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Preface

On September 3-7, 2012, as part of the activities of the Mathematics
Research Center “Ennio De Giorgi” and on the invitation of its director
prof. Mariano Giaquinta, we organized the Workshop “Geometry, Struc-
ture and Randomness in Combinatorics” at Scuola Normale Superiore in
Pisa. The workshop was organized by Jiřı́ Matousek, Jaroslav Nešetřil
(Charles University, Prague) and Marco Pellegrini (CNR, Pisa) and has
been supported jointly by SNS and CRM Pisa and DIMATIA centre in
Prague.
This workshop intended to reflect some key recent advances in combi-

natorics, particularly in the area of extremal theory and Ramsey theory.
It also aimed to demonstrate the broad spectrum of techniques and its re-
lationship to other fields of mathematics, particularly to geometry, logic
and number theory.
Invited speakers included ten of the leading experts. We had the plea-

sure to invite Prof. Endre Szemerédi, the winner of the Abel Prize in
2012 for his fundamental contributions in the field of discrete mathemat-
ics and theoretical computer science. The workshop attracted 48 partici-
pants both from Italy and abroad.
The following list is that of the invited lectures at the workshop:

IMRE BARANY, Tensors, colours, and octahedral

BÉLA BOLLOBÁS, Extremal and probabilistic results on bootstrap per-
colation

MARIA CHUDNOVSKY, Extending the Gyarfas-Sumner conjecture

ZEEV DVIR, Configurations of points with many collinear triples: going
beyond Sylvester-Gallai

ZOLTAN FUREDI, Binary codes versus hypergraphs

JAROSLAV NEŠETŘIL, A unifying approach to graph limits II

PATRICE OSSONA DE MENDEZ, A unifying approach to graph limits I



xii Preface

ALEX SCOTT, Discrepancy in graphs, hypergraphs and tournaments
and (second talk)
Szemerédi regularity lemma for sparse graphs

JOZSEF SOLYMOSI, Sums vs. products
and (second talk)
The (7,4)-conjecture for finite groups

ENDRE SZEMERÉDI, On subset sums

Given the success of both scientific and public workshops, at the end of
the event, at the suggestion of Professor Mariano Giaquinta, it has been
proposed to organize a volume dedicated to this meeting. This proposal
was welcomed by all the speakers. The present volume has been edited
for the “CRM Series”, with the title “Geometry, Structure and Random-
ness in Combinatorics” and includes both original scientific articles in
extended form or survey articles on results and problems inherent in the
themes presented at the workshop. Each article submitted was reviewed.
We thank all the authors for their contribution and again Scuola Nor-

male Superiore and its Centro di Ricerca Matematica Ennio De Giorgi
and to DIMATIA Centre of Charles University for their generous sup-
port.

Pisa/Prague
Jiřı́Matoušek, Jaroslav Nešetřil, Marco Pellegrini
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JAROSLAV NEŠETŘIL – Department of Applied Mathematics Charles
University and Institute for Theoretical Computer Science (ITI), Mal-
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Tensors, colours, octahedra

Imre Bárány

Abstract. Several theorems in combinatorial convexity admit colourful versions.
This survey describes old and new applications of two methods that can give such
colourful results. One is the octahedral construction, the other is Sarkaria’s tensor
method.

1 Introduction

Theorems of Carathéodory, Helly, and Tverberg are classical results in
combinatorial convexity. They all have coloured versions. Some others
involve colours directly. For instance in Kirchberger’s theorem [15], the
elements of a finite set X ⊂ Rd are coloured Red and Blue, and the state-
ment is that the Red and Blue points can be separated by a hyperplane if
and only if for every Y ⊂ X with |Y | ≤ d + 2, the Red and Blue points
in Y can be separated by a hyperplane.
The aim of this paper is to describe and explain old and new appli-

cations of two methods that have turned out to be useful when proving
such colourful results. One is the octahedral construction, discovered and
first used by László Lovász in 1991, which appeared in [4]. The other is
Karinbir Sarkaria’s tensor method, originally from [25] and developed
further in [5].
In the next section Tverberg’s theorem and its colourful version are

presented. The octahedral construction is given in Section 3 with appli-
cations followed in later sections.

2 Tverberg’s theorem and its coloured version

Tverberg’s theorem is a gem, one of my favourites. Here is what it says.

Theorem 2.1. Assume d ≥ 1, r ≥ 2 and X ⊂ Rd has (r − 1)(d + 1)+
1 elements. Then X has a partition into r parts X1, . . . , Xr such that⋂r
1 conv Xi �= ∅.
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The number (r − 1)(d + 1) + 1 is best possible here: for a general
position X with one fewer element, the affine hulls of an r-partition do
not have a common point (by counting dimensions).
The case r = 2 is Radon’s theorem from 1922 [21] that has a simple

proof: Given x ∈ Rd we write (x, 1) for the (d + 1)-dimensional vector
whose first d components are equal to those of x , and the last one is 1.
This time |X | = d+2 so the vectors (x, 1) ∈ Rd+1 have a nontrivial linear
dependence

∑
α(x)(x, 1) = (0, 0). Letting X1 = {x ∈ X : α(x) ≥ 0}

and X2 = {x ∈ X : α(x) < 0} is the partition needed. Indeed, defining
α =∑

x∈X1 α(x) and α∗(x) = α(x)/α for x ∈ X1 and α∗(x) = −α(x)/α
for x ∈ X2, we have convex combinations in

z =
∑
x∈X1

α∗(x)x =
∑
x∈X2

α∗(x)x

showing that z ∈ conv X1⋂ conv X2.

There are several proofs of Tverberg’s theorem, for instance in Tver-
berg [29, 30], Tverberg and Vrećica [31], Roudneff [23], Sarkaria [25],
Bárány and Onn [5], Zvagelskii [34], none of them easy. We will give
another proof in Section 8 which is from Arocha et al. [1].
The coloured version of Tverberg’s theorem follows now.

Theorem 2.2. For every d ≥ 1 and r ≥ 2 there is t = t (r, d) with
the following property. Given sets C1, . . . ,Cd+1 ∈ Rd (called colours),
each of size t , there are r disjoint sets S1, . . . , Sr ⊂ ⋃d+1

1 Ci such that
|Sj ∩ Ci | = 1 for every i, j and⋂r

1 conv Sj �= ∅.
In other words, given coloursC1, . . . ,Cd+1 ⊂ Rd of large enough size,

there are r disjoint and colourful sets Sj whose convex hulls have a point
in common. Colourful means that Sj is a transversal of the Ci , that is,
Sj contains one element from each Ci . The need for this result emerged
in connection with the halving plane problem (c.f. [3]). It was proved
there that t (3, 2) is finite. Shortly afterward it was proved by Bárány and
Larman [4] that t (r, 2) = r for all r , clearly the best possible result. The
same paper presents Lovász’s proof that t (2, d) = 2 for all d, the first
application of the octahedral method. To simplify notation we write [k]
for the set {1, 2, . . . , k}.

3 The octahedral construction

Proof of t (2, d) = 2. We have Ci = {ai , bi } ⊂ Rd , i ∈ [d + 1]. Note
that we may exchange the names of ai and bi later. We want to choose
a transversal T from C1, . . . ,Cd+1 such that the convex hulls of T and
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of the complementary transversal T have a point in common. For this
purpose let

Qd+1 = conv{±e1, . . . ,±ed+1}
be the standard octahedron inRd+1 (the ei are the usual basis vectors). We
define a map f : ∂Qd+1 → Rd by setting f (ei) = ai and f (−ei) = bi ,
and then extend f simplicially to ∂Qd+1, that is, to the facets of Qd+1.
Note that f maps the facets of Qd+1 to the convex hull of a transversal T
exactly, and the opposite facet is mapped to conv T . So what we need is
a pair of opposite facets whose images intersect.

This cries out for the Borsuk-Ulam theorem: ∂Qd+1 is homeomorphic
to Sd and so f is an Sd → Rd map. By a variant of Borsuk-Ulam there
are antipodal points z,−z ∈ ∂Qd+1 with f (z) = f (−z). If z lies on a
facet F , then−z lies on the opposite facet F . For simpler writing assume
that F = conv{e1, . . . , ed+1}, then F = conv{−e1, . . . ,−ed+1}, and we
see that conv{a1, . . . , ad+1} and conv{b1, . . . , bd+1} have f (z) = f (−z)
as a common point.
Actually, more is true: if z = ∑d+1

1 γi ei , then −z = ∑d+1
1 γi(−ei),

and the common point is
∑d+1

1 γi ai = ∑d+1
1 γi bi . Thus the common

point comes with the same coefficients in the convex combinations. �

This is the octahedral method. The basic idea is that facets of the octa-
hedron correspond to transversals of C1, . . . ,Cd+1, transversals have the
structure of ∂Qd+1, and disjoint transversals come from opposite facets,
and the next step is the use of algebraic topology like the Borsuk-Ulam
theorem above.

Unfortunately the method does not work for r ≥ 3. It was conjectured
in [4] that t (r, d) = r for all r and d. Finiteness of t (r, d) was proved
by Živaljević and Vrećica [33] using equivariant topology. Their result is
that t (r, d) ≤ 2r−1 if r is a prime (which implies finiteness of t (r, d) for
all r). The same was proved by different methods by Björner et al. [8] and
by Matoušek [17]. More recently Blagojević, Matschke, and Ziegler [9]
showed that t (r, d) = r if r + 1 is a prime which is again best possi-
ble. The strange primality condition in all cases is needed because cyclic
groups of prime order behave better in equivariant topology. But the the-
orem is probably true for every r , the primality condition is required for
the method and not for the problem. It is however disappointing (for a
convex geometer) that a completely convex (or linear, if you wish) prob-
lem does not have a direct convex (or linear) proof, and topology seems
a necessity here. Finding a purely geometric proof remains a challenge.
The interested reader may wish to read Günter Ziegler’s fascinating arti-
cle [32] about Tverberg’s theorem and its colourful version.


