Wolfgang Georgi Philipp Hohl

Einführung in LabVIEW

HANSER

Georgi/Hohl Einführung in LabVIEW

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Wolfgang Georgi • Philipp Hohl

Einführung in LabVIEW

6., erweiterte Auflage

Mit 1018 Bildern und 163 Aufgaben

Prof. Dipl.-Math. Wolfgang Georgi Hochschule Ravensburg-Weingarten für Technik, Wirtschaft und Sozialwesen M.Eng. Philipp Hohl Hochschule Ravensburg-Weingarten für Technik, Wirtschaft und Sozialwesen

Alle in diesem Buch enthaltenen Programme, Verfahren und elektronischen Schaltungen wurden nach bestem Wissen erstellt und mit Sorgfalt getestet. Dennoch sind Fehler nicht ganz auszu-schließen. Aus diesem Grund ist das im vorliegenden Buch enthaltene Programm-Material mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieses Programm-Materials oder Teilen davon entsteht.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.d-nb.de</u> abrufbar.

ISBN: 978-3-446-44272-6 E-Book-ISBN: 978-3-446-44407-2

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung – mit Ausnahme der in den §§ 53, 54 URG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Fachbuchverlag Leipzig im Carl Hanser Verlag

© 2015 Carl Hanser Verlag München Internet: <u>http://www.hanser-fachbuch.de</u>

Lektorat: Franziska Jacob, M. A. Herstellung: Dipl.-Ing. (FH) Franziska Kaufmann Satz: Kösel Media GmbH, Krugzell Covergestaltung: Marc Müller-Bremer, www.rebranding.de, München Coverrealisierung: Stephan Rönigk Druck und Bindung: Pustet, Regensburg Printed in Germany

Vorwort zur sechsten Auflage

Dieses Lehrbuch führt wie in der ersten Auflage in das Programmieren mit LabVIEW ein. Damals mussten wir noch erklären, dass sich LabVIEW für messtechnische Anwendungen eignet und in der Industrie mehr und mehr geschätzt wird. Heute ist das allgemein bekannt, auch, dass es sich bei dieser von der Firma National Instruments entwickelten Software um ein Werkzeug handelt, das sich weit über die Messtechnik hinaus vorteilhaft anwenden lässt.

Um einen guten Lernerfolg zu erzielen, sollte der Leser möglichst viele Beispiele und Übungen am PC durcharbeiten. Alle Beispielprogramme wurden für die LabVIEW-Version 2014 geschrieben. Wir setzen also voraus, dass der Leser die Version 2014 von LabVIEW installiert hat. Frühere Versionen wie LabVIEW 2009 oder LabVIEW 8.0 sind im Kern recht ähnlich. Programme, die mit diesen Versionen erstellt werden, laufen auch unter der Version 2014. Doch trifft das Umgekehrte naturgemäß nicht zu, weil jede neue Version auch neue Möglichkeiten bietet. Weiter wird vorausgesetzt, dass der PC unter einem der Betriebssysteme Windows 7 oder Linux arbeitet.

Das Buch wendet sich an Studierende, aber auch an Ingenieure, die unter dem Stichwort "Lebenslanges Lernen" versuchen, neueren Trends in der Industrie zu folgen.

Das Lehrbuch gliedert sich in vier Teile:

- Teil I: Grundlagen des Programmierens in LabVIEW
- Teil II: Technische Anwendungen
- Teil III: Kommunikation
- Teil IV: Fortgeschrittene Techniken

In Teil I werden Installation und Aufruf von LabVIEW, grundlegende Arbeitsmittel wie (Front-)Panel, Diagramm, Paletten für Eingabe/Ausgabe, Funktionen und Werkzeuge behandelt, ferner Konzepte von LabVIEW, Datentypen, Grundlagen der Programmierung und Visualisierungstechniken.

Teil II befasst sich mit Anwendungen wie Fouriertransformation, Filterung, Lösen von Differenzialgleichungen und Differenzialgleichungssystemen in der Technik.

Teil III geht auf die Kommunikation ein. Hier sind zwei Aspekte von Bedeutung:

- Externe Kommunikation mit anderen Geräten und Rechnern, z.B. über USB, Datenerfassungskarten, TCP/IP (Internetanbindung),
- Kommunikation mit anderen Softwarepaketen, z.B. mit der Erstellung und Anbindung selbst geschriebener C-Module.

Teil IV befasst sich mit Zustandsautomaten, mit der objektorientierten Programmierung (OOP), mit Tabellenkalkulation (Excel) und Datenbankanwendungen (Access), mit dem

Datenaustausch über Intra- und Internet, mit dem Compact RIO-System von National Instruments samt FPGA-Programmierung und Verwendung von XControls und XNodes.

Neu hinzugekommen sind in der sechsten Auflage Kapitel 23 und 24, in denen wir Scripting und das bisher recht unzugängliche Konstrukt der XNodes behandeln.

Weitgehend neu haben wir das Kapitel 20 gestaltet. Abschnitt 20.5 wurde ins Internet (<u>http://www.geho-labview.de</u>) gestellt und ersetzt durch das seit LabVIEW 2013 neu eingeführte Konzept des Webdienstes.

Mehr als in der fünften Auflage haben wir verschiedene Kapitel ergänzt mit dem Ziel, dem Leser anhand von Beispielen 'guten Programmierstil' zu vermitteln.

Das Lehrbuch ist trotz seines dadurch stark gewachsenen Umfangs immer noch knapp gehalten. Es kann also nur eine Einführung sein, die allerdings versucht, die wichtigsten Aspekte von LabVIEW zu berücksichtigen. Bei einem so umfangreichen Softwaresystem wie LabVIEW sind jedoch Lücken unvermeidlich. Hier verweisen wir auf weiterführende Literatur, auf die Veröffentlichungen von National Instruments, auf User Groups und auf das Internet ganz allgemein. Diese Hinweise werden wir in den verschiedenen Kapiteln des Lehrbuchs noch vertiefen.

Wir bedanken uns ganz herzlich bei allen, die uns geholfen haben:

Besonders bei Herrn Thakur Adhikari, der sich in seiner Masterthese mit XNodes befasst und damit regelungstechnische Anwendungen entwickelt hat. Ohne seine gründlichen Recherchen zu den in der Literatur nur unzulänglich dokumentierten XNodes wäre es nicht möglich gewesen, Kapitel 24 noch in dieser Auflage herauszugeben.

Schließlich danken wir allen Lesern, die mit ihren Fragen Verständnisprobleme deutlich gemacht und uns damit zur Verbesserung mancher Erklärung angeregt haben. Wir sind auch weiterhin für Anregungen und Kritik dankbar. Diese können Sie uns jetzt auch direkt über die Internetseite <u>http://www.geho-labview.de</u> übermitteln.

Weitere Informationen zu LabVIEW sowie die Downloads der Test- bzw. Studentenversionen finden Sie unter: <u>www.ni.com/download-labview/d/</u>

Dem Fachbuchverlag Leipzig, und hier besonders Frau Werner, Frau Jacob und Frau Kaufmann, danken wir für die gründliche Korrektur und ihre Ratschläge zur Gestaltung des Layouts.

Weingarten, Juni 2015 Wolfegg W. Georgi P. Hohl

Inhalt

Teil	l: Grund	dlagen des Programmierens in LabVIEW	17		
1	Was is	t LabVIEW?	19		
1.1	Entwic	klungsstufen			
1.2	Was wi	ill dieses Lehrbuch?			
1.3	Installa	ition			
1.4	Einfüh	rendes Beispiel			
	1.4.1	Programmierung von c = a + b			
	1.4.2	Speicherung als Programm Add.vi			
	1.4.3	Starten und Stoppen von Add.vi			
	1.4.4	Fehlersuche in Add.vi (Debugging)			
1.5	Beispie	el für eine Grafik in LabVIEW			
1.6	Grund	legende Konzepte von LabVIEW			
	1.6.1	Frontpanel			
	1.6.2	Blockdiagramm			
1.7	Rezept	e			
1.8	Shortcu	uts			
2	Einste	llungen. Paletten	35		
2.1	Einstell	lungen			
	2.1.1	Einstellungen von LabVIEW			
	2.1.2	Frontpanel			
	2.1.3	Blockdiagramm			
	2.1.4	Ausrichtungsgitter			
	2.1.5	Wiederherstellungen			
2.2	Paletter	Paletten			
	2.2.1	Werkzeugpalette (Tools Palette)			
	2.2.2	Eingabe-/Ausgabe-Elemente			
	2.2.3	Funktionenpalette			
	2.2.4	Palette konfigurieren			
3	Progra	ammstrukturen	48		
3.1	Struktu	ıriertes Programmieren			
3.2	Sequenz				
3.3	Case-Struktur				

3.4	Schleife	n	57	
3.5	Guter P	rogrammierstil	61	
4	Datent	ypen	63	
4.1	Numeri	ische Datentypen	63	
	4.1.1	Kontextmenü: 'Darstellung'	63	
	4.1.2	Kontextmenü: 'Anzeigeformat'	64	
4.2	Boolesc	he Datentypen	66	
4.3	String u	ind Pfad	68	
4.4	Arrays			
	4.4.1	Definition und Initialisierung eines 1-dimensionalen Arrays	71	
	4.4.2	Definition und Initialisierung eines 2-dimensionalen Arrays	73	
	4.4.3	Array erstellen	74	
	4.4.4	Rechnen mit Arrays: Addition	75	
	4.4.5	Rechnen mit Arrays: Multiplikation	76	
	4.4.6	Steuerung von For-Schleifen mit Arrays	77	
	4.4.7	Behandlung einzelner Arrayelemente	79	
4.5	Cluster		81	
	4.5.1	Erzeugung eines Clusters	82	
	4.5.2	Clusterwerte ändern	83	
	4.5.3	Aufschlüsseln eines Clusters	85	
	4.5.4	Umordnen der Elemente eines Clusters	86	
	4.5.5	Cluster-Arrays	87	
4.6	Ring &	Enum	88	
4.7	Datenty	тр FXP	90	
4.8	Datenty	/p Variant	92	
4.9	Guter P	rogrammierstil	94	
5	Unterp	programme und Typdefinitionen	96	
5.1	Wozu U	Jnterprogramme (SubVIs)?	96	
5.2	Erstellen von Unterprogrammen			
	5.2.1	Einführendes Beispiel	97	
	5.2.2	Weitere Hinweise für die Erstellung eines Unterprogramms	100	
	5.2.3	Einstellungen für Programme und Unterprogramme	102	
	5.2.4	Erstellen von Unterprogrammen mit internem Zustand	104	
	5.2.5	Erstellen von polymorphen Unterprogrammen	105	
5.3	Aufruf	von Unterprogrammen	108	
	5.3.1	Statische Bindung	108	
	5.3.2	Dynamische Bindung	109	
	5.3.2.1	VI-Referenz öffnen und schließen	109	
	5.3.2.2	Aufruf eines VI über seine Referenz	110	
	5.3.2.3	Beispiel für den SubVI-Austausch während der Laufzeit	112	
	5.3.2.4	Rekursiver Aufruf von Unterprogrammen	112	
	5.3.2.5	Testen (Debugging) von ablaufinvarianten SubVIs	113	

5.4	Typdefi	nitionen	
	5.4.1	Beispiel einer Typdefinition für Enum-Variablen	
	5.4.2	Beispiel einer Typdefinition für Registerkarten	
5.5	Guter Pr	rogrammierstil	
	5.5.1	Vereinfachung durch Unterprogramme und Typdefinitionen	
	5.5.2	Aussagekräftige Symbole (Icons)	
	5.5.3	Anordnung häufig verwendeter Elemente	
	5.5.4	Kommentierung der Elemente und Funktionen eines VI	
	5.5.5	Detaillierte Hilfe	
6	Prozess	svisualisierung	123
6.1	OOP-Ke	onzepte	
6.2	Eigenscl	hafts- und Methodenknoten	
6.3	Grafisch	ne Ausgabe	
	6.3.1	Chart (Signalverlaufsdiagramm)	
	6.3.1.1	Darstellung einer Sinuskurve	
	6.3.1.2	Darstellung von zwei oder mehr Kurven in einem Chart	
	6.3.1.3	Legende zu einem Chart oder Graphen	
	6.3.1.4	Skalierung der Ordinate in einem Chart	
	6.3.2	Graph (Signalverlaufsgraph)	
	6.3.2.1	Darstellung einer Sinuskurve	
	6.3.2.2	Darstellung von zwei oder mehr Kurven in einem Graphen	
	6.3.2.3	Skalierung der Abszisse in einem Graphen	
	6.3.3	XY-Graph	
	6.3.3.1	Darstellung einer Relation im XY-Graphen	
	6.3.3.2	Darstellung mehrerer Relationen in einem XY-Graphen	
	6.3.4	Signalverlauf	141
6.4	Express	-VIs, Programmierstil	146
	6.4.1	Express-VI zur Erzeugung von Kurven	146
	6.4.2	Express-VI zur Erstellung von Berichten	147
-	Defense		140
71	Finführ	andes Poisnial	147
/.1	7 1 1	Vortauschung von zwei Voriahlanwortan	
	7.1.1	Performance and Performance and Anapigeological	
	7.1.2	Lägung des Verteuschungenrehleme	
7 2	7.1.3 Vororbu	Losung des vertauschungsproblems	
1.2	7 2 1	Figanachaftan dar Baaidlaasa	
	7.2.1	Eigenschaften von abgeleiteten Vlassen	
72	7.2.2 Fablerfu	Eigenschaften von abgeleheten Klassen	
1.5		Esplannaldungan mit o dan ohno Dialog	
	732	We findet man wichtige Fehlerelemente und Fehlerfunktioner?	
	7.3.2	Werschiedene Echlerorten	
	7.3.3 7.2.2.1	verschledene renierarien	
	7.3.3.1	Station on ohne odor mit voreinfachter Echledeiter -	
	1.3.3.2	Funktionen onne oder nitt vereinfachter Femerienung	

	7.3.4	Ausgang aus While-Schleifen	160
	7.3.5	Erzwingung von sequenziellem Ablauf	161
8	Datent	ransfer von und zur Festnlatte	162
0 81	Dateifu	nktionen	162
0.1	811	Allgemeines zur Speicherung von Dateien	162
	812	Palette Dateifunktionen	164
	813	Finführendes Beispiel	165
	814	Modifiziertes Beispiel	166
	8.1.5	Beispiel: Anlegen einer Protokolldatei	
	816	Überschreiben ohne Warnung	167
8.2	Pfade		
0.2	8.2.1	Pfadkonstanten	
	8.2.2	Pfadkonstante 'Standardverzeichnis'	
	8.2.3	'Standardverzeichnis' ändern	
	8.2.4	'Standarddatenverzeichnis' ändern	
	8.2.5	Lesen und Schreiben anderer Datentypen	
	8.2.6	Verketten von Schreib- und Lesefunktionen	
	827	Tabellenkalkulation	173
8.3	Pfade ir	einer EXE-Datei	
8.4	Fortges	chrittene Dateitypen	
	8.4.1	LVM-, TDMS- und TDM-Dateien	
	8.4.2	Diadem	
	8.4.3	ZIP-Dateien	
	8.4.4	Konfigurationsdateien	181
9	LabVIE	W-Kurzüberblick	185
9.1	Aufbau	des LabVIEW-Systems	
	9.1.1	Programmierung in G	
	9.1.1.1	Interpretieren oder kompilieren?	
	9.1.1.2	Datenflussprogrammierung	
	9.1.2	Hardware-Unterstützung	
	9.1.3	Bibliotheken mathematischer und technischer Funktionen	
	9.1.4	Benutzerschnittstelle	
	9.1.5	Technologische Abstraktion	
	9.1.6	Rechenmodelle	190
9.2	Projekte	e	
9.3	Erstellu	ng von EXE-Dateien	192
	9.3.1	Erstellung einer EXE-Datei	192
	9.3.2	EXE-Datei auf einem Rechner ohne LabVIEW-System	194
9.4	Struktu	ren zur Programmentwicklung	197
	9.4.1	Deaktivierungsstrukturen	197
	9.4.2	Debug-Einstellung in der Projektverwaltung	199
9.5	LabVIE	W-Bibliotheken	200
9.6	Umwan	deln von LLB-Bibliotheken	202

9.7	Einbind	lung von C-Funktionen unter Windows	
	9.7.1	Reihe in C#	
	9.7.2	Reihe in C++	
	9.7.3	Reihe mit MathScript	
9.8	Hilfen z	zu LabVIEW	
9.9	Schnell	einfügeleiste (Quickdrop)	
9.10	Der VI Package Manager		
	9.10.1	Verwalten der LabVIEW-Entwicklungsumgebung	
	9.10.2	Eigenes Paket erstellen	220
Teil I	I: Techr	nische Anwendungen	221

.

10	Fouriertransformation		222
10.1	Zeit- und Frequenzbereich		
	10.1.1	Die reelle Fouriertransformation	
	10.1.2	Darstellung der Fourierkoeffizienten <u>c</u> , in LabVIEW	
10.2	Diskrete Fouriertransformation		
	10.2.1	Satz von Shannon	
	10.2.2	Aliasing	
	10.2.3	Frequenzauflösung	

11 Filterung 234 11.1 11.1.1 11.1.2 11.2 11.3 11.3.1 11.3.2 11.3.3 12 Differenzialgleichungen 243 12.1 12.2

121	Creations	arviähali ah an Differenzi alalai ah un aon	252
13	System	e von Differenzialgleichungen	253
12.3	Genauig	keit numerischer Verfahren	
	12.2.2	Vereinfachungen	
	12.2.1	Blockdiagramm-Darstellung	

13.1	Systeme	gewöhnlicher Differenzialgleichungen	253
13.2	Gekopp	eltes Feder-Masse-System	253
	13.2.1	Lösung mit eingebauter ODE-Funktion	254
	13.2.2	Lösung mit Blockdiagramm wie in MATLAB [®]	255
13.3	Umwelt	und Tourismus	257

14	Paralle	lverarbeitung, Laufzeiten, Ereignisse	260
14.1	Einführ	endes Beispiel	
14.2	Grundb	egriffe der Parallelverarbeitung	
	14.2.1	Multiprocessing, Multitasking, Multithreading	
	14.2.2	Synchronisierung von Prozessen	
14.3	Parallel	verarbeitung unter LabVIEW	
	14.3.1	Erzeugen von Ressourcen für die Prozesskommunikation	
	14.3.2	Freigabe von Ressourcen der Prozesskommunikation	
	14.3.3	Zeitbegrenzung Ressource schont Prozessor	
14.4	Prozess	-Synchronisierung ohne Datenaustausch	
	14.4.1	Occurrences	
	14.4.2	Semaphor	
	14.4.3	Rendezvous	271
14.5	Prozess	-Synchronisierung mit Datenaustausch	272
	14.5.1	Melder-Operationen	272
	14.5.2	Queue-Operationen	273
14.6	Globale	Variablen	274
14.7	Laufzeitprobleme und ihre Behandlung		275
	14.7.1	Laufzeitprobleme bei lokalen Variablen	275
	14.7.2	Laufzeitprobleme bei globalen Variablen	278
14.8	Ereignis	sgesteuerte Programmierung	279
	14.8.1	Frontpanel-Ereignisse	279
	14.8.2	Wertänderungs-Ereignisse	
	14.8.3	Gefilterte Ereignisse	
14.9	Zeitschl	eifen	

Teil III: Kommunikation

15	Seriell	e Eingabe/Ausgabe	290
15.1	RS-232		
15.2	Program	nmierung der RS-232 in LabVIEW	
15.3	Die US	B-Schnittstelle	
15.4	Feld-Bu	ıs, CAN-Bus	
	15.4.1	CAN-Protokoll	
	15.4.2	CAN-Interface	
	15.4.3	CANopen-Protokoll, ZILA-Sensor	
	15.4.4	CAN-Bus mit Laptop und zwei Sensoren	
	15.4.5	XNET-System von National Instruments	
15.5	Der byt	e-serielle GPIB-Bus	
16	Datene	erfassungsgeräte	317
16.1	Datenerfassungskarten/Datenerfassungsgeräte		
16.2	Allgem	eines	

289

	16.2.4	Programmierung von VIs zur Analogausgabe	
	16.2.5	Programmierung von VIs zum Digital-I/O	
	16.2.6	Programmierung mit Hilfe des DAQ-Assistenten	
	16.2.7	Programmatische Task-Erstellung	
16.3	USB-Ge	erät NI USB-6251	
	16.3.1	Begriffe 'differenziell', 'RSE' und 'NRSE'	
	16.3.2	Zwei Analogsignale mit der NI USB-6521 lesen	
	16.3.3	Triggern mit NI USB-6521	
	16.3.4	Streaming mit NI USB-6521	
16.4	Ältere D	Datenerfassungskarten/-geräte	
16.5	TEDS		
16.6	IVI-Ger	ät NI USB-513	
Teil I	V: Fortg	jeschrittene Techniken	355

17	Professi	onelle Programmentwicklung	356
17.1	Sequenzstruktur		
17.2	Zustands	automaten	
	17.2.1	Notation für Zustandsautomaten	
	17.2.2	Umsetzung Zustandsdiagramm \rightarrow LabVIEW-Programm	
	17.2.2.1	Strings für die Zustandsauswahl	
	17.2.2.2	Enum für die Zustandsauswahl	
17.3	Münzaut	omat	
17.4	Münzaut	omat mit Queues und Ereignisstrukturen	
17.5	Program	mierhilfen	
	17.5.1	Arbeiten mit vorgefertigten Strukturen (Templates)	
	17.5.2	Beurteilung Programmeffizienz und geeignete Werkzeuge dazu	
18	Objekto	rientierte Programmierung	380
18.1	Warum o	bjektorientiert?	
18.2	Erstes Be	ispiel zur objektorientierten Programmierung	
	18.2.1	Bildung einer Klasse	
	18.2.2	Private Eigenschaften der Klasse	
	18.2.3	Methoden der Klasse	
18.3	Weitere I	Beispiele zur OOP	
	18.3.1	Vererbung	
	18.3.2	Polymorphie	
	18.3.3	Modulaustausch	
18.4	Schutz ei	ner Klassenbibliothek	
19	LabVIEV	/: Tabellenkalkulation, Datenbanken	408
19.1	Schreib-/	Lesebefehle zur Tabellenkalkulation	
19.2	Allgemei	nes über ActiveX	
	19.2.1	ActiveX-Container in LabVIEW	
	19.2.2	ActiveX in LabVIEW zur Steuerung von Anwendungen	

19.3	Beispiele	zur Anwendung auf Excel	414				
	19.3.1	Öffnen und Schließen von Excel					
	19.3.2	Sichtbarmachen einer Excel-Tabelle	416				
	19.3.3	Eintragen von Daten in eine Excel-Tabelle					
	19.3.4	Geschwindigkeit der Datenspeicherung					
	19.3.5	Erstellen von Makros zum Umwandeln einer Tabelle in eine G	rafik421				
	19.3.6	Aufruf von Makros in LabVIEW mit Hilfe von ActiveX					
	19.3.7	Erhöhung der Geschwindigkeit					
	19.3.8	Schreiben mehrerer Dateien					
19.4	Microsof	ft-Datenbank Access					
	19.4.1	Einführung					
	19.4.2	Verbindung mit der Datenbank					
	19.4.3	SQL					
	19.4.4	Verwendung von SubVIs					
20	Internet	t, Server und Client	437				
20.1	Allgemei	ne Bemerkungen zum Internet					
	20.1.1	Ethernet					
	20.1.2	Ethernet-Karten, MAC- und IP-Adresse					
	20.1.3	TCP/IP-Protokoll					
20.2	Einfache	s LabVIEW-Beispiel: Ping					
20.3	Program	ammieren mit DataSocket					
20.4	Program	nmieren mit TCP/IP443					
	20.4.1	Server und Client					
	20.4.2	Beispiel für die Übertragung von Sinusdaten über TCP/IP					
20.5	Webdienste						
	20.5.1	Grundbegriffe					
	20.5.2	Struktur der Webdienstkommunikation					
	20.5.3	Erstes einfaches Beispiel					
	20.5.4	Zweites einfaches Beispiel	453				
	20.5.5	Drittes Beispiel	456				
	20.5.6	Dreiecksberechnung	457				
	20.5.7	Webserver im Internet					
	20.5.7.1	Firmeninternes Netz					
	20.5.7.2	Aufruf im Internet					
21	Compac	t RIO-System und FPGA	464				

21.1	Definition	464
21.2	Installation	466
	Schritt 1: Software-Installation auf dem PC	466
	Schritt 2: Zusammenstellen der cRIO-Hardware	467
	Schritt 3: Zuweisung einer IP-Adresse zum cRIO-System	467
	Schritt 4: Installation weiterer Software auf dem cRIO-System	470
	Schritt 5: Verbindung eines PC mit einem cRIO-System im Netz	470

21.3	Program	mierbeispiele für FPGA	471
	21.3.1	Beispiel zur Digitalausgabe	472
	21.3.2	Beispiel eines Zählers	477
	21.3.3	FPGA-Anwendung: Ermittlung eines Frequenzganges	479
	21.3.4	Umgebungsvariablen	489
	21.3.4.1	Projekt 'Shared_Einzeln'	490
	21.3.4.2	Projekt 'Shared_Netzwerk'	492
	21.3.4.3	Projekt 'Shared_cRIO'	495
	21.3.5	FPGA-Anwendungen auf dem cRIO-9014 ohne PC-Unterstützung	497
	21.3.5.1	Projekt 'RIO_MOD1_Switch'	497
	21.3.5.2	Projekt 'RIO_User1_Switch'	499
	21.3.5.3	Umstellung des cRIO-Systems von einem Standalone-Projekt zum	
		nächsten	502

22 XControls

504

~~	Acondic	//5	504		
22.1	Unterschied zu einfachen Ctls				
22.2	Anzeige	Anzeige der Flugbahn eines Steines			
22.3	Erstellen	eines XControls	506		
	22.3.1	Allgemeines Rezept	506		
	22.3.2	Beispiel XControl_Pfeil.xctl	508		
	22.3.3	Eigenschaften in einem XControl			
	22.3.4	Bedeutung der Rahmen [1] bis [4] im Fassaden-VI			
	22.3.5	Weitere Verbesserungen			
22.4	XContro	l zur Erstellung von Symbolleisten			
	22.4.1	Zustand der Symbolleiste	526		
	22.4.2	Funktionen der Symbolleiste	527		
	22.4.2.1	Symbole hinzufügen			
	22.4.2.2	Alle Symbole löschen			
	22.4.2.3	Rückmeldung des Symbols, das unter dem Mauszeiger liegt	528		
	22.4.2.4	Anpassung des Erscheinungsbilds an eigene Bedürfnisse			
	22.4.3	Leistungsmerkmal 'Status für Speichern umwandeln'	532		
		- *			

23 LabVIEW VI-Skripte

534

23.1	Was sind	VI-Skripte	534	
23.2	Die VI-S	kripte Funktionen in der Palette anzeigen	534	
23.3	Die VI-Skripte Funktionen			
	23.3.1	Neues VI	536	
	23.3.2	Neues VI-Objekt	537	
	23.3.3	VI-Objektreferenz öffnen	539	
	23.3.4	Abstand des neuen VI-Objekts von Referenzobjekt	539	
	23.3.5	GObjects suchen	541	
	23.3.6	GObject-Beschriftung abfragen	542	
	23.3.7	Klassenhierarchie mittels Klassennamen ermitteln	542	
	23.3.8	Weiterführende Informationen	544	
23.4	Wo werd	len VI-Skripte eingesetzt?	545	

23.5 23.6	Modifizie Erstellen	erung der Projektvorlage "Leeres VI" eines Quickdrop Plugins mit VI-Skripting	546	
24	XNodes		553	
24.1	Einführu	ng	553	
24.2	Regelungstechnische Anwendung			
24.3	Aufbau eines XNodes			
24.4	Wie bilde			
	24.4.1	Vorbereitende Überlegungen		
	24.4.2	Programmierung von NeueKuh.xnode		
	24.4.2.1	Template-VI		
	24.4.2.2	Ability-VIs		
24.5	Wie ände	ert man einen XNode?		
24.6	XNodes in der Funktionspalette speichern5			
Litera	atur		575	

inaex

Teil I: Grundlagen des Programmierens in LabVIEW

Systematische Einführung in die wichtigsten Konzepte von LabVIEW. Das umfasst:

Installation und Aufruf von LabVIEW, grundlegende Arbeitsmittel wie Frontpanel, Diagramm, Paletten für Eingabe/Ausgabe und ihre Anpassung an Benutzerwünsche, ferner Bedienelemente und Funktionen, Datentypen, das Erstellen von Unterprogrammen, Visualisierungstechniken, Umgang mit Referenzen sowie das Schreiben und Lesen von Daten auf bzw. von der Festplatte. Kapitel 9 gibt eine Kurzübersicht über den Aufbau von LabVIEW und zusätzliche Hilfen zum Erlernen dieser grafischen Programmiersprache.

1 Was ist LabVIEW?

Lernziel

Der Leser soll anhand eines sehr einfachen Beispiels einen ersten Eindruck von LabVIEW, von der Idee der Datenflussprogrammierung und den wichtigsten Programmierkonzepten gewinnen. Er kann einfache VIs von Beginn an entwickeln.

1.1 Entwicklungsstufen

Software wurde und wird unter verschiedenen Aspekten geschaffen. Bekannt sind Begriffe wie 'strukturierte Programmierung', 'objektorientierte Programmierung' usw. In jüngerer Zeit spielt auch die **Prozessvisualisierung** eine zunehmende Rolle.

Ursache ist die ständig komplizierter werdende Technik. Sie verlangt bessere Darstellungsmöglichkeiten, damit der Anwender den Überblick nicht verliert. Man beschränkt sich heute bei der Abbildung technischer Prozesse nicht mehr allein auf konventionelle Anzeigeinstrumente, sondern stellt auch den Prozessablauf selbst auf dem Bildschirm eines Rechners grafisch dar. Es geht um Anschaulichkeit. Die Füllstandsanzeige eines Behälters wird z.B. nicht mehr nur durch ein analoges Manometer auf dem Bildschirm verkörpert, sondern durch die Zeichnung des Kessels selbst, in dem bunt gefärbt die Flüssigkeit auf- und absteigt. So kann auch der Laie erahnen, in welchem Zustand sich ein technischer Prozess gerade befindet. Um die Programmierung solcher grafischen Oberflächen mit anschaulichen, teilweise auch bewegten Bildern zu unterstützen, sind verschiedene Programmierwerkzeuge entwickelt worden.

Eines davon ist das Softwarepaket LabVIEW von National Instruments. LabVIEW ist die Abkürzung von Laboratory Virtual Instrument Engineering Workbench. Es ist Entwicklungsumgebung und grafische Programmiersprache zugleich.

Grafische Hilfsmittel in Papierform wie Programmablaufpläne oder Flussdiagramme gibt es schon seit langem, doch 'Zeichnen am Computer' wurde erst möglich, als die Rechner hinreichend leistungsfähig und Bildschirme als Ausgabe- und Eingabegeräte mit hoher Auflösung verfügbar wurden. Das geschah gegen Ende der 70er-Jahre. Zu der Zeit hatten zwei der Gründer der Messtechnikfirma National Instruments, Jim Truchard und Jeff Kodosky, die Idee, die Software zum Testen ihrer Messgeräte ähnlich wie diese selbst zu strukturieren. Sie nannten einzelne Bausteine deshalb virtuelle Instrumente oder VIs, eine Bezeichnung, die sich bis heute als Datei-Erweiterung eines jeden LabVIEW-Programms erhalten hat. Eine andere Idee bestand darin, die Programmierung nicht, wie bisher üblich, zeilenweise in Form von Anweisungen, genannt 'Statements', niederzuschreiben, sondern Funktionsblöcke in einem Blockdiagramm auf dem Bildschirm darzustellen. Dies gestaltet sich ganz so, wie man das auch früher schon mit Bleistift und Papier gemacht hatte. Die Entwicklung der ersten lauffähigen LabVIEW-Version war eng geknüpft an das Aufkommen leistungsfähiger Personalcomputer, speziell des Macintosh von Apple. Anfang der 80er-Jahre bot nur dieser PC die grafischen Voraussetzungen zur Realisierung der mit Lab-VIEW verfolgten Ideen. Die erste LabVIEW-Version erschien 1986. Seitdem gab es folgende Entwicklungsstufen:

1986: LabVIEW 1.0 für den Macintosh II 1988. LabVIEW 1.2 1990: LabVIEW 2.0 1992: LabVIEW 2.5 1993: LabVIEW 3.0 1996: LabVIEW 4.0 (erst ab 1995 war Microsoft Windows so weit verbessert, dass LabVIEW auch unter diesem Betriebssystem lauffähig wurde) 1998: LabVIEW 5.0 2000: LabVIEW 6.0 (auch 'LabVIEW 6i' genannt) 2001: LabVIEW 6.1 2003: LabVIEW 7.0 (auch 'LabVIEW 7 Express' genannt) 2004: LabVIEW 7.1 2005: LabVIEW 8.0 2006: LabVIEW 8.2 (eigentlich LabVIEW 8.20 wegen damals 20 Jahren LabVIEW) 2007: LabVIEW 8.5 2008: LabVIEW 8.6 2009: LabVIEW 2009 (von da an wurde das Jahr zur Versionsnummer)

2013: LabVIEW 2013 2014: LabVIEW 2014

LabVIEW hat sich in den letzten Jahren stark verbreitet. Gleichzeitig hat es sich von einer anfangs messtechnisch orientierten zu einer universellen Programmiersprache entwickelt. National Instruments bietet LabVIEW inzwischen längst nicht mehr nur für das Betriebssystem MacOS von Apple-Rechnern an, sondern für eine Fülle anderer Systeme, von denen hier nur genannt seien:

Microsoft Windows 7 (32 Bit, 64 Bit) Betriebssystem von Sun-Workstations (Solaris) Linux und andere UNIX-Varianten

Die Aufzählung der verschiedenen Vorteile von LabVIEW sprengt den Rahmen dieses Abschnitts. Nur so viel sei einleitend erwähnt:

LabVIEW erlaubt die Anbindung an gängige Programmiersprachen. Damit wird unter LabVIEW z.B. die Nutzung von C-Code möglich. Von LabVIEW 8.2 an wurde die objektorientierte Programmierung erleichtert.

Heutzutage ist das Internet aus unserem Leben nicht mehr wegzudenken. Konsequenterweise verfügen die heutigen Versionen von LabVIEW über Module, welche die Anbindung an das Internet erleichtern und so z.B. die Fernüberwachung von Maschinen und Anlagen erlauben.

1.2 Was will dieses Lehrbuch?

Das vorliegende Lehrbuch führt in die Programmierung mit LabVIEW ein. Es setzt voraus, dass der Leser die Beispiele und Übungen am PC durcharbeitet.

Die neueste Ausgabe von LabVIEW ist die Version 2014 (zum Zeitpunkt der Drucklegung dieses Buches). Die Bilder in diesem Buch und die Beispiele sind durchgängig auf LabVIEW 2014 unter Windows 7 abgestellt.

Man kann davon ausgehen, dass derzeit noch viele Leser Zugang zu einem PC mit den älteren Versionen haben, z.B. wenn sie Mitarbeiter einer Firma sind und sich in die Behandlung messtechnischer Probleme mit LabVIEW einarbeiten müssen. Auch Besitzer von älteren LabVIEW-Versionen können dieses Buch zu Rate ziehen, denn die Unterschiede bei den einführenden Beispielen sind nicht sehr groß. Programme, die mit den Versionen 8.2, 8.6, 2009 erstellt wurden, laufen auch unter der Version 2014.

Doch trifft das Umgekehrte naturgemäß nicht zu, weil jede neue Version auch neue Möglichkeiten bietet. Braucht man diese allerdings nicht, kann man zu einer früheren Version zurückgehen, indem man z.B. bei einem unter Version 2014 entwickeltes Programm 'Für vorige Version speichern...' anklickt und anschließend eine der Versionen 2013 bis 8.2 aussucht. Das Programm lässt sich dann mit der gewählten Version aufrufen.

1.3 Installation

Die Installation der LabVIEW-Version 2014 von DVD ist selbsterklärend. Als Betriebssysteme sind z.B. Microsoft Windows XP, Microsoft Windows 7, ein Apple-Betriebssystem oder Linux geeignet. Die Hardware des PC muss den Anforderungen des jeweiligen Betriebssystems entsprechen. Alle Beispiele in diesem Buch wurden unter den Betriebssystemen Windows 7 (32 Bit) und, soweit möglich, unter Linux getestet.

1.4 Einführendes Beispiel

Angenommen, Sie wollen die Summe

c = a + b

berechnen. Programmiersprachen wie C, C++, C# und ihre Vorläufer sind so konzipiert, dass sie genau diese Art von Aufgaben perfekt lösen können. Man schreibt einfach:

c = a + b;

und muss also anscheinend nur das Semikolon hinzufügen.

Doch übersieht man dabei Eingabe und Ausgabe. Der Anwender will Werte für a und b eingeben und am Bildschirm das Ergebnis ablesen. Fügt man die entsprechenden Programmteile hinzu, ist ein C-Programm längst nicht mehr so übersichtlich.

LabVIEW verringert diese Schwierigkeiten mit zwei Methoden:

- grafische Programmierung nach dem Datenflussprinzip,
- Verwendung umfangreicher Funktionsbibliotheken für Ein- und Ausgabe.

Bild 1.1 macht deutlich, dass Eingabe, Ausgabe und mathematische Operationen nach dem Datenflussprinzip organisiert sind. Das ist hier am Beispiel c = a + b erklärt. Die folgende Skizze in Bild 1.2 reduziert dieses Prinzip auf seinen Kern.

Aufruf von LabVIEW

Ein linker Mausdoppelklick auf das LabVIEW-Icon auf dem Desktop öffnet eine Startseite, im Beispiel dargestellt für die Version 2014. Man kann das aber auch mit 'Programme' – 'National Instruments' – 'LabVIEW 2014' im Windows-Startmenü erreichen. Dann öffnet sich nach einigen Sekunden das in Bild 1.3 dargestellte Fenster.

Dort erlaubt das Feld 'Neu' – 'Leeres VI' die Anfertigung eines LabVIEW-Programms. Mit 'Öffnen' kann man ein bereits existierendes VI von der Festplatte laden, z.B. um es zu modifizieren. 'Beispiele' – 'Beispiele suchen...' ermöglicht das Erlernen von LabVIEW anhand von Beispielen. Hilfreich sind auch die Rubriken 'Hilfe' – 'Erste Schritte mit LabVIEW'. Für Fortgeschrittene, die sich bereits mit einer älteren Version auskennen, sind 'Hilfe' – 'Liste aller neuen Funktionen' und 'Online-Unterstützung' nützlich.

Wählt man nun 'Neu...' – 'Leeres VI', so erscheinen zwei Fenster: das eine mit dem Titel 'Unbenannt 1 Frontpanel', das andere mit dem Titel 'Unbenannt 1 Blockdiagramm'. Sie sind in Bild 1.4 und Bild 1.5 dargestellt.

Wichtig für die Programmierung ist die 'Werkzeugpalette' nach Bild 1.6. Sie erscheint bei entsprechender Voreinstellung automatisch. Wenn nicht, kann man sie vom Panel oder vom Diagramm aus mit 'Ansicht' – 'Werkzeugpalette' holen. Zur Programmerstellung brauchen Sie ferner die Elementepalette gemäß Bild 1.7 und die Funktionenpalette nach Bild 1.8.

Bild 1.6 Werkzeugpalette

Elemente 🛛							
🔍 Suchen 🔌 Anpassen 🔻							
▼ Modern							
L23 Boolesch String & Pfad							
Array, Matix Liste, Tab., B Graph							
Ring, Enum Container I/O							
Variant/Klasse Gestaltung Referenz							
Silber							
▶ System							
► Klassisch							
► Express							
Regelung & Simulation							
.NET & ActiveX							
Signalverarbeitung							
Zusatzpakete							
▶ Eigene Elemente							
Element auswählen							
*							
Sichtbare Paletten ändern							

Man kann auch statt der voreingestellten Palettenkategorie oder zusätzlich zu ihr weitere Kategorien wählen und öffnen wie z.B. 'Silber', 'System' oder 'Klassisch'.

Man erhält die Paletten aus Bild 1.7, indem man im Frontpanel (Bild 1.4) mit der rechten Maustaste auf die freie Fläche klickt. Mit der linken Maustaste kann man diese Palette dauerhaft sichtbar machen, indem man sie 'anpinnt', d.h. die kleine Reißzwecke links oben im zugehörigen Loch versenkt. Danach kann man mit dem Doppelpfeil unten weitere Kategorien anzeigen und gegebenenfalls zu einer von ihnen durch Linksklick wechseln. Erneuter Linksklick lässt die Elemente einer geöffneten Kategorie verschwinden. Auf diese Weise kann man die Ansicht von Bild 1.7 gewinnen.

Die Palette der Funktionen in Bild 1.8 erhält man, indem man im Diagramm (Bild 1.5) mit der rechten Maustaste auf die freie Fläche klickt.

Man kann diese Paletten auch unter 'Ansicht' – 'Elementepalette' im Panel bzw. unter 'Ansicht' – 'Funktionenpalette' im Diagramm finden. Manche Fenster lassen sich ebenso mit **Shortcuts** öffnen, etwa das Blockdiagramm vom Panel aus mit <Strg>+<E> oder das Panel vom Blockdiagramm aus mit denselben beiden Tasten, die gleichzeitig zu drücken sind.

In den folgenden Abschnitten werden wir uns meist auf die Teilpalette 'Programmierung' beziehen. Man kann sie dauerhaft zur voreingestellten Palette machen, indem man aus einem VI heraus die Elementepalette (bzw. Funktionspalette) aufruft und nach Anpinnen mit 'Anpassen' – 'Sichtbare Paletten ändern...' ein Fenster öffnet, in dem man eine einzige Kategorie markiert und alle anderen nicht. Beim Rechtsklick auf das Frontpanel erscheint dann später nur diese Palette ganz oben und bereits geöffnet. Entsprechendes gilt für die Funktionenpalette.

unktionen		×					
🔍 Suchen 🛛 🔌	Anpassen 🔹 📋	р					
 Programmieru 	ing	_					
	BITZ						
	034	0					
Strukturen	Array	Cluster, Klass					
123							
Numerisch	Boolesch	String					
	O						
Vergleich	Timing	Dialog & Benu					
Datei-I/O	Signalverlauf	Applikationsst					
	*	⊡erreta ► Da					
Synchronisation	Audio & Grafik	Protokollerste					
Mess-I/O							
 Instrumenten 	-I/O						
Bilderkennung und Motorsteuerung							
Mathematik							
 Signalverarbeitung 							
Datenkommunikation							
▶ Konnektivität							
 Reglerdesign 	und Simulation						
SignalExpress							
Express							
 Zusatzpakete 							
Favoriten							
Eigene Biblioti	neken						
VI auswählen							
 FPGA Interface 	ie .						
Ci-	hthare Daletton :	ändern 🚽					
DIC	intbare Palettern						

Der Anwender kann leicht von einer Palette auf die andere umschalten. Auch lassen sich zusätzlich andere Unterpaletten wie 'Mess-I/O', 'Mathematik', 'Express' usw. öffnen

1.4.1 Programmierung von c = a + b

Folgende Schritte sind auszuführen:

- Kontrollieren, ob 'Bearbeitungsmodus' eingestellt ist. Das sieht man an den Symbolen (Icons) unter der Menüzeile im Frontpanel. Im Bearbeitungsmodus ist dort das Suchfenster zu sehen. Fehlt es, befindet man sich im 'Ausführungsmodus', der keine Programmierung erlaubt, sondern anzeigt, wie das Frontpanel während der Ausführung aussehen wird. Zur Umstellung 'Ausführen' – 'In Bearbeitungsmodus wechseln' anklicken oder <Strg>+<M> drücken.
- 2. Eingabefelder für die Variablen a und b anlegen. Zu diesem Zweck 'Elemente' gemäß Bild 1.7 holen, indem man dort Cursor zum Icon links oben bewegt. Es erscheint die Überschrift 'Numerisch'. Ein Mausklick führt zur nächsten Unterpalette. Wiederum das Icon links oben ('Numerisches Bedienelement') anklicken und aufs Panel ziehen. Das Ergebnis dieser Operation sieht man in Bild 1.9. Gleichzeitig verändert sich automatisch das Diagramm durch ein zugeordnetes 'Terminal', siehe Bild 1.10.

Bild 1.9 Panel mit numerischem (Bedien-)Element

Bild 1.10 Diagramm mit 'Terminal', das dem (Bedien-)Element auf dem Panel entspricht

Das 'DBL' im Symbol von Bild 1.10 bedeutet, dass die Eingabedaten vom Typ 'Double Precision' sind (Gleitkommazahlen doppelter Genauigkeit). Voreingestellt ist auch die Darstellung des Symbols als Quadrat. Wir können jedoch auch auf eine platzsparende Darstellung umschalten, indem wir mit Rechtsklick auf dieses Symbol das Kontextmenü öffnen und dort die Markierung vor 'Als Symbol anzeigen' entfernen. Dann erhalten wir ein kleineres Rechteck. Diese Darstellung können wir auch dauerhaft einstellen, siehe dazu Kapitel 2, Bild 2.4. Wir verwenden für Terminals stets Rechtecksymbole.

- 3. Das Eingabefeld in Bild 1.9 dient zur Zahleneingabe über die Tastatur. Man kann die Zahlenwerte aber auch mit den Aufwärts-Abwärts-Pfeilen am linken Rand des Bedienelements ändern.
- 4. Wie schon erwähnt, wird das zugehörige Terminal im Diagramm automatisch gebildet. Man kann es als Darstellung der Durchführung auffassen, die in einem realen Messinstrument vom Gehäuse zur Platine führt und den vom Benutzer eingestellten Wert an die elektronische Schaltung weitergibt. Siehe dazu nochmals Bild 1.1.

Merke: Die Wahl des Datentyps DBL ist voreingestellt. Wir werden später sehen, dass es viele andere Datentypen gibt.

Wir können die Beschriftung 'Numerisches Element' für die Eingabevariable in Bild 1.9 durch einen eigenen sinnvollen Namen ersetzen, z.B. durch 'a'. Das kann entweder unmittelbar nach der Platzierung des Elements auf dem Panel erfolgen, wenn die Schrift noch schwarz unterlegt ist, siehe Bild 1.9. Oder man muss, wenn man die Beschriftung **später** ändern will, in der Werkzeugpalette das große 'A' wählen, die Beschriftung mit der Maus schwarz einfärben und dann mit der gewünschten Bezeichnung überschreiben. Eine zweite Möglichkeit besteht im Links-Mausdoppelklick auf die Beschriftung, was der Wahl von 'A' entspricht. Das Ergebnis ist in Bild 1.11 dargestellt.

Bild 1.11 Panel mit Bedienelement für die Variable *a*

- 5. In gleicher Weise geht man mit der Variablen *b* um.
- 6. Dagegen muss man c als Ausgabevariable (Anzeigeelement) etwas anders behandeln, weil ihr Wert nicht vom Anwender gewählt, sondern vom LabVIEW-Programm errechnet wird. Man erhält sie in der Unterpalette der Palette von Bild 1.7 unter 'Numerisch' – 'Numerisches Anzeigeelement'. Bild 1.12 zeigt das Ergebnis.

Bild 1.12 Panel mit zwei Eingabevariablen a und b sowie der Ausgabevariablen c = a + b

- 7. Haben Sie versehentlich ein falsches Element platziert, müssen Sie es löschen. Dazu das rechteckige Feld in der ersten Zeile der Werkzeugpalette anklicken und auf die Farbe Grün stellen, was Automatikbetrieb bedeutet. Je nach Anwendung wählt nun LabVIEW automatisch das der jeweiligen Aufgabe entsprechende Werkzeug. In diesem Fall das falsch gesetzte Symbol mit ständig gedrückter linker Maustaste umfahren. Es bildet sich ein gestricheltes Rechteck, dessen Ränder blinken. Nun mit der <Entf>-Taste löschen. Allgemein gilt: Fehler lassen sich mit 'Bearbeiten' 'Rückgängig...' oder mit <Shift>+<Z> korrigieren. Zurück zum alten Zustand mit 'Wiederherstellen...' oder mit <Strg>+<Shift>+<Z>.
- 8. Verknüpfen der Eingabe- mit der Ausgabevariablen über die gewünschte Funktion 'Addieren'. Das geschieht im Diagramm. Zunächst wählen Sie in der Funktionenpalette von Bild 1.8 das Symbol 'Numerisch' (Zahlen 123 und Pluszeichen). Die Unterpalette zeigt Symbole, wie man sie von elektrischen Schaltplänen her kennt. Hier ist der Plusoperator links oben anzuklicken und ins Diagramm zu ziehen, siehe Bild 1.13.

💽 Un	benannt 1 B	llockdiag	ramm *							_ []	×
Datei	Bearbeiten	Ansicht	Projekt	Ausführen	Werkzeuge	Fenster	Hilfe			100	n
	\$		P 😨	40 🔂 of	13pt Anwe	ndungssch	nriftart 🕇	**	• 1 =* • 4]? 💆	1
										1	•
		DBL								1	1
						c = a -	+b				
		b		•>		DBL					
		DBL									
1										L) (-

9. Nun sind die Symbole noch mit Drähten zu verbinden, wie schon in Bild 1.2 angedeutet wurde. Dazu dient die Drahtrolle in der Werkzeugpalette. Entweder wählt man diese

Rolle durch Mausklick oder man verlässt sich auf den Automatik-Modus der Werkzeugpalette. Die Drahtrolle wird wirksam, wenn man sich entweder einem Terminal oder einer Funktion nähert. Jedes Icon streckt dann kleine Fühler aus, die Anschlüsse der Funktion. Berührt man mit dem Mauszeiger einen dieser Anschlüsse, verändert er seine Form und wird zu einer kleinen Drahtrolle. Drückt man nun dort die linke Maustaste und bewegt die Maus, so zieht man eine gestrichelte Linie hinter dem Mauszeiger her, mit der sich die Icons verbinden lassen. Die Verbindung ist hergestellt, sobald man an einem der Fühler des zweiten Icons die Maustaste loslässt. Die Wegeführung des Drahtes ist ebenfalls zu beeinflussen, indem man an beliebigen Zwischenpunkten die Maus kurz loslässt. Dieser Punkt ist dann fixiert, und der Programmierer kann die Drahtrichtung ändern. Das Endergebnis ist in Bild 1.14 zu sehen.

10. Falsche Verbindungsleitungen kann man löschen, indem man sie hinreichend weit von den Anschlüssen entfernt anklickt und dann auf <Entf> drückt. Dabei wird meist nur ein Teil der Verbindungslinie gelöscht. Alle restlichen Teile beseitigt man mit dem Shortcut <Strg>+. Das ist einfacher, als alle Teillinien einzeln mit <Entf> zu löschen.

Bild 1.14 Diagramm des fertigen Programms zur Berechnung von c = a + b

1.4.2 Speicherung als Programm Add.vi

Das fertige Programm sollte jetzt unter einem einprägsamen Namen auf der Festplatte gespeichert werden. Zum Beispiel könnte man unser Programm mit 'Datei' – 'Speichern unter...' mit dem Namen 'Add.vi' ablegen. Die Datei-Erweiterung 'vi' ist erforderlich, wenn man das Programm später aus einem Ordner heraus mit Mausdoppelklick aufrufen möchte. Sie wird automatisch angehängt und muss nicht mit eingegeben werden. Hier speichern wir das Programm der besseren Auffindbarkeit wegen als '0115-Add.vi'.

1.4.3 Starten und Stoppen von Add.vi

Das Programm kann in den Hauptspeicher geladen werden:

- durch Doppelklick auf seinen Namen in dem Ordner, in dem es gespeichert ist,
- vom LabVIEW-Startfenster aus mit 'Öffnen...' und Pfadwahl,
- von einem anderen, bereits geöffneten VI aus mit 'Datei' 'Öffnen...' und Pfadwahl.

Sobald Add.vi geladen ist, kann man es vom Panel aus auf dreierlei Wegen starten:

- Durch Anklicken des in der Symbolleiste ganz links stehenden Pfeils. Dann läuft das Programm genau einmal und stoppt dann.
- Durch Anklicken von 'Ausführen' 'Starten'. Gleiche Wirkung wie oben.

• Durch Anklicken des zweiten Icons links oben mit der Bezeichnung 'Wiederholt ausführen', das zwei verschlungene Pfeile zeigt. Jetzt wird das Programm ständig ausgeführt, und zwar so lange, bis es der Anwender mit Hilfe des dritten Icons mit dem roten Stoppzeichen anhält.

Bild 1.15 zeigt das Programm Add.vi im Modus 'Wiederholt ausführen', wobei der Anwender als Eingabedaten die Werte a = 7 und b = -3 eingestellt hatte. Er kann diese Werte während des Programmlaufs beliebig verändern. Dazu klickt man das gewünschte Eingabefeld an und ändert den Variablenwert entweder mit den Aufwärts-Abwärts-Pfeilen oder man klickt direkt ins Eingabefeld und gibt den Wert über die Tastatur ein.

Hinweis: Der Modus 'Wiederholt ausführen' sollte möglichst vermieden werden. Besser lässt man das VI in einer Schleife ablaufen. Näheres siehe Abschnitt 3.4, While-Schleife

Solange im letzteren Fall die Eingabe noch nicht abgeschlossen ist, erscheint in der Symbolleiste links vom Startsymbol ein weiteres Icon mit einem kleinen Haken. Sobald man diesen Haken mit der Maus anklickt, betrachtet LabVIEW die Eingabe als beendet und rechnet von dem Moment an mit dem neuen Variablenwert. Statt den Haken anzuklicken, kann man aber einfacher mit der Maus unmittelbar neben das Eingabefeld klicken oder die Returntaste betätigen. Auch in diesem Fall verschwindet das Icon mit dem Haken.

Bild 1.15 Panel im Modus 'Wiederholt ausführen'

1.4.4 Fehlersuche in Add.vi (Debugging)

Die Fehlersuche in diesem VI erscheint unnötig. Das Programm ist zu einfach. Doch lässt sich das Prinzip gut erklären: Zum Debuggen, d.h. Fehler suchen, geht man ins Diagramm und klickt auf das Icon mit der Glühlampe (fünftes Symbol von links, Bezeichnung 'Highlight-Funktion'). Die Lampe färbt sich dann gelb. Ein erneuter Mausklick macht sie wieder weiß. Im gelben Zustand verzögert die Lampe den Programmlauf, so dass man die Datenströme mit bloßem Auge verfolgen kann. Dazu zeigt Bild 1.16 einen während des Debuggens aufgenommenen Schnappschuss. Um den Ablauf noch genauer verfolgen zu können, klickt man auf das Pause-Icon in der Symbolleiste. Damit wird eine Pause erzwungen.

Danach kann man das Programm mit der Pfeiltaste zwei Kästchen rechts von der Glühlampe in Einzelschritten ausführen. Die zwei zusätzlichen Pfeiltasten dienen zum Überspringen von Unterprogrammen bzw. zum Verlassen des VI. Im Beispiel von Bild 1.16 sieht man zwei kleine Kugeln, die an den Terminals für *a* und *b* starten und nach rechts laufen. Sie repräsentieren die Datenströme. Im Moment befinden sie sich innerhalb des Additionssymbols. Die Momentanwerte von *a* und *b* werden ebenfalls angezeigt. Das Ergebnis c = 4,00 erscheint einen Moment später rechts vom Additionssymbol. **Ausprobieren!**