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Preface

Hilbert Functions play major roles in Algebraic Geometry and Commutative
Algebra, and are becoming increasingly important also in Computational Algebra.
They capture many useful numerical characters associated to a projective variety or
to a filtered module over a local ring.

Starting from the pioneering work of D.G. Northcott and J. Sally, we aim to
gather together in one place many new developments of this theory by using a uni-
fying approach which gives self-contained and easier proofs.

The extension of the theory to the case of general filtrations on a module, and
its application to the study of certain graded algebras which are not associated to a
filtration are two of the main features of the monograph.

The material is intended for graduate students and researchers who are interested
in Commutative Algebra, in particular in the theory of the Hilbert functions and
related topics.

Genoa, Maria Evelina Rossi
March, 2010 Giuseppe Valla
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Introduction

The notion of Hilbert function is central in commutative algebra and is becoming
increasingly important in algebraic geometry and in computational algebra. In this
presentation we shall deal with some aspects of the theory of Hilbert functions of
modules over local rings, and we intend to guide the reader along one of the possible
routes through the last three decades of progress in this area of dynamic mathemat-
ical activity.

Motivated by the ever increasing interest in this field, our aim is to gather together
many new developments of this theory in one place, and to present them using a
unifying approach which gives self-contained and easier proofs. In this text we shall
discuss many results by different authors, following essentially the direction typified
by the pioneering work of J. Sally (see [86-93]). Our personal view of the subject
is most visibly expressed by the presentation of Chaps. 1 and 2 in which we discuss
the use of the superficial elements and related devices.

Basic techniques will be stressed with the aim of reproving recent results by
using a more elementary approach. This choice was made at the expense of certain
results and various interesting aspects of the topic that, in this presentation, must
remain peripheral. We apologize to those whose work we may have failed to cite

properly.

The material is intended for graduate students and researchers who are interested
in Commutative Algebra, in particular in results on the Hilbert function and the
Hilbert polynomial of a local ring, and applications of these. The aim was not to
write a book on the subject, but rather to collect results and problems inspired by
specialized lecture courses and schools recently delivered by the authors. We hope
the reader will appreciate the large number of examples and the rich bibliography.

Starting from classical results of D. Northcott, P. Samuel, S. Abhyankar, E. Matlis
and J. Sally, many papers have been written on this topic which is considered
an important part of the theory of blowing-up rings. This is because the Hilbert
function of the local ring (A, m) is by definition the numerical function Hy(¢) :=
dimy (m’/m/*1), hence it coincides with the classical Hilbert function of the stan-
dard graded algebra gry(A) := @;>om’/m'*!, the so-called tangent cone of A for
the reason that we shall explain later. The problems arise because, in passing from

xi



xii Introduction

A to grm(A), we may lose many good properties, such as being a complete intersec-
tion, being Cohen—Macaulay or Gorenstein.

Despite the fact that the Hilbert function of a standard graded algebra A is
well understood when A is Cohen—Macaulay, very little is known when it is a
local Cohen—Macaulay ring. One of the main problems is whether geometric and
homological properties of the local ring A can be carried on the corresponding tan-
gent cone grm (A). For example if a given local domain has fairly good properties,
such as normality or Cohen—Macaulayness, its depth provides in general no infor-
mation on the depth of the associated graded ring. It could be interesting to remind
that an open problem is to characterize the Hilbert function of an affine curve in A3
whose defining ideal is a complete intersection, while a well known formula gives
the Hilbert function of any complete intersection of homogeneous forms in terms of
their degrees.

The Hilbert function of a local ring (A, m) is a classical invariant which gives
information on the corresponding singularity. The reason is that the graded alge-
bra grm(A) corresponds to an important geometric construction: namely, if A is
the localization at the origin of the coordinate ring of an affine variety V passing
through 0, then gri(A) is the coordinate ring of the tangent cone of V, that is the
cone composed of all lines that are limiting positions of secant lines to V in 0.
The Proj of this algebra can also be seen as the exceptional set of the blowing-up
of Vin 0.

Other graded algebras come into the picture for different reasons, for example
the Rees algebra, the Symmetric algebra, the Sally module and the Fiber Cone. All
these algebras are doubly interesting because on one side they have a deep geomet-
rical meaning, on the other side they are employed for detecting basic numerical
characters of the ideals in the local ring (A, m). Therefore, much attention has been
paid in the past to determining under which circumstances these objects have a good
structure.

In some cases the natural extension of these results to m-primary ideals has been
achieved, starting from the fundamental work of P. Samuel on multiplicities. More
recently the generalization to the case of a descending multiplicative filtration of
ideals of the local ring A has now become of crucial importance. For example,
the Ratliff-Rush filtration (cf. papers by J. Elias, W. Heinzer, S. Huchaba, S. Itoh,
T. Marley, T. Puthenpurakal, L.J. Ratliff-D. Rush, M.E. Rossi, J. Sally, G. Valla)
and the filtration given by the integral closure of the powers of an ideal (cf. papers
by A. Corso, S. Itoh, C. Huneke, C. Polini, B. Ulrich, W. Vasconcelos, J. Verma) are
fundamental tools in much of the recent work on blowing-up rings.

Even though of intrinsic interest, the extension to modules has been largely over-
looked, probably because, even in the classical case, many problems were already
so difficult. Nevertheless, a number of results have been obtained in this direc-
tion: some of the work done by D. Northcott, J. Fillmore, C. Rhodes, D. Kirby,
H. Meheran and, more recently, T. Cortadellas and S. Zarzuela, A.V. Jayanthan and
J. Verma, T. Puthenpurakal, V. Trivedi has been carried over to the general setting.

We remark that the graded algebra gry,(A) can also be seen as the graded
algebra associated to an ideal filtration of the ring itself, namely the m-adic filtration
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{m/} j>o. This gives an indication of a possible natural extension of the theory to
general filtrations of a finite module over the local ring (A, m).

Let A be a commutative noetherian local ring with maximal ideal m and let M
be a finitely generated A-module. Let g be an ideal of A; a g-filtration M of M is a
collection of submodules M; such that

M=My2OM; 2D DOM;D---.

with the property that gM; C M; | for each j > 0. In the present work we consider
only good q-filtrations of M : this means that M; | = qM for all sufficiently large ;.
A good g-filtration is also called a stable g-filtration. For example, the g-adic filtra-
tion on M defined by M; := q/M is clearly a good g-filtration.

We define the associated graded ring of A with respect to q to be the graded ring

grq(A) =EP(a’/a’t).

j=0

Given a g-filtration M = {M;} on the module M, we consider the associated graded
module of M with respect to M

gru(M) == EP(M;/M; 1)
>0

and for any @ € q"/q"*!, m € M;j/M;, we define @m :=am € My+; /M, j+1. The
assumption that M is a g-filtration ensures that this is well defined so that gry; (M)
has a natural structure as a graded module over the graded ring grq(A).

Denote by A(x) the length of an A-module. If A (M/qM) is finite, then we can
define the Hilbert function of the filtration M, or of the filtered module M with
respect to the filtration M. It is the numerical function

Hy(j) = A(M;j/Mj1).

In the classical case of the m-adic filtration on a local ring (A, m, k) we write Hy (n)
and remark that it coincides with dimy (m” /m"*+1).
Its generating function is the power series

Py(z) ==Y, Hu(j)z'.

j=0

which is called the Hilbert series of the filtration M. By the Hilbert—Serre theorem
we know that the series is of the form

where hyy(z) € Z[z], hyi(1) # 0 and r is the Krull dimension of M. The polynomial
hyi(2) s called the h-polynomial of M.
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This implies that, for n > 0
Hyy(n) = pra(n)
where the polynomial py(z) has rational coefficients, degree r — 1 and is called the

Hilbert polynomial of M.
We can write

) = 3.~ 1)er(1) 7

r—i—1

where we denote for every integer g > 0

<X+q> ': X+q9)(X+g—1)...(X+1)
q ) q!

The coefficients ¢;(M) are integers which will be called the Hilbert coefficients
of M. In particular ey = eg(M) = hyg(1) is the multiplicity and it depends on M
and on the ideal q.

When we consider the m-adic filtration in the local ring (A, m), the Hilbert

function of A measures the minimal number of generators (denote u( )) of the
powers of the maximal ideal. In the one-dimensional case the asymptotic value is
the multiplicity eq. It is a natural question to ask whether the Hilbert function of a
one-dimensional Cohen—Macaulay ring is not decreasing. Clearly, this is the case if
grm(A) is Cohen—Macaulay, but this is not a necessary requirement.
Unfortunately, it can happen that Hy (2) = u(m?) < Hy (1) = p(m). The first exam-
ple was given by J. Herzog and R. Waldi in 1975. In 1980 F. Orecchia proved that,
for all embedding dimension v = p1(m) > 5, there exists a reduced one-dimensional
local ring of embedding dimension v and decreasing Hilbert function. L. Roberts in
1982 built ordinary singularities with decreasing Hilbert function and embedding di-
mension at least 7. J. Sally conjectured, and J. Elias proved, that the Hilbert function
of one-dimensional Cohen—Macaulay local rings of embedding dimension three is
not decreasing (see [21] and [77]). Interesting problems are still open if we consider
local domains. S. Kleiman proved that there is a finite number of admissible Hilbert
functions for graded domains with fixed multiplicity and dimension. The analogous
of Kleiman’s result does not hold in the local case.

Nevertheless, V. Srinivas and V. Trivedi in [98] proved that the number of Hilbert
functions of Cohen—Macaulay local rings with given multiplicity and dimension is
finite (a different proof was given by M.E. Rossi, N.V. Trung and G. Valla in [79]).
This is a very interesting result and it produces upper bounds on the Hilbert coef-
ficients. If (A, m) is a Cohen—Macaulay local ring of dimension r and multiplicity
ep, then

ei<ey' " —1for all i>1.

(see [98, Theorem 1], [79, Corollary 4.2]). These bounds are far from being
sharp, but they have some interest because very little is known about ¢; with i > 2.



