinner moving by calling its startAnimating() method. At the end of the closure, we
re-enable the button and stop the spinner, which causes it to disappear again, as shown
in Listing 1-4.

Listing 1-4. Adding the Spinner Functions to our doWork Method

@IBAction func doWork(sender: AnyObject) {
let startTime = NSDate()
resultsTextView.text = ""
startButton.isEnabled = false
spinner.startAnimating()
let queue = DispatchQueue.global(qos: .default)
queue.async {
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =
"First: [\(firstResult)]\nSecond: [\(secondResult)]"
DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.startButton.isEnabled = true
self.spinner.stopAnimating()
}
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as
Date)) seconds")

14

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Build and run the app, and press the button. Even though the work being done takes
a few seconds, the user isn’t just left hanging. The button is disabled and looks the part
as well. Also, the animated spinner lets the user know that the app hasn’t actually hung
up and can be expected to return to normal at some point.

Concurrent Closures

The sharp-eyed among you will notice that, after going through these motions, we still
haven’t really changed the basic sequential layout of our algorithm (if you can even
call this simple list of steps an algorithm). All that we’re doing is moving a chunk of this
method to a background thread and then finishing up in the main thread. The Xcode
console output proves it: this work takes ten seconds to run, just as it did at the outset.
The issue is that the calculateFirstResult() and calculateSecondResult() methods
don’t depend on each and therefore don’t need to be called in sequence. Doing them
concurrently gives us a substantial speedup.

Fortunately, GCD has a way to accomplish this by using what'’s called a dispatch
group. All closures that are dispatched asynchronously within the context of a group,
via the dispatch_group async() function, are set loose to execute as fast as they can,
including being distributed to multiple threads for concurrent execution, if possible.
We can also use dispatch_group notify() to specify an additional closure that will be
executed when all the closures in the group have been run to completion.

Make these final changes to the doWork method, as shown in Listing 1-5.

Listing 1-5. The Final Version of Our doWork Method

@IBAction func doWork(sender: AnyObject) {
let startTime = Date()
self.resultsTextView.text =
startButton.isEnabled = false
spinner.startAnimating()
let queue = DispatchQueue.global(qos: .default)

queue.async {
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
var firstResult: String!
var secondResult: String!
let group = DispatchGroup()

15

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

queue.async(group: group) {
firstResult = self.calculateFirstResult(processedData)
}
queue.async(group: group) {
secondResult = self.calculateSecondResult(processedData)

}

group.notify(queue: queue) {

let resultsSummary = "First: [\(firstResult!)]\nSecond:

[\(secondResult!)]"

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.startButton.isEnabled = true
self.spinner.stopAnimating()

}

let endTime = Date()

print("Completed in \(endTime.timeIntervalSince(startTime))

seconds™)

}

One complication here is that each of the calculate methods returns a value that we
want to grab, so we need to make sure that the variables firstResult and secondResult
can be assigned from the closures. To do this, we declare them using var instead of let.
However, Swift requires a variable that’s referenced from a closure to be initialized, so
the following declarations don’t work:

var firstResult: String
var secondResult: String

You can, of course, work around this problem by initializing both variables with an
arbitrary value, but it’s easier to make them implicitly unwrapped optionals by adding !
to the declaration:

var firstResult: String!
var secondResult: String!

16

CHAPTER 1 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Now, Swift doesn’t require an initialization, but we need to be sure that both
variables will have a value when they are eventually read. In this case, we can be sure
of that, because the variables are read in the completion closure for the async group, by
which time they are certain to have been assigned a value. With this in place, build and
run the app again. You'll see that your efforts have paid off. What was once a ten-second
operation now takes just seven seconds, thanks to the fact that we're running both of the
calculations simultaneously.

Obviously, our contrived example gets the maximum effect because these two
“calculations” don’t actually do anything but cause the thread they’re running on to
sleep. In a real application, the speedup would depend on what sort of work is being
done and what resources are available. The performance of CPU-intensive calculations
is helped by this technique only if multiple CPU cores are available. It will get better
almost for free as more cores are added to future iOS devices. Other uses, such as
fetching data from multiple network connections at once, would see a speed increase
even with just one CPU.

As you can see, GCD is not a panacea. Using GCD won'’t automatically speed up
every application. But by carefully applying these techniques at those points in your app
where speed is essential, or where you find that your application feels like it’s lagging
in its responses to the user, you can easily provide a better user experience, even in

situations where you can’t improve the real performance.

Background Processing

Another important technology for handling concurrency is background processing. This
allows your apps to run in the background — in some circumstances, even after the user
has pressed the home button.

This functionality should not be confused with the true multitasking that modern
desktop operating systems now feature, where all the programs you launch remain
resident in the system RAM until you explicitly quit them (or until the operating system
needs to free up some space and starts swapping them to disk). iOS devices still have
too little RAM to be able to pull that off very well. Instead, this background processing
is meant to allow applications that require specific kinds of system functionality to
continue to run in a constrained manner when they are in the background. For instance,
if you have an app that plays an audio stream from an Internet radio station, iOS will
let that app continue to run, even if the user switches to another app. Beyond that, it

17

