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Preface

The creation of public key cryptography by Diffie and Hellman in 1976 and the
subsequent invention of the RSA public key cryptosystem by Rivest, Shamir,
and Adleman in 1978 are watershed events in the long history of secret com-
munications. It is hard to overestimate the importance of public key cryp-
tosystems and their associated digital signature schemes in the modern world
of computers and the Internet. This book provides an introduction to the
theory of public key cryptography and to the mathematical ideas underlying
that theory.

Public key cryptography draws on many areas of mathematics, including
number theory, abstract algebra, probability, and information theory. Each
of these topics is introduced and developed in sufficient detail so that this
book provides a self-contained course for the beginning student. The only
prerequisite is a first course in linear algebra. On the other hand, students
with stronger mathematical backgrounds can move directly to cryptographic
applications and still have time for advanced topics such as elliptic curve
pairings and lattice-reduction algorithms.

Among the many facets of modern cryptography, this book chooses to con-
centrate primarily on public key cryptosystems and digital signature schemes.
This allows for an in-depth development of the necessary mathematics re-
quired for both the construction of these schemes and an analysis of their
security. The reader who masters the material in this book will not only be
well prepared for further study in cryptography, but will have acquired a real
understanding of the underlying mathematical principles on which modern
cryptography is based.

Topics covered in this book include Diffie–Hellman key exchange, discrete
logarithm based cryptosystems, the RSA cryptosystem, primality testing, fac-
torization algorithms, probability theory, information theory, collision algo-
rithms, elliptic curves, elliptic curve cryptography, pairing-based cryptogra-
phy, lattices, lattice-based cryptography, the NTRU cryptosystem, and digi-
tal signatures. A final chapter very briefly describes some of the many other
aspects of modern cryptography (hash functions, pseudorandom number gen-
erators, zero-knowledge proofs, digital cash, AES,. . . ) and serves to point the
reader toward areas for further study.

v



vi Preface

Electronic Resources: The interested reader will find additional material
and a list of errata on the Mathematical Cryptography home page:

www.math.brown.edu/~jhs/MathCryptoHome.html

This web page includes many of the numerical exercises in the book, allowing
the reader to cut and paste them into other programs, rather than having to
retype them.

No book is ever free from error or incapable of being improved. We would
be delighted to receive comments, good or bad, and corrections from our
readers. You can send mail to us at

mathcrypto@math.brown.edu

Acknowledgments: We, the authors, would like the thank the following
individuals for test-driving this book and for the many corrections and helpful
suggestions that they and their students provided: Liat Berdugo, Alexander
Collins, Samuel Dickman, Michael Gartner, Nicholas Howgrave-Graham, Su-
Ion Ih, Saeja Kim, Yuji Kosugi, Yesem Kurt, Michelle Manes, Victor Miller,
David Singer, William Whyte. In addition, we would like to thank the many
students at Brown University who took Math 158 and helped us improve the
exposition of this book.
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Introduction

A Principal Goal of (Public Key) Cryptography
is to allow two people to exchange confidential information,
even if they have never met and can communicate only via
a channel that is being monitored by an adversary.

The security of communications and commerce in a digital age relies on the
modern incarnation of the ancient art of codes and ciphers. Underlying the
birth of modern cryptography is a great deal of fascinating mathematics,
some of which has been developed for cryptographic applications, but much
of which is taken from the classical mathematical canon. The principal goal
of this book is to introduce the reader to a variety of mathematical topics
while simultaneously integrating the mathematics into a description of modern
public key cryptography.

For thousands of years, all codes and ciphers relied on the assumption
that the people attempting to communicate, call them Bob and Alice, shared
a secret key that their adversary, call her Eve, did not possess. Bob would
use the secret key to encrypt his message, Alice would use the same secret
key to decrypt the message, and poor Eve, not knowing the secret key, would
be unable to perform the decryption. A disadvantage of these private key
cryptosystems is that Bob and Alice need to exchange the secret key before
they can get started.

During the 1970s, the astounding idea of public key cryptography burst
upon the scene.1 In a public key cryptosystem, Alice has two keys, a public
encryption key KPub and a private (secret) decryption key KPri. Alice pub-
lishes her public key KPub, and then Adam and Bob and Carl and everyone
else can use KPub to encrypt messages and send them to Alice. The idea
underlying public key cryptgraphy is that although everyone in the world
knows KPub and can use it to encrypt messages, only Alice, who knows the
private key KPri, is able to decrypt messages.

The advantages of a public key cryptosystem are manifold. For example,
Bob can send Alice an encrypted message even if they have never previously
been in direct contact. But although public key cryptography is a fascinating

1A brief history of cryptography is given is Sections 1.6, 2.1, 5.5, and 6.7.
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xii Introduction

theoretical concept, it is not at all clear how one might create a public key
cryptosystem. It turns out that public key cryptosystems can be based on
hard mathematical problems. More precisely, one looks for a mathematical
problem that is hard to solve a priori, but that becomes easy to solve if one
knows some extra piece of information.

Of course, private key cryptosystems have not disappeared. Indeed, they
are more important than ever, since they tend to be significantly more effi-
cient than public key cryptosystems. Thus in practice, if Bob wants to send
Alice a long message, he first uses a public key cryptosystem to send Alice
the key for a private key cryptosystem, and then he uses the private key
cryptosystem to encrypt his message. The most efficient modern private key
cryptosystems, such as DES and AES, rely for their security on repeated ap-
plication of various mixing operations that are hard to unmix without the
private key. Thus although the subject of private key cryptography is of both
theoretical and practical importance, the connection with fundamental under-
lying mathematical ideas is much less pronounced than it is with public key
cryptosystems. For that reason, this book concentrates almost exclusively on
public key cryptography.

Modern mathematical cryptography draws on many areas of mathematics,
including especially number theory, abstract algebra (groups, rings, fields),
probability, statistics, and information theory, so the prerequisites for studying
the subject can seem formidable. By way of contrast, the prerequisites for
reading this book are minimal, because we take the time to introduce each
required mathematical topic in sufficient depth as it is needed. Thus this
book provides a self-contained treatment of mathematical cryptography for
the reader with limited mathematical background. And for those readers who
have taken a course in, say, number theory or abstract algebra or probability,
we suggest briefly reviewing the relevant sections as they are reached and then
moving on directly to the cryptographic applications.

This book is not meant to be a comprehensive source for all things cryp-
tographic. In the first place, as already noted, we concentrate on public key
cryptography. But even within this domain, we have chosen to pursue a small
selection of topics to a reasonable mathematical depth, rather than provid-
ing a more superficial description of a wider range of subjects. We feel that
any reader who has mastered the material in this book will not only be well
prepared for further study in cryptography, but will have acquired a real
understanding of the underlying mathematical principles on which modern
cryptography is based.

However, this does not mean that the omitted topics are unimportant.
It simply means that there is a limit to the amount of material that can
be included in a book (or course) of reasonable length. As in any text, the
choice of particular topics reflects the authors’ tastes and interests. For the
convenience of the reader, the final chapter contains a brief survey of areas
for further study.



Introduction xiii

A Guide to Mathematical Topics: This book includes a significant amount
of mathematical material on a variety of topics that are useful in cryptography.
The following list is designed to help coordinate the topics that we cover with
subjects that the class or reader may have already studied.

Congruences, primes, and finite fields — §§1.2, 1.3, 1.4, 1.5, 2.10.4
The Chinese remainder theorem — §2.8

Euler’s formula — §3.1
Primality testing — §3.4

Quadratic reciprocity — §3.9
Factorization methods — §§3.5, 3.6, 3.7, 5.6

Discrete logarithms — §§2.2, 3.8, 4.4, 4.5, 5.3
Group theory — §2.5

Rings, polynomials, and quotient rings — §2.10, 6.9
Combinatorics and probability — §§4.1, 4.3

Information and complexity theory — §§4.6, 4.7
Elliptic curves — §§5.1, 5.2, 5.7, 5.8
Linear algebra — §6.3

Lattices — §§6.4, 6.5, 6.6, 6.12

Intended Audience and Prerequisites: This book provides a self-con-
tained introduction to public key cryptography and to the underlying math-
ematics that is required for the subject. It is suitable as a text for advanced
undergraduates and beginning graduate students. We provide enough back-
ground material so that the book can be used in courses for students with no
previous exposure to abstract algebra or number theory. For classes in which
the students have a stronger background, the basic mathematical material
may be omitted, leaving time for some of the more advanced topics.

The formal prerequisites for this book are few, beyond a facility with high
school algebra and, in Chapter 5, analytic geometry. Elementary calculus is
used here and there in a minor way, but is not essential, and linear algebra
is used in a small way in Chapter 3 and more extensively in Chapter 6. No
previous knowledge is assumed for mathematical topics such as number the-
ory, abstract algebra, and probability theory that play a fundamental role in
modern cryptography. They are covered in detail as needed.

However, it must be emphasized that this is a mathematics book with its
share of formal definitions and theorems and proofs. Thus it is expected that
the reader has a certain level of mathematical sophistication. In particular,
students who have previously taken a proof-based mathematics course will
find the material easier than those without such background. On the other
hand, the subject of cryptography is so appealing that this book makes a
good text for an introduction-to-proofs course, with the understanding that
the instructor will need to cover the material more slowly to allow the students
time to become comfortable with proof-based mathematics.



xiv Introduction

Suggested Syllabus: This book contains considerably more material than
can be comfortably covered by beginning students in a one semester course.
However, for more advanced students who have already taken courses in num-
ber theory and abstract algebra, it should be possible to do most of the remain-
ing material. We suggest covering the majority of the topics in Chapters 1, 2,
and 3, possibly omitting some of the more technical topics, the optional ma-
terial on the Vigènere cipher, and the section on ring theory, which is not
used until much later in the book. The next four chapters on information the-
ory (Chapter 4), elliptic curves (Chapter 5), lattices (Chapter 6), and digital
signatures (Chapter 7) are mostly independent of one another, so the instruc-
tor has the choice of covering one or two of them in detail or all of them in
less depth. We offer the following syllabus as an example of one of the many
possibilities. We have indicated that some sections are optional. Covering the
optional material leaves less time at the end for the later chapters.

Chapter 1 An Introduction to Cryptography.
Cover all sections.

Chapter 2 Discrete Logarithms and Diffie–Hellman.
Cover Sections 2.1–2.7. Optionally cover the more mathematically so-
phisticated Sections 2.8–2.9 on the Pohlig–Hellman algorithm. Omit Sec-
tion 2.10 on first reading.

Chapter 3 Integer Factorization and RSA.
Cover Sections 3.1–3.5 and Sections 3.9–3.10. Optionally, cover the more
mathematically sophisticated Sections 3.6–3.8, dealing with smooth
numbers, sieves, and the index calculus.

Chapter 4 Probability Theory and Information Theory.
Cover Sections 4.1, 4.3, and 4.4. Optionally cover the more mathemat-
ically sophisticated sections on Pollard’s ρ method (Section 4.5), infor-
mation theory (Section 4.6), and complexity theory (Section 4.7). The
material on the Vigenère cipher in Section 4.2 nicely illustrates the use
of statistics theory in cryptanalysis, but is somewhat off the main path.

Chapter 5 Elliptic Curves.
Cover Sections 5.1–5.4. Cover other sections as time permits, but note
that Sections 5.7–5.10 on pairings require finite fields of prime power
order, which are described in Section 2.10.4.

Chapter 6 Lattices and Cryptography.
Cover Sections 6.1–6.8. (If time is short, it is possible to omit either
or both of Sections 6.1 and 6.2.) Cover either Sections 6.12–6.13 or
Sections 6.10–6.11, or both, as time permits. Note that Sections 6.10–
6.11 on NTRU require the material on polynomial rings and quotient
rings covereed in Section 2.10.

Chapter 7 Digital Signatures.
Cover Sections 7.1–7.2. Cover the remaining sections as time permits.
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Chapter 8 Additional Topics in Cryptography.
The material in this chapter points the reader toward other important
areas of cryptography. It provides a good list of topics and references
for student term papers and presentations.

Further Notes for the Instructor: Depending on how much of the harder
mathematical material in Chapters 2–4 is covered, there may not be time to
delve into both Chapters 5 and 6, so the instructor may need to omit either
elliptic curves or lattices in order to fit the other material into one semester.

We feel that it is helpful for students to gain an appreciation of the origins
of their subject, so we have scattered a handful of sections throughout the book
containing some brief comments on the history of cryptography. Instructors
who want to spend more time on mathematics may omit these sections without
affecting the mathematical narrative.



Chapter 1

An Introduction to
Cryptography

1.1 Simple substitution ciphers

As Julius Caesar surveys the unfolding battle from his hilltop outpost, an
exhausted and disheveled courier bursts into his presence and hands him a
sheet of parchment containing gibberish:

j s j r d k f q q n s l g f h p g w j f p y m w t z l m n r r n s j s y q z h n z x

Within moments, Julius sends an order for a reserve unit of charioteers to
speed around the left flank and exploit a momentary gap in the opponent’s
formation.

How did this string of seemingly random letters convey such important
information? The trick is easy, once it is explained. Simply take each letter in
the message and shift it five letters up the alphabet. Thus j in the ciphertext
becomes e in the plaintext,1 because e is followed in the alphabet by f,g,h,i,j.
Applying this procedure to the entire ciphertext yields

j s j r d k f q q n s l g f h p g w j f p y m w t z l m n r r n s j s y q z h n z x
e n e m y f a l l i n g b a c k b r e a k t h r o u g h i m m i n e n t l u c i u s

The second line is the decrypted plaintext, and breaking it into words and
supplying the appropriate punctuation, Julius reads the message

Enemy falling back. Breakthrough imminent. Lucius.

There remains one minor quirk that must be addressed. What happens when
Julius finds a letter such as d? There is no letter appearing five letters before d

1The plaintext is the original message in readable form and the ciphertext is the en-
crypted message.

J. Hoffstein et al., An Introduction to Mathematical Cryptography, 1
DOI: 10.1007/978-0-387-77994-2 1, c© Springer Science+Business Media, LLC 2008



2 1. An Introduction to Cryptography

in the alphabet. The answer is that he must wrap around to the end of the
alphabet. Thus d is replaced by y, since y is followed by z,a,b,c,d.

This wrap-around effect may be conveniently visualized by placing the al-
phabet abcd...xyz around a circle, rather than in a line. If a second alphabet
circle is then placed within the first circle and the inner circle is rotated five
letters, as illustrated in Figure 1.1, the resulting arrangement can be used
to easily encrypt and decrypt Caesar’s messages. To decrypt a letter, simply
find it on the inner wheel and read the corresponding plaintext letter from
the outer wheel. To encrypt, reverse this process: find the plaintext letter on
the outer wheel and read off the ciphertext letter from the inner wheel. And
note that if you build a cipherwheel whose inner wheel spins, then you are no
longer restricted to always shifting by exactly five letters. Cipher wheels of
this sort have been used for centuries.2

Although the details of the preceding scene are entirely fictional, and in
any case it is unlikely that a message to a Roman general would have been
written in modern English(!), there is evidence that Caesar employed this
early method of cryptography, which is sometimes called the Caesar cipher
in his honor. It is also sometimes referred to as a shift cipher, since each
letter in the alphabet is shifted up or down. Cryptography, the methodology of
concealing the content of messages, comes from the Greek root words kryptos,
meaning hidden,3 and graphikos, meaning writing. The modern scientific study
of cryptography is sometimes referred to as cryptology.

In the Caesar cipher, each letter is replaced by one specific substitute
letter. However, if Bob encrypts a message for Alice4 using a Caesar cipher
and allows the encrypted message to fall into Eve’s hands, it will take Eve
very little time to decrypt it. All she needs to do is try each of the 26 possible
shifts.

Bob can make his message harder to attack by using a more complicated
replacement scheme. For example, he could replace every occurrence of a
by z and every occurrence of z by a, every occurrence of b by y and every
occurrence of y by b, and so on, exchanging each pair of letters c ↔ x,. . . ,
m ↔ n.

This is an example of a simple substitution cipher, that is, a cipher in which
each letter is replaced by another letter (or some other type of symbol). The
Caesar cipher is an example of a simple substitution cipher, but there are
many simple substitution ciphers other than the Caesar cipher. In fact, a

2A cipher wheel with mixed up alphabets and with encryption performed using different
offsets for different parts of the message is featured in a 15th century monograph by Leon
Batista Alberti [58].

3The word cryptic, meaning hidden or occult, appears in 1638, while crypto- as a prefix
for concealed or secret makes its appearance in 1760. The term cryptogram appears much
later, first occurring in 1880.

4In cryptography, it is traditional for Bob and Alice to exchange confidential messages
and for their adversary Eve, the eavesdropper, to intercept and attempt to read their mes-
sages. This makes the field of cryptography much more personal than other areas of math-
ematics and computer science, whose denizens are often X and Y !
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Figure 1.1: A cipher wheel with an offset of five letters

simple substitution cipher may be viewed as a rule or function

{a,b,c,d,e,...,x,y,z} −→ {A,B,C,D,E,...,X,Y,Z}

assigning each plaintext letter in the domain a different ciphertext letter in the
range. (To make it easier to distinguish the plaintext from the ciphertext, we
write the plaintext using lowercase letters and the ciphertext using uppercase
letters.) Note that in order for decryption to work, the encryption function
must have the property that no two plaintext letters go to the same ciphertext
letter. A function with this property is said to be one-to-one or injective.

A convenient way to describe the encryption function is to create a table
by writing the plaintext alphabet in the top row and putting each ciphertext
letter below the corresponding plaintext letter.
Example 1.1. A simple substitution encryption table is given in Table 1.1. The
ciphertext alphabet (the uppercase letters in the bottom row) is a randomly
chosen permutation of the 26 letters in the alphabet. In order to encrypt the
plaintext message

Four score and seven years ago,

we run the words together, look up each plaintext letter in the encryption
table, and write the corresponding ciphertext letter below.

f o u r s c o r e a n d s e v e n y e a r s a g o
N U R B K S U B V C G Q K V E V G Z V C B K C F U

It is then customary to write the ciphertext in five-letter blocks:

NURBK SUBVC GQKVE VGZVC BKCFU
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a b c d e f g h i j k l m n o p q r s t u v w x y z
C I S Q V N F O W A X M T G U H P B K L R E Y D Z J

Table 1.1: Simple substitution encryption table

j r a x v g n p b z s t l f h q d u c m o e i k w y
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Table 1.2: Simple substitution decryption table

Decryption is a similar process. Suppose that we receive the message

GVVQG VYKCM CQQBV KKWGF SCVKV B

and that we know that it was encrypted using Table 1.1. We can reverse
the encryption process by finding each ciphertext letter in the second row
of Table 1.1 and writing down the corresponding letter from the top row.
However, since the letters in the second row of Table 1.1 are all mixed up,
this is a somewhat inefficient process. It is better to make a decryption table
in which the ciphertext letters in the lower row are listed in alphabetical order
and the corresponding plaintext letters in the upper row are mixed up. We
have done this in Table 1.2. Using this table, we easily decrypt the message.

G V V Q G V Y K C M C Q Q B V K K W G F S C V K V B
n e e d n e w s a l a d d r e s s i n g c a e s e r

Putting in the appropriate word breaks and some punctuation reveals an
urgent request!

Need new salad dressing. -Caesar

1.1.1 Cryptanalysis of simple substitution ciphers

How many different simple substitution ciphers exist? We can count them by
enumerating the possible ciphertext values for each plaintext letter. First we
assign the plaintext letter a to one of the 26 possible ciphertext letters A–Z. So
there are 26 possibilities for a. Next, since we are not allowed to assign b to the
same letter as a, we may assign b to any one of the remaining 25 ciphertext
letters. So there are 26 · 25 = 650 possible ways to assign a and b. We have
now used up two of the ciphertext letters, so we may assign c to any one of
the remaining 24 ciphertext letters. And so on. . . . Thus the total number of
ways to assign the 26 plaintext letters to the 26 ciphertext letters, using each
ciphertext letter only once, is
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26 · 25 · 24 · · · 4 · 3 · 2 · 1 = 26! = 403291461126605635584000000.

There are thus more than 1026 different simple substitution ciphers. Each
associated encryption table is known as a key.

Suppose that Eve intercepts one of Bob’s messages and that she attempts
to decrypt it by trying every possible simple substitution cipher. The process
of decrypting a message without knowing the underlying key is called crypt-
analysis. If Eve (or her computer) is able to check one million cipher alphabets
per second, it would still take her more than 1013 years to try them all.5 But
the age of the universe is estimated to be on the order of 1010 years. Thus Eve
has almost no chance of decrypting Bob’s message, which means that Bob’s
message is secure and he has nothing to worry about!6 Or does he?

It is time for an important lesson in the practical side of the science of
cryptography:

Your opponent always uses her best strategy to defeat you,
not the strategy that you want her to use. Thus the secu-
rity of an encryption system depends on the best known
method to break it. As new and improved methods are
developed, the level of security can only get worse, never
better.

Despite the large number of possible simple substitution ciphers, they are
actually quite easy to break, and indeed many newspapers and magazines
feature them as a companion to the daily crossword puzzle. The reason that
Eve can easily cryptanalyze a simple substitution cipher is that the letters
in the English language (or any other human language) are not random. To
take an extreme example, the letter q in English is virtually always followed
by the letter u. More useful is the fact that certain letters such as e and t
appear far more frequently than other letters such as f and c. Table 1.3 lists
the letters with their typical frequencies in English text. As you can see, the
most frequent letter is e, followed by t, a, o, and n.

Thus if Eve counts the letters in Bob’s encrypted message and makes a
frequency table, it is likely that the most frequent letter will represent e, and
that t, a, o, and n will appear among the next most frequent letters. In this
way, Eve can try various possibilities and, after a certain amount of trial and
error, decrypt Bob’s message.

In the remainder of this section we illustrate how to cryptanalyze a simple
substitution cipher by decrypting the message given in Table 1.4. Of course the
end result of defeating a simple substitution cipher is not our main goal here.
Our key point is to introduce the idea of statistical analysis, which will prove to

5Do you see how we got 1013 years? There are 60 · 60 · 24 · 365 seconds in a year, and 26!
divided by 106 · 60 · 60 · 24 · 365 is approximately 1013.107.

6The assertion that a large number of possible keys, in and of itself, makes a cryptosys-
tem secure, has appeared many times in history and has equally often been shown to be
fallacious.
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By decreasing frequency
E 13.11% M 2.54%
T 10.47% U 2.46%
A 8.15% G 1.99%
O 8.00% Y 1.98%
N 7.10% P 1.98%
R 6.83% W 1.54%
I 6.35% B 1.44%
S 6.10% V 0.92%
H 5.26% K 0.42%
D 3.79% X 0.17%
L 3.39% J 0.13%
F 2.92% Q 0.12%
C 2.76% Z 0.08%

In alphabetical order
A 8.15% N 7.10%
B 1.44% O 8.00%
C 2.76% P 1.98%
D 3.79% Q 0.12%
E 13.11% R 6.83%
F 2.92% S 6.10%
G 1.99% T 10.47%
H 5.26% U 2.46%
I 6.35% V 0.92%
J 0.13% W 1.54%
K 0.42% X 0.17%
L 3.39% Y 1.98%
M 2.54% Z 0.08%

Table 1.3: Frequency of letters in English text

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG
ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ
CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM
YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

Table 1.4: A simple substitution cipher to cryptanalyze

have many applications throughout cryptography. Although for completeness
we provide full details, the reader may wish to skim this material.

There are 298 letters in the ciphertext. The first step is to make a frequency
table listing how often each ciphertext letter appears.

J L D G Y S O N M P E V Q C T W U K I X Z B A F R H

Freq 32 28 27 24 23 22 19 18 17 15 12 12 8 8 7 6 6 5 4 3 1 1 0 0 0 0

% 11 9 9 8 8 7 6 6 6 5 4 4 3 3 2 2 2 2 1 1 0 0 0 0 0 0

Table 1.5: Frequency table for Table 1.4—Ciphertext length: 298

The ciphertext letter J appears most frequently, so we make the provisional
guess that it corresponds to the plaintext letter e. The next most frequent
ciphertext letters are L (28 times) and D (27 times), so we might guess from
Table 1.3 that they represent t and a. However, the letter frequencies in a
short message are unlikely to exactly match the percentages in Table 1.3. All
that we can say is that among the ciphertext letters L, D, G, Y, and S are likely
to appear several of the plaintext letters t, a, o, n, and r.
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th he an re er in on at nd st es en of te ed

168 132 92 91 88 86 71 68 61 53 52 51 49 46 46

(a) Most common English bigrams (frequency per 1000 words)

LO OJ GY DN VD YL DL DM SN KD LY NG OY JD SK EP JG SV JM JQ

9 7 6 each 5 each 4 each

(b) Most common bigrams appearing in the ciphertext in Table 1.4

Table 1.6: Bigram frequencies

There are several ways to proceed. One method is to look at bigrams, which
are pairs of consecutive letters. Table 1.6(a) lists the bigrams that most fre-
quently appear in English, and Table 1.6(b) lists the ciphertext bigrams that
appear most frequently in our message. The ciphertext bigrams LO and OJ
appear frequently. We have already guessed that J = e, and based on its fre-
quency we suspect that L is likely to represent one of the letters t, a, o, n,
or r. Since the two most frequent English bigrams are th and he, we make
the tentative identifications

LO = th and OJ = he.

We substitute the guesses J = e, L = t, and O = h, into the ciphertext,
writing the putative plaintext letter below the corresponding ciphertext letter.

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- -te-- ----e ----- --e-t ---e- --e-- ----t --t-h -----

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

---e- ----- --e-- --e-e t---t h---- ----- ---tt h---h t-h--

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

----- ----- --e-e ----- ----- -e--- ----- ----- --t-- ----e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

----- ---t- -t--- ----- -h--- e---t ----e --t-t he--- --t--

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th -t--t --the --e-- -e-th e---- e--e- ---h- -hheh -----

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

--e-- tthe- the-- --ht- e---- ----e -h--- ---e- ----- -e-

At this point, we can look at the fragments of plaintext and attempt to
guess some common English words. For example, in the second line we see the
three blocks

VSGLL OSCIO LGOYG,
---tt h---h t-h--.
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Looking at the fragment th---ht, we might guess that this is the word
thought, which gives three more equivalences,

S = o, C = u, I = g.

This yields

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- -te-- ----e ----- o-e-t ---e- --e-- -o--t --t-h o---u

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

---eo --g-- --eo- --e-e to--t ho--- ----- -o-tt hough t-h--

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

-o--- u--o- --e-e ----- ----- -e--- o---- --o-o --t-o --o-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

u---- -o-t- -t--- g-ou- -h--- e-u-t ----e --tot heu-- --t--

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th -tu-t --the --e-- -e-th e--o- e--e- ---h- -hheh -----

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

--e-- tthe- the-- -ght- e---o ----e -h--- ---e- -o--- -e-

Now look at the three letters ght in the last line. They must be preceded
by a vowel, and the only vowels left are a and i, so we guess that Y = i. Then
we find the letters itio in the third line, and we guess that they are followed
by an n, which gives N = n. (There is no reason that a letter cannot represent
itself, although this is often forbidden in the puzzle ciphers that appear in
newspapers.) We now have

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- ite-- --i-e ----- o-ent ---e- --e-- ion-t -it-h o---u

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

---eo --g-- n-eo- -ne-e to--t ho--- -n-in -o-tt hough t-hi-

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

-on-- u-ion --e-e --in- ---i- -e--- o--n- --o-o -itio n-o-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

u--i- -o-t- -t-in g-ou- -hi-- e-u-t ----e --tot heuni niti-

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th -tunt i-the --e-- ne-th e--o- e--e- ---hi -hheh -----

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-e-- tthe- the-- ight- e---o n-i-e -hi-- --ne- -o--n -e-

So far, we have reconstructed the following plaintext/ciphertext pairs:

J L D G Y S O N M P E V Q C T W U K I X Z B A F R H

e t - - i o h n - - - - - u - - - - g - - - - - - -

Freq 32 28 27 24 23 22 19 18 17 15 12 12 8 8 7 6 6 5 4 3 1 1 0 0 0 0

Recall that the most common letters in English (Table 1.3) are, in order of
decreasing frequency,
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e, t, a, o, n, r, i, s, h.

We have already assigned ciphertext values to e, t, o, n, i, h, so we guess
that D and G represent two of the three letters a, r, s. In the third line we
notice that GYLYSN gives -ition, so clearly G must be s. Similarly, on the
fifth line we have LJQLO DLCNL equal to te-th -tunt, so D must be a, not r.
Substituting these new pairs G = s and D = a gives

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

the-- ite-- -ai-e ---a- o-ent a--e- --ess ionat -it-h o-a-u

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

s--eo -ag-a n-eo- ane-e to-at ho-a- ansin -ostt hough tshis

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

-on-- usion s-e-e asin- a--i- -eass o-an- --o-o sitio nso-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

u--i- sosta -t-in g-ou- -his- esu-t sa--e a-tot heuni nitia

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

te-th atunt i-the --ea- ne-th e--o- esses ---hi -hheh a-a--

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-e-a tthe- the-- ight- e---o nsi-e -hi-a sane- -o-an -e-

It is now easy to fill in additional pairs by inspection. For example, the
missing letter in the fragment atunt i-the on the fifth line must be l, which
gives P = l, and the missing letter in the fragment -osition on the third
line must be p, which gives W = p. Substituting these in, we find the fragment
e-p-ession on the first line, which gives Z = x and M = r, and the fragment
-on-lusion on the third line, which gives E = c. Then consi-er on the last
line gives Q = d and the initial words the-riterclai-e- must be the phrase
“the writer claimed,” yielding U = w and V = m. This gives

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC

thewr iterc laime d--am oment ar-ex press ionat witch o-amu

GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL OSCIO LGOYG

scleo ragla nceo- ane-e to-at homam ansin mostt hough tshis

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ

concl usion swere asin- alli- leass oman- propo sitio nso-e

CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD

uclid sosta rtlin gwoul dhisr esult sappe artot heuni nitia

LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EOOJO DQDMM

tedth atunt ilthe -lear nedth eproc esses --whi chheh adarr

YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-eda tthem the-m ightw ellco nside rhima sanec roman cer

It is now a simple matter to fill in the few remaining letters and put in
the appropriate word breaks, capitalization, and punctuation to recover the
plaintext:

The writer claimed by a momentary expression, a twitch of a mus-
cle or a glance of an eye, to fathom a man’s inmost thoughts. His
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conclusions were as infallible as so many propositions of Euclid.
So startling would his results appear to the uninitiated that until
they learned the processes by which he had arrived at them they
might well consider him as a necromancer.7

1.2 Divisibility and greatest common divisors

Much of modern cryptography is built on the foundations of algebra and
number theory. So before we explore the subject of cryptography, we need
to develop some important tools. In the next four sections we begin this de-
velopment by describing and proving fundamental results from algebra and
number theory. If you have already studied number theory in another course,
a brief review of this material will suffice. But if this material is new to you,
then it is vital to study it closely and to work out the exercises provided at
the end of the chapter.

At the most basic level, Number Theory is the study of the natural numbers

1, 2, 3, 4, 5, 6, . . . ,

or slightly more generally, the study of the integers

. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . . .

The set of integers is denoted by the symbol Z. Integers can be added, sub-
tracted, and multiplied in the usual way, and they satisfy all the usual rules
of arithmetic (commutative law, associative law, distributive law, etc.). The
set of integers with their addition and multiplication rules are an example of
a ring. See Section 2.10.1 for more about the theory of rings.

If a and b are integers, then we can add them a + b, subtract them a − b,
and multiply them a · b. In each case, we get an integer as the result. This
property of staying inside of our original set after applying operations to a
pair of elements is characteristic of a ring.

But if we want to stay within the integers, then we are not always able
to divide one integer by another. For example, we cannot divide 3 by 2, since
there is no integer that is equal to 3

2 . This leads to the fundamental concept
of divisibility.

Definition. Let a and b be integers with b �= 0. We say that b divides a, or
that a is divisible by b, if there is an integer c such that

a = bc.

We write b | a to indicate that b divides a. If b does not divide a, then we
write b � a.

7A Study in Scarlet (Chapter 2), Sir Arthur Conan Doyle.



1.2. Divisibility and greatest common divisors 11

Example 1.2. We have 847 | 485331, since 485331 = 847 · 573. On the other
hand, 355 � 259943, since when we try to divide 259943 by 355, we get a
remainder of 83. More precisely, 259943 = 355 · 732 + 83, so 259943 is not an
exact multiple of 355.

Remark 1.3. Notice that every integer is divisible by 1. The integers that are
divisible by 2 are the even integers, and the integers that are not divisible
by 2 are the odd integers.

There are a number of elementary divisibility properties, some of which
we list in the following proposition.

Proposition 1.4. Let a, b, c ∈ Z be integers.
(a) If a | b and b | c, then a | c.
(b) If a | b and b | a, then a = ±b.
(c) If a | b and a | c, then a | (b + c) and a | (b − c).

Proof. We leave the proof as an exercise for the reader; see Exercise 1.6.

Definition. A common divisor of two integers a and b is a positive integer d
that divides both of them. The greatest common divisor of a and b is, as
its name suggests, the largest positive integer d such that d | a and d | b.
The greatest common divisor of a and b is denoted gcd(a, b). If there is no
possibility of confusion, it is also sometimes denoted by (a, b). (If a and b are
both 0, then gcd(a, b) is not defined.)

It is a curious fact that a concept as simple as the greatest common divisor
has many applications. We’ll soon see that there is a fast and efficient method
to compute the greatest common divisor of any two integers, a fact that has
powerful and far-reaching consequences.

Example 1.5. The greatest common divisor of 12 and 18 is 6, since 6 | 12
and 6 | 18 and there is no larger number with this property. Similarly,

gcd(748, 2024) = 44.

One way to check that this is correct is to make lists of all of the positive
divisors of 748 and of 2024.

Divisors of 748 = {1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748},
Divisors of 2024 = {1, 2, 4, 8, 11, 22, 23, 44, 46, 88, 92, 184, 253,

506, 1012, 2024}.

Examining the two lists, we see that the largest common entry is 44. Even
from this small example, it is clear that this is not a very efficient method. If
we ever need to compute greatest common divisors of large numbers, we will
have to find a more efficient approach.



12 1. An Introduction to Cryptography

The key to an efficient algorithm for computing greatest common divisors
is division with remainder, which is simply the method of “long division” that
you learned in elementary school. Thus if a and b are positive integers and if
you attempt to divide a by b, you will get a quotient q and a remainder r,
where the remainder r is smaller than b. For example,

13 R 9
17 ) 230

17
60
51
9

so 230 divided by 17 gives a quotient of 13 with a remainder of 9. What does
this last statement really mean? It means that 230 can be written as

230 = 17 · 13 + 9,

where the remainder 9 is strictly smaller than the divisor 17.

Definition. (Division Algorithm) Let a and b be positive integers. Then a
divided by b has quotient q and remainder r means that

a = b · q + r with 0 ≤ r < b.

The values of q and r are uniquely determined by a and b.

Suppose now that we want to find the greatest common divisor of a and b.
We first divide a by b to get

a = b · q + r with 0 ≤ r < b. (1.1)

If d is any common divisor of a and b, then it is clear from equation (1.1)
that d is also a divisor of r. (See Proposition 1.4(c).) Similarly, if e is a common
divisor of b and r, then (1.1) shows that e is a divisor of a. In other words, the
common divisors of a and b are the same as the common divisors of b and r;
hence

gcd(a, b) = gcd(b, r).

We repeat the process, dividing b by r to get another quotient and remainder,
say

b = r · q′ + r′ with 0 ≤ r′ < r.

Then the same reasoning shows that

gcd(b, r) = gcd(r, r′).

Continuing this process, the remainders become smaller and smaller, until
eventually we get a remainder of 0, at which point the final value gcd(s, 0) = s
is equal to the gcd of a and b.

We illustrate with an example and then describe the general method, which
goes by the name Euclidean algorithm.
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Example 1.6. We compute gcd(2024, 748) using the Euclidean algorithm,
which is nothing more than repeated division with remainder. Notice how
the quotient and remainder on each line become the new a and b on the
subsequent line:

2024 = 748 · 2 + 528
748 = 528 · 1 + 220
528 = 220 · 2 + 88
220 = 88 · 2 + 44 ← gcd = 44
88 = 44 · 2 + 0

Theorem 1.7 (The Euclidean Algorithm). Let a and b be positive integers
with a ≥ b. The following algorithm computes gcd(a, b) in a finite number of
steps.
(1) Let r0 = a and r1 = b.
(2) Set i = 1.
(3) Divide ri−1 by ri to get a quotient qi and remainder ri+1,

ri−1 = ri · qi + ri+1 with 0 ≤ ri+1 < ri.

(4) If the remainder ri+1 = 0, then ri = gcd(a, b) and the algorithm termi-
nates.

(5) Otherwise, ri+1 > 0, so set i = i + 1 and go to Step 3.
The division step (Step 3) is executed at most

2 log2(b) + 1 times.

Proof. The Euclidean algorithm consists of a sequence of divisions with re-
mainder as illustrated in Figure 1.2 (remember that we set r0 = a and r1 = b).

a = b · q1 + r2 with 0 ≤ r2 < b,
b = r2 · q2 + r3 with 0 ≤ r3 < r2,

r2 = r3 · q3 + r4 with 0 ≤ r4 < r3,
r3 = r4 · q4 + r5 with 0 ≤ r5 < r4,
...

...
...

rt−2 = rt−1 · qt−1 + rt with 0 ≤ rt < rt−1,
rt−1 = rt · qt

Then rt = gcd(a, b).

Figure 1.2: The Euclidean algorithm step by step

The ri values are strictly decreasing, and as soon as they reach zero the
algorithm terminates, which proves that the algorithm does finish in a finite
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number of steps. Further, at each iteration of Step 3 we have an equation of
the form

ri−1 = ri · qi + ri+1.

This equation implies that any common divisor of ri−1 and ri is also a divisor
of ri+1, and similarly it implies that any common divisor of ri and ri+1 is also
a divisor of ri−1. Hence

gcd(ri−1, ri) = gcd(ri, ri+1) for all i = 1, 2, 3, . . . . (1.2)

However, as noted above, we eventually get to an ri that is zero, say rt+1 = 0.
Then rt−1 = rt · qt, so

gcd(rt−1, rt) = gcd(rt · qt, rt) = rt.

But equation (1.2) says that this is equal to gcd(r0, r1), i.e., to gcd(a, b),
which completes the proof that the last nonzero remainder in the Euclidean
algorithm is equal to the greatest common divisor of a and b.

It remains to estimate the efficiency of the algorithm. We noted above
that since the ri values are strictly decreasing, the algorithm terminates, and
indeed since r1 = b, it certainly terminates in at most b steps. However, this
upper bound is far from the truth. We claim that after every two iterations
of Step 3, the value of ri is at least cut in half. In other words:

Claim: ri+2 < 1
2ri for all i = 0, 1, 2, . . . .

We prove the claim by considering two cases.

Case I: ri+1 ≤ 1
2ri

We know that the ri values are strictly decreasing, so

ri+2 < ri+1 ≤ 1
2ri.

Case II: ri+1 > 1
2ri

Consider what happens when we divide ri by ri+1. The value of ri+1 is
so large that we get

ri = ri+1 · 1 + ri+2 with ri+2 = ri − ri+1 < ri − 1
2ri = 1

2ri.

We have now proven our claim that ri+2 < 1
2ri for all i. Using this inequality

repeatedly, we find that

r2k+1 <
1
2
r2k−1 <

1
4
r2k−3 <

1
8
r2k−5 <

1
16

r2k−7 < · · · <
1
2k

r1 =
1
2k

b.

Hence if 2k ≥ b, then r2k+1 < 1, which forces r2k+1 to equal 0 and the al-
gorithm to terminate. In terms of Figure 1.2, the value of rt+1 is 0, so we
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have t + 1 ≤ 2k + 1, and thus t ≤ 2k. Further, there are exactly t divisions
performed in Figure 1.2, so the Euclidean algorithm terminates in at most 2k
iterations. Choose the smallest such k, so 2k ≥ b > 2k−1. Then

# of iterations ≤ 2k = 2(k − 1) + 2 < 2 log2(b) + 2,

which completes the proof of Theorem 1.7.

Remark 1.8. We proved that the Euclidean algorithm applied to a and b with
a ≥ b requires no more than 2 log2(b) + 1 iterations to compute gcd(a, b).
This estimate can be somewhat improved. It has been proven that the Eu-
clidean algorithm takes no more than 1.45 log2(b) + 1.68 iterations, and that
the average number of iterations for randomly chosen a and b is approximately
0.85 log2(b) + 0.14. (See [61].)

Remark 1.9. One way to compute quotients and remainders is by long di-
vision, as we did on page 12. You can speed up the process using a simple
calculator. The first step is to divide a by b on your calculator, which will
give a real number. Throw away the part after the decimal point to get the
quotient q. Then the remainder r can be computed as

r = a − b · q.

For example, let a = 2387187 and b = 27573. Then a/b ≈ 86.57697748, so
q = 86 and

r = a − b · q = 2387187 − 27573 · 86 = 15909.

If you need just the remainder, you can instead take the decimal part (also
sometimes called the fractional part) of a/b and multiply it by b. Continuing
with our example, the decimal part of a/b ≈ 86.57697748 is 0.57697748, and
multiplying by b = 27573 gives

27573 · 0.57697748 = 15909.00005604.

Rounding this off gives r = 15909.

After performing the Euclidean algorithm on two numbers, we can work
our way back up the process to obtain an extremely interesting formula. Before
giving the general result, we illustrate with an example.

Example 1.10. Recall that in Example 1.6 we used the Euclidean algorithm
to compute gcd(2024, 748) as follows:

2024 = 748 · 2 + 528
748 = 528 · 1 + 220
528 = 220 · 2 + 88
220 = 88 · 2 + 44 ← gcd = 44
88 = 44 · 2 + 0
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We let a = 2024 and b = 748, so the first line says that

528 = a − 2b.

We substitute this into the second line to get

b = (a − 2b) · 1 + 220, so 220 = −a + 3b.

We next substitute the expressions 528 = a − 2b and 220 = −a + 3b into the
third line to get

a − 2b = (−a + 3b) · 2 + 88, so 88 = 3a − 8b.

Finally, we substitute the expressions 220 = −a + 3b and 88 = 3a − 8b into
the penultimate line to get

−a + 3b = (3a − 8b) · 2 + 44, so 44 = −7a + 19b.

In other words,

−7 · 2024 + 19 · 748 = 44 = gcd(2024, 748),

so we have found a way to write gcd(a, b) as a linear combination of a and b
using integer coefficients.

In general, it is always possible to write gcd(a, b) as an integer linear combi-
nation of a and b, a simple sounding result with many important consequences.

Theorem 1.11 (Extended Euclidean Algorithm). Let a and b be positive
integers. Then the equation

au + bv = gcd(a, b)

always has a solution in integers u and v. (See Exercise 1.12 for an efficient
algorithm to find a solution.)

If (u0, v0) is any one solution, then every solution has the form

u = u0 +
b · k

gcd(a, b)
and v = v0 −

a · k
gcd(a, b)

for some k ∈ Z.

Proof. Look back at Figure 1.2, which illustrates the Euclidean algorithm step
by step. We can solve the first line for r2 = a − b · q1 and substitute it into
the second line to get

b = (a − b · q1) · q2 + r3, so r3 = −a · q2 + b · (1 + q1q2).

Next substitute the expressions for r2 and r3 into the third line to get

a − b · q1 =
(
−a · q2 + b · (1 + q1q2)

)
q3 + r4.


